igb: make local functions static and remove dead code
authorJeff Kirsher <jeffrey.t.kirsher@intel.com>
Wed, 26 Feb 2014 01:58:56 +0000 (17:58 -0800)
committerDavid S. Miller <davem@davemloft.net>
Wed, 26 Feb 2014 20:54:52 +0000 (15:54 -0500)
Based on Stephen Hemminger's original patch.
Make local functions static, and remove unused functions.

Reported-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Tested-by: Aaron Brown <aaron.f.brown@intel.com>
Signed-off-by: Aaron Brown <aaron.f.brown@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
drivers/net/ethernet/intel/igb/e1000_82575.c
drivers/net/ethernet/intel/igb/e1000_82575.h
drivers/net/ethernet/intel/igb/e1000_i210.c
drivers/net/ethernet/intel/igb/e1000_i210.h
drivers/net/ethernet/intel/igb/e1000_phy.c
drivers/net/ethernet/intel/igb/e1000_phy.h
drivers/net/ethernet/intel/igb/igb.h
drivers/net/ethernet/intel/igb/igb_ptp.c

index 06df692..0ee7049 100644 (file)
@@ -2720,7 +2720,7 @@ static const u8 e1000_emc_therm_limit[4] = {
  *
  *  Updates the temperatures in mac.thermal_sensor_data
  **/
-s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
+static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
 {
        s32 status = E1000_SUCCESS;
        u16 ets_offset;
@@ -2774,7 +2774,7 @@ s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
  *  Sets the thermal sensor thresholds according to the NVM map
  *  and save off the threshold and location values into mac.thermal_sensor_data
  **/
-s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
+static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
 {
        s32 status = E1000_SUCCESS;
        u16 ets_offset;
index 8c24377..622d80d 100644 (file)
@@ -266,8 +266,6 @@ u16 igb_rxpbs_adjust_82580(u32 data);
 s32 igb_read_emi_reg(struct e1000_hw *, u16 addr, u16 *data);
 s32 igb_set_eee_i350(struct e1000_hw *);
 s32 igb_set_eee_i354(struct e1000_hw *);
-s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *);
-s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw);
 
 #define E1000_I2C_THERMAL_SENSOR_ADDR  0xF8
 #define E1000_EMC_INTERNAL_DATA                0x00
index 0c03933..9f32c78 100644 (file)
@@ -35,6 +35,8 @@
 #include "e1000_hw.h"
 #include "e1000_i210.h"
 
+static s32 igb_update_flash_i210(struct e1000_hw *hw);
+
 /**
  * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
  *  @hw: pointer to the HW structure
@@ -111,7 +113,7 @@ static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
  *  Return successful if access grant bit set, else clear the request for
  *  EEPROM access and return -E1000_ERR_NVM (-1).
  **/
-s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
+static s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
 {
        return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
 }
@@ -123,7 +125,7 @@ s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
  *  then release the semaphores acquired.
  **/
-void igb_release_nvm_i210(struct e1000_hw *hw)
+static void igb_release_nvm_i210(struct e1000_hw *hw)
 {
        igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
 }
@@ -206,8 +208,8 @@ void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
  *  Reads a 16 bit word from the Shadow Ram using the EERD register.
  *  Uses necessary synchronization semaphores.
  **/
-s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
-                            u16 *data)
+static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
+                                 u16 *data)
 {
        s32 status = E1000_SUCCESS;
        u16 i, count;
@@ -306,8 +308,8 @@ out:
  *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
  *  partially written.
  **/
-s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
-                             u16 *data)
+static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
+                                  u16 *data)
 {
        s32 status = E1000_SUCCESS;
        u16 i, count;
@@ -555,7 +557,7 @@ s32 igb_read_invm_version(struct e1000_hw *hw,
  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
  **/
-s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
+static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
 {
        s32 status = E1000_SUCCESS;
        s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
@@ -590,7 +592,7 @@ s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
  **/
-s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
+static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
 {
        s32 ret_val = E1000_SUCCESS;
        u16 checksum = 0;
@@ -684,7 +686,7 @@ bool igb_get_flash_presence_i210(struct e1000_hw *hw)
  *  @hw: pointer to the HW structure
  *
  **/
-s32 igb_update_flash_i210(struct e1000_hw *hw)
+static s32 igb_update_flash_i210(struct e1000_hw *hw)
 {
        s32 ret_val = E1000_SUCCESS;
        u32 flup;
index 2d91371..a068866 100644 (file)
 #ifndef _E1000_I210_H_
 #define _E1000_I210_H_
 
-s32 igb_update_flash_i210(struct e1000_hw *hw);
-s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw);
-s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw);
-s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
-                           u16 *data);
-s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
-                          u16 *data);
 s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask);
 void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask);
-s32 igb_acquire_nvm_i210(struct e1000_hw *hw);
-void igb_release_nvm_i210(struct e1000_hw *hw);
 s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data);
 s32 igb_read_invm_version(struct e1000_hw *hw,
                          struct e1000_fw_version *invm_ver);
index ad2b74d..c0f2a16 100644 (file)
@@ -394,77 +394,6 @@ s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
 }
 
 /**
- *  e1000_write_sfp_data_byte - Writes SFP module data.
- *  @hw: pointer to the HW structure
- *  @offset: byte location offset to write to
- *  @data: data to write
- *
- *  Writes one byte to SFP module data stored
- *  in SFP resided EEPROM memory or SFP diagnostic area.
- *  Function should be called with
- *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
- *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
- *  access
- **/
-s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data)
-{
-       u32 i = 0;
-       u32 i2ccmd = 0;
-       u32 data_local = 0;
-
-       if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
-               hw_dbg("I2CCMD command address exceeds upper limit\n");
-               return -E1000_ERR_PHY;
-       }
-       /* The programming interface is 16 bits wide
-        * so we need to read the whole word first
-        * then update appropriate byte lane and write
-        * the updated word back.
-        */
-       /* Set up Op-code, EEPROM Address,in the I2CCMD
-        * register. The MAC will take care of interfacing
-        * with an EEPROM to write the data given.
-        */
-       i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
-                 E1000_I2CCMD_OPCODE_READ);
-       /* Set a command to read single word */
-       wr32(E1000_I2CCMD, i2ccmd);
-       for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
-               udelay(50);
-               /* Poll the ready bit to see if lastly
-                * launched I2C operation completed
-                */
-               i2ccmd = rd32(E1000_I2CCMD);
-               if (i2ccmd & E1000_I2CCMD_READY) {
-                       /* Check if this is READ or WRITE phase */
-                       if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) ==
-                           E1000_I2CCMD_OPCODE_READ) {
-                               /* Write the selected byte
-                                * lane and update whole word
-                                */
-                               data_local = i2ccmd & 0xFF00;
-                               data_local |= data;
-                               i2ccmd = ((offset <<
-                                       E1000_I2CCMD_REG_ADDR_SHIFT) |
-                                       E1000_I2CCMD_OPCODE_WRITE | data_local);
-                               wr32(E1000_I2CCMD, i2ccmd);
-                       } else {
-                               break;
-                       }
-               }
-       }
-       if (!(i2ccmd & E1000_I2CCMD_READY)) {
-               hw_dbg("I2CCMD Write did not complete\n");
-               return -E1000_ERR_PHY;
-       }
-       if (i2ccmd & E1000_I2CCMD_ERROR) {
-               hw_dbg("I2CCMD Error bit set\n");
-               return -E1000_ERR_PHY;
-       }
-       return 0;
-}
-
-/**
  *  igb_read_phy_reg_igp - Read igp PHY register
  *  @hw: pointer to the HW structure
  *  @offset: register offset to be read
index 6a0873f..55b3f8c 100644 (file)
@@ -70,7 +70,6 @@ s32  igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data);
 s32  igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data);
 s32  igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data);
 s32  igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data);
-s32  e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data);
 s32  igb_copper_link_setup_82580(struct e1000_hw *hw);
 s32  igb_get_phy_info_82580(struct e1000_hw *hw);
 s32  igb_phy_force_speed_duplex_82580(struct e1000_hw *hw);
index ccf472f..65f3c77 100644 (file)
@@ -525,9 +525,7 @@ void igb_set_fw_version(struct igb_adapter *);
 void igb_ptp_init(struct igb_adapter *adapter);
 void igb_ptp_stop(struct igb_adapter *adapter);
 void igb_ptp_reset(struct igb_adapter *adapter);
-void igb_ptp_tx_work(struct work_struct *work);
 void igb_ptp_rx_hang(struct igb_adapter *adapter);
-void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb);
 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, unsigned char *va,
                         struct sk_buff *skb);
index 5a54e3d..d9f3976 100644 (file)
@@ -75,6 +75,8 @@
 #define INCVALUE_82576                 (16 << IGB_82576_TSYNC_SHIFT)
 #define IGB_NBITS_82580                        40
 
+static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
+
 /* SYSTIM read access for the 82576 */
 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
 {
@@ -372,7 +374,7 @@ static int igb_ptp_enable(struct ptp_clock_info *ptp,
  * This work function polls the TSYNCTXCTL valid bit to determine when a
  * timestamp has been taken for the current stored skb.
  **/
-void igb_ptp_tx_work(struct work_struct *work)
+static void igb_ptp_tx_work(struct work_struct *work)
 {
        struct igb_adapter *adapter = container_of(work, struct igb_adapter,
                                                   ptp_tx_work);
@@ -466,7 +468,7 @@ void igb_ptp_rx_hang(struct igb_adapter *adapter)
  * available, then it must have been for this skb here because we only
  * allow only one such packet into the queue.
  **/
-void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
+static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
 {
        struct e1000_hw *hw = &adapter->hw;
        struct skb_shared_hwtstamps shhwtstamps;