[InstrProf] Minimal Block Coverage
authorEllis Hoag <ellis.sparky.hoag@gmail.com>
Wed, 29 Mar 2023 19:58:42 +0000 (12:58 -0700)
committerEllis Hoag <ellis.sparky.hoag@gmail.com>
Wed, 29 Mar 2023 23:24:20 +0000 (16:24 -0700)
This diff implements minimal block coverage instrumentation. When the `-pgo-block-coverage` option is used, basic blocks will be instrumented for block coverage using single byte booleans. The coverage of some basic blocks can be inferred from others, so not every basic block is instrumented. In fact, we found that only ~60% of basic blocks need to be instrumented. These differences lead to less size overhead when compared to instrumenting block counts. For example, block coverage on the clang binary has an overhead of 20 Mi (17%) compared to 56 Mi (47%) with block counts.

Even though block coverage profiles have less precision than block count profiles, they can still be used to guide optimizations. In `PGOUseFunc` we use block coverage to populate edge weights such that BFI gives nonzero counts to only covered blocks. We do this by 1) setting the entry count of covered functions to a large value, i.e., 10000 and 2) populating edge weights using block coverage. In the next diff https://reviews.llvm.org/D125743 we use BFI to guide the machine outliner to avoid outlining covered blocks. This `-pgo-block-coverage` option provides a trade off of generating less precise profiles for faster and smaller instrumented binaries.

The `BlockCoverageInference` class defines the algorithm to find the minimal set of basic blocks that need to be instrumented for coverage. This is different from the Kirchhoff circuit law optimization that is used for edge **counts** because that does not work for block **coverage**. The reason for this is that edge counts can be added together to find a missing count while block coverage cannot since they store boolean values. So we need a new algorithm to find which blocks must be instrumented.

The details on this algorithm can be found in this paper titled "Minimum Coverage Instrumentation": https://arxiv.org/abs/2208.13907

Special thanks to Julian Mestre for creating this block coverage inference algorithm.

Binary size of `clang` using `-O2`:

* Base
  * `.text`: 65.8 Mi
  * Total: 119 Mi
* IRPGO (`-fprofile-generate -mllvm -disable-vp -mllvm -debug-info-correlate`)
  * `.text`: 93.0 Mi
  * `__llvm_prf_cnts`: 14.5 Mi
  * Total: 175 Mi
* Minimal Block Coverage (`-fprofile-generate -mllvm -disable-vp -mllvm -debug-info-correlate -mllvm -pgo-block-coverage`)
  * `.text`: 82.1 Mi
  * `__llvm_prf_cnts`: 1.38 Mi
  * Total: 139 Mi

Reviewed By: spupyrev, kyulee

Differential Revision: https://reviews.llvm.org/D124490

compiler-rt/test/profile/instrprof-block-coverage.c [new file with mode: 0644]
compiler-rt/test/profile/instrprof-entry-coverage.c [moved from compiler-rt/test/profile/instrprof-coverage.c with 100% similarity]
llvm/include/llvm/Transforms/Instrumentation/BlockCoverageInference.h [new file with mode: 0644]
llvm/lib/Transforms/Instrumentation/BlockCoverageInference.cpp [new file with mode: 0644]
llvm/lib/Transforms/Instrumentation/CMakeLists.txt
llvm/lib/Transforms/Instrumentation/InstrProfiling.cpp
llvm/lib/Transforms/Instrumentation/PGOInstrumentation.cpp
llvm/test/Transforms/PGOProfile/coverage.ll

diff --git a/compiler-rt/test/profile/instrprof-block-coverage.c b/compiler-rt/test/profile/instrprof-block-coverage.c
new file mode 100644 (file)
index 0000000..4f1e778
--- /dev/null
@@ -0,0 +1,47 @@
+// RUN: %clang_pgogen -mllvm -pgo-block-coverage %s -o %t.out
+// RUN: env LLVM_PROFILE_FILE=%t1.profraw %run %t.out 1
+// RUN: env LLVM_PROFILE_FILE=%t2.profraw %run %t.out 2
+// RUN: llvm-profdata merge -o %t.profdata %t1.profraw %t2.profraw
+// RUN: %clang_profuse=%t.profdata -mllvm -pgo-verify-bfi -o - -S -emit-llvm %s 2>%t.errs | FileCheck %s --implicit-check-not="!prof"
+// RUN: FileCheck %s < %t.errs --allow-empty --check-prefix=CHECK-ERROR
+
+#include <stdlib.h>
+
+// CHECK: @foo({{.*}})
+// CHECK-SAME: !prof ![[PROF0:[0-9]+]]
+void foo(int a) {
+  // CHECK: br i1 %{{.*}}, label %{{.*}}, label %{{.*}}, !prof ![[PROF1:[0-9]+]]
+  if (a % 2 == 0) {
+    //
+  } else {
+    //
+  }
+
+  // CHECK: br i1 %{{.*}}, label %{{.*}}, label %{{.*}}, !prof ![[PROF1]]
+  for (int i = 1; i < a; i++) {
+    // CHECK: br i1 %{{.*}}, label %{{.*}}, label %{{.*}}, !prof ![[PROF2:[0-9]+]]
+    if (a % 3 == 0) {
+      //
+    } else {
+      // CHECK: br i1 %{{.*}}, label %{{.*}}, label %{{.*}}, !prof ![[PROF2]]
+      if (a % 1001 == 0) {
+        return;
+      }
+    }
+  }
+
+  return;
+}
+
+// CHECK: @main({{.*}})
+// CHECK-SAME: !prof ![[PROF0]]
+int main(int argc, char *argv[]) {
+  foo(atoi(argv[1]));
+  return 0;
+}
+
+// CHECK-DAG: ![[PROF0]] = !{!"function_entry_count", i64 10000}
+// CHECK-DAG: ![[PROF1]] = !{!"branch_weights", i32 1, i32 1}
+// CHECK-DAG: ![[PROF2]] = !{!"branch_weights", i32 0, i32 1}
+
+// CHECK-ERROR-NOT: warning: {{.*}}: Found inconsistent block coverage
diff --git a/llvm/include/llvm/Transforms/Instrumentation/BlockCoverageInference.h b/llvm/include/llvm/Transforms/Instrumentation/BlockCoverageInference.h
new file mode 100644 (file)
index 0000000..12f2364
--- /dev/null
@@ -0,0 +1,86 @@
+//===-- BlockCoverageInference.h - Minimal Execution Coverage ---*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file finds the minimum set of blocks on a CFG that must be instrumented
+/// to infer execution coverage for the whole graph.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_INSTRUMENTATION_BLOCKCOVERAGEINFERENCE_H
+#define LLVM_TRANSFORMS_INSTRUMENTATION_BLOCKCOVERAGEINFERENCE_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+
+class Function;
+class BasicBlock;
+class DotFuncBCIInfo;
+
+class BlockCoverageInference {
+  friend class DotFuncBCIInfo;
+
+public:
+  using BlockSet = SmallSetVector<const BasicBlock *, 4>;
+
+  BlockCoverageInference(const Function &F, bool ForceInstrumentEntry);
+
+  /// \return true if \p BB should be instrumented for coverage.
+  bool shouldInstrumentBlock(const BasicBlock &BB) const;
+
+  /// \return the set of blocks \p Deps such that \p BB is covered iff any
+  /// blocks in \p Deps are covered.
+  BlockSet getDependencies(const BasicBlock &BB) const;
+
+  /// \return a hash that depends on the set of instrumented blocks.
+  uint64_t getInstrumentedBlocksHash() const;
+
+  /// Dump the inference graph.
+  void dump(raw_ostream &OS) const;
+
+  /// View the inferred block coverage as a dot file.
+  /// Filled gray blocks are instrumented, red outlined blocks are found to be
+  /// covered, red edges show that a block's coverage can be inferred from its
+  /// successors, and blue edges show that a block's coverage can be inferred
+  /// from its predecessors.
+  void viewBlockCoverageGraph(
+      const DenseMap<const BasicBlock *, bool> *Coverage = nullptr) const;
+
+private:
+  const Function &F;
+  bool ForceInstrumentEntry;
+
+  /// Maps blocks to a minimal list of predecessors that can be used to infer
+  /// this block's coverage.
+  DenseMap<const BasicBlock *, BlockSet> PredecessorDependencies;
+
+  /// Maps blocks to a minimal list of successors that can be used to infer
+  /// this block's coverage.
+  DenseMap<const BasicBlock *, BlockSet> SuccessorDependencies;
+
+  /// Compute \p PredecessorDependencies and \p SuccessorDependencies.
+  void findDependencies();
+
+  /// Find the set of basic blocks that are reachable from \p Start without the
+  /// basic block \p Avoid.
+  void getReachableAvoiding(const BasicBlock &Start, const BasicBlock &Avoid,
+                            bool IsForward, BlockSet &Reachable) const;
+
+  static std::string getBlockNames(ArrayRef<const BasicBlock *> BBs);
+  static std::string getBlockNames(BlockSet BBs) {
+    return getBlockNames(ArrayRef<const BasicBlock *>(BBs.begin(), BBs.end()));
+  }
+};
+
+} // end namespace llvm
+
+#endif // LLVM_TRANSFORMS_INSTRUMENTATION_BLOCKCOVERAGEINFERENCE_H
diff --git a/llvm/lib/Transforms/Instrumentation/BlockCoverageInference.cpp b/llvm/lib/Transforms/Instrumentation/BlockCoverageInference.cpp
new file mode 100644 (file)
index 0000000..0e49984
--- /dev/null
@@ -0,0 +1,368 @@
+//===-- BlockCoverageInference.cpp - Minimal Execution Coverage -*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Our algorithm works by first identifying a subset of nodes that must always
+// be instrumented. We call these nodes ambiguous because knowing the coverage
+// of all remaining nodes is not enough to infer their coverage status.
+//
+// In general a node v is ambiguous if there exists two entry-to-terminal paths
+// P_1 and P_2 such that:
+//   1. v not in P_1 but P_1 visits a predecessor of v, and
+//   2. v not in P_2 but P_2 visits a successor of v.
+//
+// If a node v is not ambiguous, then if condition 1 fails, we can infer v’s
+// coverage from the coverage of its predecessors, or if condition 2 fails, we
+// can infer v’s coverage from the coverage of its successors.
+//
+// Sadly, there are example CFGs where it is not possible to infer all nodes
+// from the ambiguous nodes alone. Our algorithm selects a minimum number of
+// extra nodes to add to the ambiguous nodes to form a valid instrumentation S.
+//
+// Details on this algorithm can be found in https://arxiv.org/abs/2208.13907
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Instrumentation/BlockCoverageInference.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/CRC.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "pgo-block-coverage"
+
+STATISTIC(NumFunctions, "Number of total functions that BCI has processed");
+STATISTIC(NumIneligibleFunctions,
+          "Number of functions for which BCI cannot run on");
+STATISTIC(NumBlocks, "Number of total basic blocks that BCI has processed");
+STATISTIC(NumInstrumentedBlocks,
+          "Number of basic blocks instrumented for coverage");
+
+BlockCoverageInference::BlockCoverageInference(const Function &F,
+                                               bool ForceInstrumentEntry)
+    : F(F), ForceInstrumentEntry(ForceInstrumentEntry) {
+  findDependencies();
+  assert(!ForceInstrumentEntry || shouldInstrumentBlock(F.getEntryBlock()));
+
+  ++NumFunctions;
+  for (auto &BB : F) {
+    ++NumBlocks;
+    if (shouldInstrumentBlock(BB))
+      ++NumInstrumentedBlocks;
+  }
+}
+
+BlockCoverageInference::BlockSet
+BlockCoverageInference::getDependencies(const BasicBlock &BB) const {
+  assert(BB.getParent() == &F);
+  BlockSet Dependencies;
+  auto It = PredecessorDependencies.find(&BB);
+  if (It != PredecessorDependencies.end())
+    Dependencies.set_union(It->second);
+  It = SuccessorDependencies.find(&BB);
+  if (It != SuccessorDependencies.end())
+    Dependencies.set_union(It->second);
+  return Dependencies;
+}
+
+uint64_t BlockCoverageInference::getInstrumentedBlocksHash() const {
+  JamCRC JC;
+  uint64_t Index = 0;
+  for (auto &BB : F) {
+    if (shouldInstrumentBlock(BB)) {
+      uint8_t Data[8];
+      support::endian::write64le(Data, Index);
+      JC.update(Data);
+    }
+    Index++;
+  }
+  return JC.getCRC();
+}
+
+bool BlockCoverageInference::shouldInstrumentBlock(const BasicBlock &BB) const {
+  assert(BB.getParent() == &F);
+  auto It = PredecessorDependencies.find(&BB);
+  if (It != PredecessorDependencies.end() && It->second.size())
+    return false;
+  It = SuccessorDependencies.find(&BB);
+  if (It != SuccessorDependencies.end() && It->second.size())
+    return false;
+  return true;
+}
+
+void BlockCoverageInference::findDependencies() {
+  assert(PredecessorDependencies.empty() && SuccessorDependencies.empty());
+  // Empirical analysis shows that this algorithm finishes within 5 seconds for
+  // functions with fewer than 1.5K blocks.
+  if (F.hasFnAttribute(Attribute::NoReturn) || F.size() > 1500) {
+    ++NumIneligibleFunctions;
+    return;
+  }
+
+  SmallVector<const BasicBlock *, 4> TerminalBlocks;
+  for (auto &BB : F)
+    if (succ_empty(&BB))
+      TerminalBlocks.push_back(&BB);
+
+  // Traverse the CFG backwards from the terminal blocks to make sure every
+  // block can reach some terminal block. Otherwise this algorithm will not work
+  // and we must fall back to instrumenting every block.
+  df_iterator_default_set<const BasicBlock *> Visited;
+  for (auto *BB : TerminalBlocks)
+    for (auto *N : inverse_depth_first_ext(BB, Visited))
+      (void)N;
+  if (F.size() != Visited.size()) {
+    ++NumIneligibleFunctions;
+    return;
+  }
+
+  // The current implementation for computing `PredecessorDependencies` and
+  // `SuccessorDependencies` runs in quadratic time with respect to the number
+  // of basic blocks. While we do have a more complicated linear time algorithm
+  // in https://arxiv.org/abs/2208.13907 we do not know if it will give a
+  // significant speedup in practice given that most functions tend to be
+  // relatively small in size for intended use cases.
+  auto &EntryBlock = F.getEntryBlock();
+  for (auto &BB : F) {
+    // The set of blocks that are reachable while avoiding BB.
+    BlockSet ReachableFromEntry, ReachableFromTerminal;
+    getReachableAvoiding(EntryBlock, BB, /*IsForward=*/true,
+                         ReachableFromEntry);
+    for (auto *TerminalBlock : TerminalBlocks)
+      getReachableAvoiding(*TerminalBlock, BB, /*IsForward=*/false,
+                           ReachableFromTerminal);
+
+    auto Preds = predecessors(&BB);
+    bool HasSuperReachablePred = llvm::any_of(Preds, [&](auto *Pred) {
+      return ReachableFromEntry.count(Pred) &&
+             ReachableFromTerminal.count(Pred);
+    });
+    if (!HasSuperReachablePred)
+      for (auto *Pred : Preds)
+        if (ReachableFromEntry.count(Pred))
+          PredecessorDependencies[&BB].insert(Pred);
+
+    auto Succs = successors(&BB);
+    bool HasSuperReachableSucc = llvm::any_of(Succs, [&](auto *Succ) {
+      return ReachableFromEntry.count(Succ) &&
+             ReachableFromTerminal.count(Succ);
+    });
+    if (!HasSuperReachableSucc)
+      for (auto *Succ : Succs)
+        if (ReachableFromTerminal.count(Succ))
+          SuccessorDependencies[&BB].insert(Succ);
+  }
+
+  if (ForceInstrumentEntry) {
+    // Force the entry block to be instrumented by clearing the blocks it can
+    // infer coverage from.
+    PredecessorDependencies[&EntryBlock].clear();
+    SuccessorDependencies[&EntryBlock].clear();
+  }
+
+  // Construct a graph where blocks are connected if there is a mutual
+  // dependency between them. This graph has a special property that it contains
+  // only paths.
+  DenseMap<const BasicBlock *, BlockSet> AdjacencyList;
+  for (auto &BB : F) {
+    for (auto *Succ : successors(&BB)) {
+      if (SuccessorDependencies[&BB].count(Succ) &&
+          PredecessorDependencies[Succ].count(&BB)) {
+        AdjacencyList[&BB].insert(Succ);
+        AdjacencyList[Succ].insert(&BB);
+      }
+    }
+  }
+
+  // Given a path with at least one node, return the next node on the path.
+  auto getNextOnPath = [&](BlockSet &Path) -> const BasicBlock * {
+    assert(Path.size());
+    auto &Neighbors = AdjacencyList[Path.back()];
+    if (Path.size() == 1) {
+      // This is the first node on the path, return its neighbor.
+      assert(Neighbors.size() == 1);
+      return Neighbors.front();
+    } else if (Neighbors.size() == 2) {
+      // This is the middle of the path, find the neighbor that is not on the
+      // path already.
+      assert(Path.size() >= 2);
+      return Path.count(Neighbors[0]) ? Neighbors[1] : Neighbors[0];
+    }
+    // This is the end of the path.
+    assert(Neighbors.size() == 1);
+    return nullptr;
+  };
+
+  // Remove all cycles in the inferencing graph.
+  for (auto &BB : F) {
+    if (AdjacencyList[&BB].size() == 1) {
+      // We found the head of some path.
+      BlockSet Path;
+      Path.insert(&BB);
+      while (const BasicBlock *Next = getNextOnPath(Path))
+        Path.insert(Next);
+      LLVM_DEBUG(dbgs() << "Found path: " << getBlockNames(Path) << "\n");
+
+      // Remove these nodes from the graph so we don't discover this path again.
+      for (auto *BB : Path)
+        AdjacencyList[BB].clear();
+
+      // Finally, remove the cycles.
+      if (PredecessorDependencies[Path.front()].size()) {
+        for (auto *BB : Path)
+          if (BB != Path.back())
+            SuccessorDependencies[BB].clear();
+      } else {
+        for (auto *BB : Path)
+          if (BB != Path.front())
+            PredecessorDependencies[BB].clear();
+      }
+    }
+  }
+  LLVM_DEBUG(dump(dbgs()));
+}
+
+void BlockCoverageInference::getReachableAvoiding(const BasicBlock &Start,
+                                                  const BasicBlock &Avoid,
+                                                  bool IsForward,
+                                                  BlockSet &Reachable) const {
+  df_iterator_default_set<const BasicBlock *> Visited;
+  Visited.insert(&Avoid);
+  if (IsForward) {
+    auto Range = depth_first_ext(&Start, Visited);
+    Reachable.insert(Range.begin(), Range.end());
+  } else {
+    auto Range = inverse_depth_first_ext(&Start, Visited);
+    Reachable.insert(Range.begin(), Range.end());
+  }
+}
+
+namespace llvm {
+class DotFuncBCIInfo {
+private:
+  const BlockCoverageInference *BCI;
+  const DenseMap<const BasicBlock *, bool> *Coverage;
+
+public:
+  DotFuncBCIInfo(const BlockCoverageInference *BCI,
+                 const DenseMap<const BasicBlock *, bool> *Coverage)
+      : BCI(BCI), Coverage(Coverage) {}
+
+  const Function &getFunction() { return BCI->F; }
+
+  bool isInstrumented(const BasicBlock *BB) const {
+    return BCI->shouldInstrumentBlock(*BB);
+  }
+
+  bool isCovered(const BasicBlock *BB) const {
+    return Coverage && Coverage->lookup(BB);
+  }
+
+  bool isDependent(const BasicBlock *Src, const BasicBlock *Dest) const {
+    return BCI->getDependencies(*Src).count(Dest);
+  }
+};
+
+template <>
+struct GraphTraits<DotFuncBCIInfo *> : public GraphTraits<const BasicBlock *> {
+  static NodeRef getEntryNode(DotFuncBCIInfo *Info) {
+    return &(Info->getFunction().getEntryBlock());
+  }
+
+  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
+  using nodes_iterator = pointer_iterator<Function::const_iterator>;
+
+  static nodes_iterator nodes_begin(DotFuncBCIInfo *Info) {
+    return nodes_iterator(Info->getFunction().begin());
+  }
+
+  static nodes_iterator nodes_end(DotFuncBCIInfo *Info) {
+    return nodes_iterator(Info->getFunction().end());
+  }
+
+  static size_t size(DotFuncBCIInfo *Info) {
+    return Info->getFunction().size();
+  }
+};
+
+template <>
+struct DOTGraphTraits<DotFuncBCIInfo *> : public DefaultDOTGraphTraits {
+
+  DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
+
+  static std::string getGraphName(DotFuncBCIInfo *Info) {
+    return "BCI CFG for " + Info->getFunction().getName().str();
+  }
+
+  std::string getNodeLabel(const BasicBlock *Node, DotFuncBCIInfo *Info) {
+    return Node->getName().str();
+  }
+
+  std::string getEdgeAttributes(const BasicBlock *Src, const_succ_iterator I,
+                                DotFuncBCIInfo *Info) {
+    const BasicBlock *Dest = *I;
+    if (Info->isDependent(Src, Dest))
+      return "color=red";
+    if (Info->isDependent(Dest, Src))
+      return "color=blue";
+    return "";
+  }
+
+  std::string getNodeAttributes(const BasicBlock *Node, DotFuncBCIInfo *Info) {
+    std::string Result;
+    if (Info->isInstrumented(Node))
+      Result += "style=filled,fillcolor=gray";
+    if (Info->isCovered(Node))
+      Result += std::string(Result.empty() ? "" : ",") + "color=red";
+    return Result;
+  }
+};
+
+} // namespace llvm
+
+void BlockCoverageInference::viewBlockCoverageGraph(
+    const DenseMap<const BasicBlock *, bool> *Coverage) const {
+  DotFuncBCIInfo Info(this, Coverage);
+  WriteGraph(&Info, "BCI", false,
+             "Block Coverage Inference for " + F.getName());
+}
+
+void BlockCoverageInference::dump(raw_ostream &OS) const {
+  OS << "Minimal block coverage for function \'" << F.getName()
+     << "\' (Instrumented=*)\n";
+  for (auto &BB : F) {
+    OS << (shouldInstrumentBlock(BB) ? "* " : "  ") << BB.getName() << "\n";
+    auto It = PredecessorDependencies.find(&BB);
+    if (It != PredecessorDependencies.end() && It->second.size())
+      OS << "    PredDeps = " << getBlockNames(It->second) << "\n";
+    It = SuccessorDependencies.find(&BB);
+    if (It != SuccessorDependencies.end() && It->second.size())
+      OS << "    SuccDeps = " << getBlockNames(It->second) << "\n";
+  }
+  OS << "  Instrumented Blocks Hash = 0x"
+     << Twine::utohexstr(getInstrumentedBlocksHash()) << "\n";
+}
+
+std::string
+BlockCoverageInference::getBlockNames(ArrayRef<const BasicBlock *> BBs) {
+  std::string Result;
+  raw_string_ostream OS(Result);
+  OS << "[";
+  if (!BBs.empty()) {
+    OS << BBs.front()->getName();
+    BBs = BBs.drop_front();
+  }
+  for (auto *BB : BBs)
+    OS << ", " << BB->getName();
+  OS << "]";
+  return OS.str();
+}
index 4cf3d23..424f1d4 100644 (file)
@@ -5,6 +5,7 @@ add_llvm_component_library(LLVMInstrumentation
   ControlHeightReduction.cpp
   DataFlowSanitizer.cpp
   GCOVProfiling.cpp
+  BlockCoverageInference.cpp
   MemProfiler.cpp
   MemorySanitizer.cpp
   IndirectCallPromotion.cpp
index aea70fd..93b2ea2 100644 (file)
@@ -540,18 +540,19 @@ bool InstrProfiling::run(
   // the instrumented function. This is counting the number of instrumented
   // target value sites to enter it as field in the profile data variable.
   for (Function &F : M) {
-    InstrProfIncrementInst *FirstProfIncInst = nullptr;
+    InstrProfInstBase *FirstProfInst = nullptr;
     for (BasicBlock &BB : F)
       for (auto I = BB.begin(), E = BB.end(); I != E; I++)
         if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(I))
           computeNumValueSiteCounts(Ind);
-        else if (FirstProfIncInst == nullptr)
-          FirstProfIncInst = dyn_cast<InstrProfIncrementInst>(I);
+        else if (FirstProfInst == nullptr &&
+                 (isa<InstrProfIncrementInst>(I) || isa<InstrProfCoverInst>(I)))
+          FirstProfInst = dyn_cast<InstrProfInstBase>(I);
 
     // Value profiling intrinsic lowering requires per-function profile data
     // variable to be created first.
-    if (FirstProfIncInst != nullptr)
-      static_cast<void>(getOrCreateRegionCounters(FirstProfIncInst));
+    if (FirstProfInst != nullptr)
+      static_cast<void>(getOrCreateRegionCounters(FirstProfInst));
   }
 
   for (Function &F : M)
index b7ee55d..0b62358 100644 (file)
 #include "llvm/Support/raw_ostream.h"
 #include "llvm/TargetParser/Triple.h"
 #include "llvm/Transforms/Instrumentation.h"
+#include "llvm/Transforms/Instrumentation/BlockCoverageInference.h"
 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 #include "llvm/Transforms/Utils/MisExpect.h"
 #include "llvm/Transforms/Utils/ModuleUtils.h"
@@ -160,6 +161,7 @@ STATISTIC(NumOfCSPGOFunc,
 STATISTIC(NumOfCSPGOMismatch,
           "Number of functions having mismatch profile in CSPGO.");
 STATISTIC(NumOfCSPGOMissing, "Number of functions without profile in CSPGO.");
+STATISTIC(NumCoveredBlocks, "Number of basic blocks that were executed");
 
 // Command line option to specify the file to read profile from. This is
 // mainly used for testing.
@@ -269,6 +271,15 @@ static cl::opt<bool> PGOFunctionEntryCoverage(
     cl::desc(
         "Use this option to enable function entry coverage instrumentation."));
 
+static cl::opt<bool> PGOBlockCoverage(
+    "pgo-block-coverage",
+    cl::desc("Use this option to enable basic block coverage instrumentation"));
+
+static cl::opt<bool>
+    PGOViewBlockCoverageGraph("pgo-view-block-coverage-graph",
+                              cl::desc("Create a dot file of CFGs with block "
+                                       "coverage inference information"));
+
 static cl::opt<bool>
     PGOFixEntryCount("pgo-fix-entry-count", cl::init(true), cl::Hidden,
                      cl::desc("Fix function entry count in profile use."));
@@ -384,6 +395,8 @@ static GlobalVariable *createIRLevelProfileFlagVar(Module &M, bool IsCS) {
   if (PGOFunctionEntryCoverage)
     ProfileVersion |=
         VARIANT_MASK_BYTE_COVERAGE | VARIANT_MASK_FUNCTION_ENTRY_ONLY;
+  if (PGOBlockCoverage)
+    ProfileVersion |= VARIANT_MASK_BYTE_COVERAGE;
   auto IRLevelVersionVariable = new GlobalVariable(
       M, IntTy64, true, GlobalValue::WeakAnyLinkage,
       Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName);
@@ -416,8 +429,10 @@ struct SelectInstVisitor : public InstVisitor<SelectInstVisitor> {
   GlobalVariable *FuncNameVar = nullptr;
   uint64_t FuncHash = 0;
   PGOUseFunc *UseFunc = nullptr;
+  bool HasSingleByteCoverage;
 
-  SelectInstVisitor(Function &Func) : F(Func) {}
+  SelectInstVisitor(Function &Func, bool HasSingleByteCoverage)
+      : F(Func), HasSingleByteCoverage(HasSingleByteCoverage) {}
 
   void countSelects(Function &Func) {
     NSIs = 0;
@@ -535,6 +550,16 @@ public:
   // The Minimum Spanning Tree of function CFG.
   CFGMST<Edge, BBInfo> MST;
 
+  const std::optional<BlockCoverageInference> BCI;
+
+  static std::optional<BlockCoverageInference>
+  constructBCI(Function &Func, bool HasSingleByteCoverage,
+               bool InstrumentFuncEntry) {
+    if (HasSingleByteCoverage)
+      return BlockCoverageInference(Func, InstrumentFuncEntry);
+    return {};
+  }
+
   // Collect all the BBs that will be instrumented, and store them in
   // InstrumentBBs.
   void getInstrumentBBs(std::vector<BasicBlock *> &InstrumentBBs);
@@ -560,10 +585,14 @@ public:
       std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
       bool CreateGlobalVar = false, BranchProbabilityInfo *BPI = nullptr,
       BlockFrequencyInfo *BFI = nullptr, bool IsCS = false,
-      bool InstrumentFuncEntry = true)
+      bool InstrumentFuncEntry = true, bool HasSingleByteCoverage = false)
       : F(Func), IsCS(IsCS), ComdatMembers(ComdatMembers), VPC(Func, TLI),
-        TLI(TLI), ValueSites(IPVK_Last + 1), SIVisitor(Func),
-        MST(F, InstrumentFuncEntry, BPI, BFI) {
+        TLI(TLI), ValueSites(IPVK_Last + 1),
+        SIVisitor(Func, HasSingleByteCoverage),
+        MST(F, InstrumentFuncEntry, BPI, BFI),
+        BCI(constructBCI(Func, HasSingleByteCoverage, InstrumentFuncEntry)) {
+    if (BCI && PGOViewBlockCoverageGraph)
+      BCI->viewBlockCoverageGraph();
     // This should be done before CFG hash computation.
     SIVisitor.countSelects(Func);
     ValueSites[IPVK_MemOPSize] = VPC.get(IPVK_MemOPSize);
@@ -638,7 +667,11 @@ void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() {
     updateJCH((uint64_t)SIVisitor.getNumOfSelectInsts());
     updateJCH((uint64_t)ValueSites[IPVK_IndirectCallTarget].size());
     updateJCH((uint64_t)ValueSites[IPVK_MemOPSize].size());
-    updateJCH((uint64_t)MST.AllEdges.size());
+    if (BCI) {
+      updateJCH(BCI->getInstrumentedBlocksHash());
+    } else {
+      updateJCH((uint64_t)MST.AllEdges.size());
+    }
 
     // Hash format for context sensitive profile. Reserve 4 bits for other
     // information.
@@ -731,6 +764,13 @@ void FuncPGOInstrumentation<Edge, BBInfo>::renameComdatFunction() {
 template <class Edge, class BBInfo>
 void FuncPGOInstrumentation<Edge, BBInfo>::getInstrumentBBs(
     std::vector<BasicBlock *> &InstrumentBBs) {
+  if (BCI) {
+    for (auto &BB : F)
+      if (BCI->shouldInstrumentBlock(BB))
+        InstrumentBBs.push_back(&BB);
+    return;
+  }
+
   // Use a worklist as we will update the vector during the iteration.
   std::vector<Edge *> EdgeList;
   EdgeList.reserve(MST.AllEdges.size());
@@ -853,12 +893,15 @@ static void instrumentOneFunc(
     BlockFrequencyInfo *BFI,
     std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
     bool IsCS) {
-  // Split indirectbr critical edges here before computing the MST rather than
-  // later in getInstrBB() to avoid invalidating it.
-  SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/false, BPI, BFI);
+  if (!PGOBlockCoverage) {
+    // Split indirectbr critical edges here before computing the MST rather than
+    // later in getInstrBB() to avoid invalidating it.
+    SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/false, BPI, BFI);
+  }
 
   FuncPGOInstrumentation<PGOEdge, BBInfo> FuncInfo(
-      F, TLI, ComdatMembers, true, BPI, BFI, IsCS, PGOInstrumentEntry);
+      F, TLI, ComdatMembers, true, BPI, BFI, IsCS, PGOInstrumentEntry,
+      PGOBlockCoverage);
 
   Type *I8PtrTy = Type::getInt8PtrTy(M->getContext());
   auto Name = ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy);
@@ -888,7 +931,9 @@ static void instrumentOneFunc(
     // llvm.instrprof.increment(i8* <name>, i64 <hash>, i32 <num-counters>,
     //                          i32 <index>)
     Builder.CreateCall(
-        Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment),
+        Intrinsic::getDeclaration(M, PGOBlockCoverage
+                                         ? Intrinsic::instrprof_cover
+                                         : Intrinsic::instrprof_increment),
         {Name, CFGHash, Builder.getInt32(NumCounters), Builder.getInt32(I++)});
   }
 
@@ -1031,12 +1076,15 @@ public:
   PGOUseFunc(Function &Func, Module *Modu, TargetLibraryInfo &TLI,
              std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
              BranchProbabilityInfo *BPI, BlockFrequencyInfo *BFIin,
-             ProfileSummaryInfo *PSI, bool IsCS, bool InstrumentFuncEntry)
+             ProfileSummaryInfo *PSI, bool IsCS, bool InstrumentFuncEntry,
+             bool HasSingleByteCoverage)
       : F(Func), M(Modu), BFI(BFIin), PSI(PSI),
         FuncInfo(Func, TLI, ComdatMembers, false, BPI, BFIin, IsCS,
-                 InstrumentFuncEntry),
+                 InstrumentFuncEntry, HasSingleByteCoverage),
         FreqAttr(FFA_Normal), IsCS(IsCS) {}
 
+  void handleInstrProfError(Error Err, uint64_t MismatchedFuncSum);
+
   // Read counts for the instrumented BB from profile.
   bool readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros,
                     InstrProfRecord::CountPseudoKind &PseudoKind);
@@ -1047,6 +1095,9 @@ public:
   // Populate the counts for all BBs.
   void populateCounters();
 
+  // Set block coverage based on profile coverage values.
+  void populateCoverage(IndexedInstrProfReader *PGOReader);
+
   // Set the branch weights based on the count values.
   void setBranchWeights();
 
@@ -1495,6 +1546,46 @@ bool PGOUseFunc::readMemprof(IndexedInstrProfReader *PGOReader) {
   return true;
 }
 
+void PGOUseFunc::handleInstrProfError(Error Err, uint64_t MismatchedFuncSum) {
+  handleAllErrors(std::move(Err), [&](const InstrProfError &IPE) {
+    auto &Ctx = M->getContext();
+    auto Err = IPE.get();
+    bool SkipWarning = false;
+    LLVM_DEBUG(dbgs() << "Error in reading profile for Func "
+                      << FuncInfo.FuncName << ": ");
+    if (Err == instrprof_error::unknown_function) {
+      IsCS ? NumOfCSPGOMissing++ : NumOfPGOMissing++;
+      SkipWarning = !PGOWarnMissing;
+      LLVM_DEBUG(dbgs() << "unknown function");
+    } else if (Err == instrprof_error::hash_mismatch ||
+               Err == instrprof_error::malformed) {
+      IsCS ? NumOfCSPGOMismatch++ : NumOfPGOMismatch++;
+      SkipWarning =
+          NoPGOWarnMismatch ||
+          (NoPGOWarnMismatchComdatWeak &&
+           (F.hasComdat() || F.getLinkage() == GlobalValue::WeakAnyLinkage ||
+            F.getLinkage() == GlobalValue::AvailableExternallyLinkage));
+      LLVM_DEBUG(dbgs() << "hash mismatch (hash= " << FuncInfo.FunctionHash
+                        << " skip=" << SkipWarning << ")");
+      // Emit function metadata indicating PGO profile mismatch.
+      annotateFunctionWithHashMismatch(F, M->getContext());
+    }
+
+    LLVM_DEBUG(dbgs() << " IsCS=" << IsCS << "\n");
+    if (SkipWarning)
+      return;
+
+    std::string Msg =
+        IPE.message() + std::string(" ") + F.getName().str() +
+        std::string(" Hash = ") + std::to_string(FuncInfo.FunctionHash) +
+        std::string(" up to ") + std::to_string(MismatchedFuncSum) +
+        std::string(" count discarded");
+
+    Ctx.diagnose(
+        DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning));
+  });
+}
+
 // Read the profile from ProfileFileName and assign the value to the
 // instrumented BB and the edges. This function also updates ProgramMaxCount.
 // Return true if the profile are successfully read, and false on errors.
@@ -1505,42 +1596,7 @@ bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros,
   Expected<InstrProfRecord> Result = PGOReader->getInstrProfRecord(
       FuncInfo.FuncName, FuncInfo.FunctionHash, &MismatchedFuncSum);
   if (Error E = Result.takeError()) {
-    handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
-      auto Err = IPE.get();
-      bool SkipWarning = false;
-      LLVM_DEBUG(dbgs() << "Error in reading profile for Func "
-                        << FuncInfo.FuncName << ": ");
-      if (Err == instrprof_error::unknown_function) {
-        IsCS ? NumOfCSPGOMissing++ : NumOfPGOMissing++;
-        SkipWarning = !PGOWarnMissing;
-        LLVM_DEBUG(dbgs() << "unknown function");
-      } else if (Err == instrprof_error::hash_mismatch ||
-                 Err == instrprof_error::malformed) {
-        IsCS ? NumOfCSPGOMismatch++ : NumOfPGOMismatch++;
-        SkipWarning =
-            NoPGOWarnMismatch ||
-            (NoPGOWarnMismatchComdatWeak &&
-             (F.hasComdat() || F.getLinkage() == GlobalValue::WeakAnyLinkage ||
-              F.getLinkage() == GlobalValue::AvailableExternallyLinkage));
-        LLVM_DEBUG(dbgs() << "hash mismatch (hash= " << FuncInfo.FunctionHash
-                          << " skip=" << SkipWarning << ")");
-        // Emit function metadata indicating PGO profile mismatch.
-        annotateFunctionWithHashMismatch(F, M->getContext());
-      }
-
-      LLVM_DEBUG(dbgs() << " IsCS=" << IsCS << "\n");
-      if (SkipWarning)
-        return;
-
-      std::string Msg =
-          IPE.message() + std::string(" ") + F.getName().str() +
-          std::string(" Hash = ") + std::to_string(FuncInfo.FunctionHash) +
-          std::string(" up to ") + std::to_string(MismatchedFuncSum) +
-          std::string(" count discarded");
-
-      Ctx.diagnose(
-          DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning));
-    });
+    handleInstrProfError(std::move(E), MismatchedFuncSum);
     return false;
   }
   ProfileRecord = std::move(Result.get());
@@ -1579,6 +1635,113 @@ bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros,
   return true;
 }
 
+void PGOUseFunc::populateCoverage(IndexedInstrProfReader *PGOReader) {
+  uint64_t MismatchedFuncSum = 0;
+  Expected<InstrProfRecord> Result = PGOReader->getInstrProfRecord(
+      FuncInfo.FuncName, FuncInfo.FunctionHash, &MismatchedFuncSum);
+  if (auto Err = Result.takeError()) {
+    handleInstrProfError(std::move(Err), MismatchedFuncSum);
+    return;
+  }
+
+  std::vector<uint64_t> &CountsFromProfile = Result.get().Counts;
+  DenseMap<const BasicBlock *, bool> Coverage;
+  unsigned Index = 0;
+  for (auto &BB : F)
+    if (FuncInfo.BCI->shouldInstrumentBlock(BB))
+      Coverage[&BB] = (CountsFromProfile[Index++] != 0);
+  assert(Index == CountsFromProfile.size());
+
+  // For each B in InverseDependencies[A], if A is covered then B is covered.
+  DenseMap<const BasicBlock *, DenseSet<const BasicBlock *>>
+      InverseDependencies;
+  for (auto &BB : F) {
+    for (auto *Dep : FuncInfo.BCI->getDependencies(BB)) {
+      // If Dep is covered then BB is covered.
+      InverseDependencies[Dep].insert(&BB);
+    }
+  }
+
+  // Infer coverage of the non-instrumented blocks using a flood-fill algorithm.
+  std::stack<const BasicBlock *> CoveredBlocksToProcess;
+  for (auto &[BB, IsCovered] : Coverage)
+    if (IsCovered)
+      CoveredBlocksToProcess.push(BB);
+
+  while (!CoveredBlocksToProcess.empty()) {
+    auto *CoveredBlock = CoveredBlocksToProcess.top();
+    assert(Coverage[CoveredBlock]);
+    CoveredBlocksToProcess.pop();
+    for (auto *BB : InverseDependencies[CoveredBlock]) {
+      // If CoveredBlock is covered then BB is covered.
+      if (Coverage[BB])
+        continue;
+      Coverage[BB] = true;
+      CoveredBlocksToProcess.push(BB);
+    }
+  }
+
+  // Annotate block coverage.
+  MDBuilder MDB(F.getContext());
+  // We set the entry count to 10000 if the entry block is covered so that BFI
+  // can propagate a fraction of this count to the other covered blocks.
+  F.setEntryCount(Coverage[&F.getEntryBlock()] ? 10000 : 0);
+  for (auto &BB : F) {
+    // For a block A and its successor B, we set the edge weight as follows:
+    // If A is covered and B is covered, set weight=1.
+    // If A is covered and B is uncovered, set weight=0.
+    // If A is uncovered, set weight=1.
+    // This setup will allow BFI to give nonzero profile counts to only covered
+    // blocks.
+    SmallVector<unsigned, 4> Weights;
+    for (auto *Succ : successors(&BB))
+      Weights.push_back((Coverage[Succ] || !Coverage[&BB]) ? 1 : 0);
+    if (Weights.size() >= 2)
+      BB.getTerminator()->setMetadata(LLVMContext::MD_prof,
+                                      MDB.createBranchWeights(Weights));
+  }
+
+  unsigned NumCorruptCoverage = 0;
+  DominatorTree DT(F);
+  LoopInfo LI(DT);
+  BranchProbabilityInfo BPI(F, LI);
+  BlockFrequencyInfo BFI(F, BPI, LI);
+  auto IsBlockDead = [&](const BasicBlock &BB) -> std::optional<bool> {
+    if (auto C = BFI.getBlockProfileCount(&BB))
+      return C == 0;
+    return {};
+  };
+  LLVM_DEBUG(dbgs() << "Block Coverage: (Instrumented=*, Covered=X)\n");
+  for (auto &BB : F) {
+    LLVM_DEBUG(dbgs() << (FuncInfo.BCI->shouldInstrumentBlock(BB) ? "* " : "  ")
+                      << (Coverage[&BB] ? "X " : "  ") << " " << BB.getName()
+                      << "\n");
+    // In some cases it is possible to find a covered block that has no covered
+    // successors, e.g., when a block calls a function that may call exit(). In
+    // those cases, BFI could find its successor to be covered while BCI could
+    // find its successor to be dead.
+    if (Coverage[&BB] == IsBlockDead(BB).value_or(false)) {
+      LLVM_DEBUG(
+          dbgs() << "Found inconsistent block covearge for " << BB.getName()
+                 << ": BCI=" << (Coverage[&BB] ? "Covered" : "Dead") << " BFI="
+                 << (IsBlockDead(BB).value() ? "Dead" : "Covered") << "\n");
+      ++NumCorruptCoverage;
+    }
+    if (Coverage[&BB])
+      ++NumCoveredBlocks;
+  }
+  if (PGOVerifyBFI && NumCorruptCoverage) {
+    auto &Ctx = M->getContext();
+    Ctx.diagnose(DiagnosticInfoPGOProfile(
+        M->getName().data(),
+        Twine("Found inconsistent block coverage for function ") + F.getName() +
+            " in " + Twine(NumCorruptCoverage) + " blocks.",
+        DS_Warning));
+  }
+  if (PGOViewBlockCoverageGraph)
+    FuncInfo.BCI->viewBlockCoverageGraph(&Coverage);
+}
+
 // Populate the counters from instrumented BBs to all BBs.
 // In the end of this operation, all BBs should have a valid count value.
 void PGOUseFunc::populateCounters() {
@@ -1738,8 +1901,6 @@ void PGOUseFunc::annotateIrrLoopHeaderWeights() {
 }
 
 void SelectInstVisitor::instrumentOneSelectInst(SelectInst &SI) {
-  if (PGOFunctionEntryCoverage)
-    return;
   Module *M = F.getParent();
   IRBuilder<> Builder(&SI);
   Type *Int64Ty = Builder.getInt64Ty();
@@ -1772,7 +1933,7 @@ void SelectInstVisitor::annotateOneSelectInst(SelectInst &SI) {
 }
 
 void SelectInstVisitor::visitSelectInst(SelectInst &SI) {
-  if (!PGOInstrSelect)
+  if (!PGOInstrSelect || PGOFunctionEntryCoverage || HasSingleByteCoverage)
     return;
   // FIXME: do not handle this yet.
   if (SI.getCondition()->getType()->isVectorTy())
@@ -2094,12 +2255,6 @@ static bool annotateAllFunctions(
         ProfileFileName.data(), "Not an IR level instrumentation profile"));
     return false;
   }
-  if (PGOReader->hasSingleByteCoverage()) {
-    Ctx.diagnose(DiagnosticInfoPGOProfile(
-        ProfileFileName.data(),
-        "Cannot use coverage profiles for optimization"));
-    return false;
-  }
   if (PGOReader->functionEntryOnly()) {
     Ctx.diagnose(DiagnosticInfoPGOProfile(
         ProfileFileName.data(),
@@ -2125,17 +2280,21 @@ static bool annotateAllFunctions(
   bool InstrumentFuncEntry = PGOReader->instrEntryBBEnabled();
   if (PGOInstrumentEntry.getNumOccurrences() > 0)
     InstrumentFuncEntry = PGOInstrumentEntry;
+  bool HasSingleByteCoverage = PGOReader->hasSingleByteCoverage();
   for (auto &F : M) {
     if (skipPGO(F))
       continue;
     auto &TLI = LookupTLI(F);
     auto *BPI = LookupBPI(F);
     auto *BFI = LookupBFI(F);
-    // Split indirectbr critical edges here before computing the MST rather than
-    // later in getInstrBB() to avoid invalidating it.
-    SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/false, BPI, BFI);
+    if (!HasSingleByteCoverage) {
+      // Split indirectbr critical edges here before computing the MST rather
+      // than later in getInstrBB() to avoid invalidating it.
+      SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/false, BPI,
+                                   BFI);
+    }
     PGOUseFunc Func(F, &M, TLI, ComdatMembers, BPI, BFI, PSI, IsCS,
-                    InstrumentFuncEntry);
+                    InstrumentFuncEntry, HasSingleByteCoverage);
     // Read and match memprof first since we do this via debug info and can
     // match even if there is an IR mismatch detected for regular PGO below.
     if (PGOReader->hasMemoryProfile())
@@ -2144,6 +2303,10 @@ static bool annotateAllFunctions(
     if (!PGOReader->isIRLevelProfile())
       continue;
 
+    if (HasSingleByteCoverage) {
+      Func.populateCoverage(PGOReader.get());
+      continue;
+    }
     // When PseudoKind is set to a vaule other than InstrProfRecord::NotPseudo,
     // it means the profile for the function is unrepresentative and this
     // function is actually hot / warm. We will reset the function hot / cold
index f0c3867..d636be1 100644 (file)
-; RUN: opt < %s -passes=pgo-instr-gen -pgo-function-entry-coverage -S | FileCheck %s
+; RUN: opt < %s -passes=pgo-instr-gen -pgo-function-entry-coverage -S | FileCheck %s --implicit-check-not="instrprof.cover" --check-prefixes=CHECK,ENTRY
+; RUN: opt < %s -passes=pgo-instr-gen -pgo-block-coverage -S | FileCheck %s --implicit-check-not="instrprof.cover" --check-prefixes=CHECK,BLOCK
 target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
 target triple = "x86_64-unknown-linux-gnu"
 
-define i32 @foo(i32 %i) {
+define void @foo() {
+; CHECK-LABEL: entry:
 entry:
-  ; CHECK: call void @llvm.instrprof.cover({{.*}})
-  %cmp = icmp sgt i32 %i, 0
-  br i1 %cmp, label %if.then, label %if.else
+  ; ENTRY: call void @llvm.instrprof.cover({{.*}})
+  %c = call i1 @choice()
+  br i1 %c, label %if.then, label %if.else
 
+; CHECK-LABEL: if.then:
 if.then:
-  ; CHECK-NOT: llvm.instrprof.cover(
-  %add = add nsw i32 %i, 2
-  %s = select i1 %cmp, i32 %add, i32 0
+  ; BLOCK: call void @llvm.instrprof.cover({{.*}})
   br label %if.end
 
+; CHECK-LABEL: if.else:
 if.else:
-  %sub = sub nsw i32 %i, 2
+  ; BLOCK: call void @llvm.instrprof.cover({{.*}})
+  br label %if.end
+
+; CHECK-LABEL: if.end:
+if.end:
+  ret void
+}
+
+define void @bar() {
+; CHECK-LABEL: entry:
+entry:
+  ; ENTRY: call void @llvm.instrprof.cover({{.*}})
+  %c = call i1 @choice()
+  br i1 %c, label %if.then, label %if.end
+
+; CHECK-LABEL: if.then:
+if.then:
+  ; BLOCK: call void @llvm.instrprof.cover({{.*}})
   br label %if.end
 
+; CHECK-LABEL: if.end:
 if.end:
-  %retv = phi i32 [ %add, %if.then ], [ %sub, %if.else ]
-  ret i32 %retv
+  ; BLOCK: call void @llvm.instrprof.cover({{.*}})
+  ret void
+}
+
+define void @goo() {
+; CHECK-LABEL: entry:
+entry:
+  ; CHECK: call void @llvm.instrprof.cover({{.*}})
+  ret void
+}
+
+define void @loop() {
+; CHECK-LABEL: entry:
+entry:
+  ; CHECK: call void @llvm.instrprof.cover({{.*}})
+  br label %while
+while:
+  ; BLOCK: call void @llvm.instrprof.cover({{.*}})
+  br label %while
+}
+
+; Function Attrs: noinline nounwind ssp uwtable
+define void @hoo(i32 %a) #0 {
+; CHECK-LABEL: entry:
+entry:
+  ; ENTRY: call void @llvm.instrprof.cover({{.*}})
+  %a.addr = alloca i32, align 4
+  %i = alloca i32, align 4
+  store i32 %a, i32* %a.addr, align 4
+  %0 = load i32, i32* %a.addr, align 4
+  %rem = srem i32 %0, 2
+  %cmp = icmp eq i32 %rem, 0
+  br i1 %cmp, label %if.then, label %if.else
+
+; CHECK-LABEL: if.then:
+if.then:                                          ; preds = %entry
+  ; BLOCK: call void @llvm.instrprof.cover({{.*}})
+  br label %if.end
+
+; CHECK-LABEL: if.else:
+if.else:                                          ; preds = %entry
+  ; BLOCK: call void @llvm.instrprof.cover({{.*}})
+  br label %if.end
+
+; CHECK-LABEL: if.end:
+if.end:                                           ; preds = %if.else, %if.then
+  store i32 1, i32* %i, align 4
+  br label %for.cond
+
+; CHECK-LABEL: for.cond:
+for.cond:                                         ; preds = %for.inc, %if.end
+  %1 = load i32, i32* %i, align 4
+  %2 = load i32, i32* %a.addr, align 4
+  %cmp1 = icmp slt i32 %1, %2
+  br i1 %cmp1, label %for.body, label %for.end
+
+; CHECK-LABEL: for.body:
+for.body:                                         ; preds = %for.cond
+  %3 = load i32, i32* %a.addr, align 4
+  %rem2 = srem i32 %3, 3
+  %cmp3 = icmp eq i32 %rem2, 0
+  br i1 %cmp3, label %if.then4, label %if.else5
+
+; CHECK-LABEL: if.then4:
+if.then4:                                         ; preds = %for.body
+  ; BLOCK: call void @llvm.instrprof.cover({{.*}})
+  br label %if.end10
+
+; CHECK-LABEL: if.else5:
+if.else5:                                         ; preds = %for.body
+  %4 = load i32, i32* %a.addr, align 4
+  %rem6 = srem i32 %4, 1001
+  %cmp7 = icmp eq i32 %rem6, 0
+  br i1 %cmp7, label %if.then8, label %if.end9
+
+; CHECK-LABEL: if.then8:
+if.then8:                                         ; preds = %if.else5
+  ; BLOCK: call void @llvm.instrprof.cover({{.*}})
+  br label %return
+
+; CHECK-LABEL: if.end9:
+if.end9:                                          ; preds = %if.else5
+  ; BLOCK: call void @llvm.instrprof.cover({{.*}})
+  br label %if.end10
+
+; CHECK-LABEL: if.end10:
+if.end10:                                         ; preds = %if.end9, %if.then4
+  br label %for.inc
+
+; CHECK-LABEL: for.inc:
+for.inc:                                          ; preds = %if.end10
+  %5 = load i32, i32* %i, align 4
+  %inc = add nsw i32 %5, 1
+  store i32 %inc, i32* %i, align 4
+  br label %for.cond
+
+; CHECK-LABEL: for.end:
+for.end:                                          ; preds = %for.cond
+  ; BLOCK: call void @llvm.instrprof.cover({{.*}})
+  br label %return
+
+; CHECK-LABEL: return:
+return:                                           ; preds = %for.end, %if.then8
+  ret void
 }
 
-; CHECK: declare void @llvm.instrprof.cover(
+declare i1 @choice()
+
+; CHECK: declare void @llvm.instrprof.cover({{.*}})