[mlir][sparse] incorporate vector index into address computation
authorAart Bik <ajcbik@google.com>
Tue, 23 Feb 2021 19:43:03 +0000 (11:43 -0800)
committerAart Bik <ajcbik@google.com>
Tue, 23 Feb 2021 21:25:51 +0000 (13:25 -0800)
When computing dense address, a vectorized index must be accounted
for properly. This bug was formerly undetected because we get 0 * prev + i
in most cases, which folds away the scalar part. Now it works for all cases.

Reviewed By: bixia

Differential Revision: https://reviews.llvm.org/D97317

mlir/lib/Dialect/Linalg/Transforms/Sparsification.cpp
mlir/test/Dialect/Linalg/sparse_vector.mlir

index 5306e6f..fbb45c6 100644 (file)
@@ -182,6 +182,7 @@ public:
           continue;
         // Conjunction already covered?
         for (unsigned p2 : latSets[s]) {
+          assert(!latGT(p1, p2)); // Lj => Li would be bad
           if (onlyDenseDiff(p2, p1)) {
             add = false;
             break;
@@ -752,6 +753,17 @@ static Value genInvariantValue(Merger &merger, CodeGen &codegen,
   return val;
 }
 
+/// Generates an address computation "sz * p + i".
+static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
+                        Location loc, Value size, Value p, Value i) {
+  Value mul = rewriter.create<MulIOp>(loc, size, p);
+  if (auto vtp = i.getType().dyn_cast<VectorType>()) {
+    Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType());
+    mul = genVectorInvariantValue(codegen, rewriter, inv);
+  }
+  return rewriter.create<AddIOp>(loc, mul, i);
+}
+
 /// Recursively generates tensor expression.
 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
                     linalg::GenericOp op, unsigned exp) {
@@ -1073,9 +1085,8 @@ static void genLocals(Merger &merger, CodeGen &codegen,
           break;
       Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
                            : codegen.pidxs[tensor][topSort[pat - 1]];
-      Value m = rewriter.create<MulIOp>(loc, codegen.sizes[idx], p);
-      codegen.pidxs[tensor][idx] =
-          rewriter.create<AddIOp>(loc, m, codegen.loops[idx]);
+      codegen.pidxs[tensor][idx] = genAddress(
+          codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
     }
   }
 }
index 2d79a5c..644b231 100644 (file)
@@ -145,6 +145,40 @@ func @mul_s(%arga: tensor<1024xf32>, %argb: tensor<1024xf32>, %argx: tensor<1024
   return %0 : tensor<1024xf32>
 }
 
+//
+// CHECK-VEC2-LABEL: func @mul_s_alt
+// CHECK-VEC2-DAG:   %[[c0:.*]] = constant 0 : index
+// CHECK-VEC2-DAG:   %[[c1:.*]] = constant 1 : index
+// CHECK-VEC2-DAG:   %[[c16:.*]] = constant 16 : index
+// CHECK-VEC2:       %[[p:.*]] = load %{{.*}}[%[[c0]]] : memref<?xi32>
+// CHECK-VEC2:       %[[q:.*]] = index_cast %[[p]] : i32 to index
+// CHECK-VEC2:       %[[r:.*]] = load %{{.*}}[%[[c1]]] : memref<?xi32>
+// CHECK-VEC2:       %[[s:.*]] = index_cast %[[r]] : i32 to index
+// CHECK-VEC2:       scf.for %[[i:.*]] = %[[q]] to %[[s]] step %[[c16]] {
+// CHECK-VEC2:         %[[sub:.*]] = subi %[[s]], %[[i]] : index
+// CHECK-VEC2:         %[[mask:.*]] = vector.create_mask %[[sub]] : vector<16xi1>
+// CHECK-VEC2:         %[[li:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %{{.*}} : memref<?xi32>, vector<16xi1>, vector<16xi32> into vector<16xi32>
+// CHECK-VEC2:         %[[la:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %{{.*}} : memref<?xf32>, vector<16xi1>, vector<16xf32> into vector<16xf32>
+// CHECK-VEC2:         %[[lb:.*]] = vector.gather %{{.*}}[%[[li]]], %[[mask]], %{{.*}} : memref<?xf32>, vector<16xi32>, vector<16xi1>, vector<16xf32> into vector<16xf32>
+// CHECK-VEC2:         %[[m:.*]] = mulf %[[la]], %[[lb]] : vector<16xf32>
+// CHECK-VEC2:         vector.scatter %{{.*}}[%[[li]]], %[[mask]], %[[m]] : memref<1024xf32>, vector<16xi32>, vector<16xi1>, vector<16xf32>
+// CHECK-VEC2:       }
+// CHECK-VEC2:       return
+//
+!SparseTensor = type !llvm.ptr<i8>
+func @mul_s_alt(%argA: !SparseTensor, %argB: !SparseTensor, %argx: tensor<1024xf32>) -> tensor<1024xf32> {
+  %arga = linalg.sparse_tensor %argA : !SparseTensor to tensor<1024xf32>
+  %argb = linalg.sparse_tensor %argB : !SparseTensor to tensor<1024xf32>
+  %0 = linalg.generic #trait_mul_s
+    ins(%arga, %argb: tensor<1024xf32>, tensor<1024xf32>)
+    outs(%argx: tensor<1024xf32>) {
+      ^bb(%a: f32, %b: f32, %x: f32):
+        %0 = mulf %a, %b : f32
+        linalg.yield %0 : f32
+  } -> tensor<1024xf32>
+  return %0 : tensor<1024xf32>
+}
+
 #trait_reduction_d = {
   indexing_maps = [
     affine_map<(i) -> (i)>,  // a