IVGCVSW-5397 TfLiteDelegate: Implement the redefine operators
authorDavid Monahan <david.monahan@arm.com>
Wed, 18 Nov 2020 14:40:27 +0000 (14:40 +0000)
committerFrancis Murtagh <francis.murtagh@arm.com>
Wed, 18 Nov 2020 17:14:50 +0000 (17:14 +0000)
 * Adding Reshape definition to ArmNN TfLite Delegate
 * Added Reshape tests and RedefineTestHelper

Signed-off-by: Narumol Prangnawarat <narumol.prangnawarat@arm.com>
Signed-off-by: David Monahan <david.monahan@arm.com>
Change-Id: I6d3909689c820387ac0fd4fd3f7ab856ebc25f47

delegate/CMakeLists.txt
delegate/src/Redefine.hpp
delegate/src/test/RedefineTestHelper.hpp [new file with mode: 0644]
delegate/src/test/ReshapeTest.cpp [new file with mode: 0644]

index 5b64587..38f7bd1 100644 (file)
@@ -124,6 +124,8 @@ if(BUILD_UNIT_TESTS)
         src/test/Pooling2dTestHelper.hpp
         src/test/QuantizationTest.cpp
         src/test/QuantizationTestHelper.hpp
+        src/test/RedefineTestHelper.hpp
+        src/test/ReshapeTest.cpp
         src/test/ResizeTest.cpp
         src/test/ResizeTestHelper.hpp
         src/test/SoftmaxTest.cpp
index 755bb97..a9c27fb 100644 (file)
 
 #include <armnn/utility/IgnoreUnused.hpp>
 
+#include "DelegateUtils.hpp"
+
 #include <tensorflow/lite/builtin_ops.h>
 #include <tensorflow/lite/c/builtin_op_data.h>
 #include <tensorflow/lite/c/common.h>
 #include <tensorflow/lite/minimal_logging.h>
+#include <numeric>
 
 namespace armnnDelegate
 {
 
+TfLiteStatus CreateOutputTensorShape(const armnn::TensorInfo& inputTensorInfo,
+                                           const std::vector<int32_t>& targetShape,
+                                           armnn::ReshapeDescriptor& reshapeDesc)
+{
+    std::vector<unsigned int> outputDims(targetShape.begin(), targetShape.end());
+    const auto stretchDim = std::find(targetShape.begin(), targetShape.end(), -1);
+
+    if (stretchDim != targetShape.end())
+    {
+        if (std::find(std::next(stretchDim), targetShape.end(), -1) != targetShape.end())
+        {
+            // Return kTfLiteError and log the error after returning
+            return kTfLiteError;
+        }
+
+        auto targetNumElements =
+            armnn::numeric_cast<unsigned int>(
+                std::accumulate(targetShape.begin(), targetShape.end(), -1, std::multiplies<int32_t>()));
+
+        auto stretchIndex = static_cast<size_t>(std::distance(targetShape.begin(), stretchDim));
+        outputDims[stretchIndex] = inputTensorInfo.GetNumElements() / targetNumElements;
+    }
+
+    armnn::TensorShape outputShape = armnn::TensorShape(static_cast<unsigned int>(outputDims.size()),
+                                                        outputDims.data());
+    reshapeDesc.m_TargetShape = outputShape;
+    return kTfLiteOk;
+}
+
 TfLiteStatus VisitReshapeOperator(DelegateData& delegateData,
                                   TfLiteContext* tfLiteContext,
                                   TfLiteNode* tfLiteNode,
                                   int nodeIndex,
                                   int32_t operatorCode)
 {
-    armnn::IgnoreUnused(delegateData,
-                        tfLiteContext,
-                        tfLiteNode,
-                        nodeIndex,
-                        operatorCode);
+    auto numInputs = tfLiteNode->inputs->size;
 
-    return kTfLiteError;
+    if (numInputs == 2)
+    {
+        TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 2, nodeIndex));
+    }
+    else
+    {
+        TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
+    }
+    TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
+
+    const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
+    const TfLiteTensor& tfLiteInputTensor0 = tfLiteTensors[tfLiteNode->inputs->data[0]];
+    if (IsDynamicTensor(tfLiteInputTensor0))
+    {
+        TF_LITE_MAYBE_KERNEL_LOG(tfLiteContext,
+                                 "TfLiteArmnnDelegate: Dynamic input tensors are not supported in "
+                                 "operator #%d node #%d: ",
+                                 operatorCode, nodeIndex);
+        return kTfLiteError;
+    }
+
+    const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]];
+    if (IsDynamicTensor(tfLiteOutputTensor))
+    {
+        TF_LITE_MAYBE_KERNEL_LOG(tfLiteContext,
+                                 "TfLiteArmnnDelegate: Dynamic output tensors are not supported in "
+                                 "operator #%d node #%d: ",
+                                 operatorCode, nodeIndex);
+        return kTfLiteError;
+    }
+
+    const armnn::TensorInfo& inputTensorInfo0 = GetTensorInfoForTfLiteTensor(tfLiteInputTensor0);
+    const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor);
+
+    armnn::ReshapeDescriptor reshapeDesc;
+
+    // The new shape can be defined by either a second input tensor or by a builtin option, we need to check for both.
+    if (numInputs == 2)
+    {
+        const TfLiteTensor& tfLiteShapeInputTensor = tfLiteTensors[tfLiteNode->inputs->data[1]];
+        if (IsDynamicTensor(tfLiteShapeInputTensor))
+        {
+            TF_LITE_MAYBE_KERNEL_LOG(tfLiteContext,
+                                     "TfLiteArmnnDelegate: Dynamic input tensors are not supported in "
+                                     "operator #%d node #%d: ",
+                                     operatorCode, nodeIndex);
+            return kTfLiteError;
+        }
+
+        // Get the shape data out of the input tensor
+        std::vector<int32_t> targetShape;
+        auto* shapeTensorDataPtr = tflite::GetTensorData<int32_t>(&tfLiteShapeInputTensor);
+        auto shapeTensorNumValues = tfLiteShapeInputTensor.dims->data[0];
+        for (auto i=0; i < shapeTensorNumValues; ++i)
+        {
+            targetShape.push_back(*(shapeTensorDataPtr+i));
+        }
+
+        // Use the data to create the required tensor shape.
+        if (CreateOutputTensorShape(inputTensorInfo0, targetShape, reshapeDesc) != kTfLiteOk)
+        {
+            TF_LITE_MAYBE_KERNEL_LOG(tfLiteContext,
+                                     "TfLiteArmnnDelegate: At most one component of shape can be -1 in: "
+                                     "operator #%d node #%d: ",
+                                     operatorCode, nodeIndex);
+            return kTfLiteError;
+        }
+    }
+    else if (tfLiteNode->builtin_data)
+    {
+        std::vector<int32_t> targetShape;
+        TfLiteReshapeParams* reshapeOptions =
+                    reinterpret_cast<TfLiteReshapeParams*>(tfLiteNode->builtin_data);
+        for (int i=0; i < reshapeOptions->num_dimensions; ++i)
+        {
+            targetShape.push_back(reshapeOptions->shape[i]);
+        }
+        if (CreateOutputTensorShape(inputTensorInfo0, targetShape, reshapeDesc) != kTfLiteOk)
+        {
+            TF_LITE_MAYBE_KERNEL_LOG(tfLiteContext,
+                                     "TfLiteArmnnDelegate: At most one component of shape can be -1 in: "
+                                     "operator #%d node #%d: ",
+                                     operatorCode, nodeIndex);
+            return kTfLiteError;
+        }
+    }
+    else
+    {
+        TF_LITE_MAYBE_KERNEL_LOG(tfLiteContext,
+                                 "Target shape not defined in reshape parameters or input tensor. "
+                                 "At least one method required in operator #%d node #%d: ",
+                                 operatorCode, nodeIndex);
+    }
+
+    bool isSupported = false;
+    auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported)
+    {
+        FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                                   tfLiteContext,
+                                   IsReshapeSupported,
+                                   delegateData.m_Backends,
+                                   isSupported,
+                                   inputTensorInfo0,
+                                   outInfo,
+                                   reshapeDesc);
+    };
+
+    if (!delegateData.m_Network)
+    {
+        validateFunc(outputTensorInfo, isSupported);
+        return isSupported ? kTfLiteOk : kTfLiteError;
+    }
+
+    armnn::IConnectableLayer* layer = delegateData.m_Network->AddReshapeLayer(reshapeDesc);
+    ARMNN_ASSERT(layer != nullptr);
+
+    armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0);
+    outputSlot.SetTensorInfo(outputTensorInfo);
+
+    // Connect
+    return Connect(layer, tfLiteNode, delegateData);
 }
 
 TfLiteStatus VisitSqueezeOperator(DelegateData& delegateData,
diff --git a/delegate/src/test/RedefineTestHelper.hpp b/delegate/src/test/RedefineTestHelper.hpp
new file mode 100644 (file)
index 0000000..42fc4c8
--- /dev/null
@@ -0,0 +1,213 @@
+//
+// Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+#include "TestUtils.hpp"
+
+#include <armnn_delegate.hpp>
+
+#include <flatbuffers/flatbuffers.h>
+#include <tensorflow/lite/interpreter.h>
+#include <tensorflow/lite/kernels/register.h>
+#include <tensorflow/lite/model.h>
+#include <tensorflow/lite/schema/schema_generated.h>
+#include <tensorflow/lite/version.h>
+
+#include <doctest/doctest.h>
+
+namespace
+{
+
+std::vector<char> CreateRedefineTfLiteModel(
+    tflite::BuiltinOperator redefineOperatorCode,
+    tflite::TensorType tensorType,
+    const std::vector<int32_t>& inputTensorShape,
+    const std::vector<int32_t>& outputTensorShape,
+    const std::vector<int32_t>& targetShape,
+    bool useOption = true,
+    float quantScale = 1.0f,
+    int quantOffset  = 0)
+{
+    using namespace tflite;
+    flatbuffers::FlatBufferBuilder flatBufferBuilder;
+    std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
+    buffers.push_back(CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector({})));
+    buffers.push_back(CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector({})));
+
+    auto quantizationParameters =
+        CreateQuantizationParameters(flatBufferBuilder,
+                                     0,
+                                     0,
+                                     flatBufferBuilder.CreateVector<float>({ quantScale }),
+                                     flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
+
+    auto inputTensor = CreateTensor(flatBufferBuilder,
+                                    flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
+                                                                            inputTensorShape.size()),
+                                    tensorType,
+                                    0,
+                                    flatBufferBuilder.CreateString("input"),
+                                    quantizationParameters);
+
+    auto outputTensor = CreateTensor(flatBufferBuilder,
+                                     flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
+                                                                             outputTensorShape.size()),
+                                     tensorType,
+                                     1,
+                                     flatBufferBuilder.CreateString("output"),
+                                     quantizationParameters);
+
+    std::vector<flatbuffers::Offset<Tensor>> tensors;
+    std::vector<int32_t> operatorInputs;
+    std::vector<int> subgraphInputs;
+    flatbuffers::Offset<void> operatorBuiltinOptions;
+
+    if (useOption)
+    {
+        tensors = { inputTensor, outputTensor};
+        operatorInputs = {{0}};
+        subgraphInputs = {{0}};
+        operatorBuiltinOptions = CreateReshapeOptions(
+            flatBufferBuilder,
+            flatBufferBuilder.CreateVector(targetShape.data(), targetShape.size())).Union();
+    }
+    else
+    {
+        buffers.push_back(
+            CreateBuffer(flatBufferBuilder,
+                         flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(targetShape.data()),
+                                                        sizeof(int32_t) * targetShape.size())));
+        int32_t size = static_cast<int32_t>(targetShape.size());
+        auto shapeTensor = CreateTensor(flatBufferBuilder,
+                                        flatBufferBuilder.CreateVector<int32_t>( { size } ),
+                                        tflite::TensorType_INT32,
+                                        2,
+                                        flatBufferBuilder.CreateString("shape"));
+        tensors = { inputTensor, outputTensor, shapeTensor };
+        operatorInputs = {{ 0, 2 }};
+        subgraphInputs = {{ 0, 2 }};
+        operatorBuiltinOptions = CreateReshapeOptions(flatBufferBuilder).Union();
+    }
+
+    // create operator
+    tflite::BuiltinOptions operatorBuiltinOptionsType = BuiltinOptions_ReshapeOptions;
+
+    const std::vector<int32_t> operatorOutputs{{1}};
+    flatbuffers::Offset <Operator> redefineOperator =
+        CreateOperator(flatBufferBuilder,
+                       0,
+                       flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
+                       flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
+                       operatorBuiltinOptionsType,
+                       operatorBuiltinOptions);
+
+    const std::vector<int> subgraphOutputs{{1}};
+    flatbuffers::Offset <SubGraph> subgraph =
+        CreateSubGraph(flatBufferBuilder,
+                       flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
+                       flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
+                       flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
+                       flatBufferBuilder.CreateVector(&redefineOperator, 1));
+
+    flatbuffers::Offset <flatbuffers::String> modelDescription =
+        flatBufferBuilder.CreateString("ArmnnDelegate: Reshape Operator Model");
+    flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder,
+                                                                         redefineOperatorCode);
+
+    flatbuffers::Offset <Model> flatbufferModel =
+        CreateModel(flatBufferBuilder,
+                    TFLITE_SCHEMA_VERSION,
+                    flatBufferBuilder.CreateVector(&operatorCode, 1),
+                    flatBufferBuilder.CreateVector(&subgraph, 1),
+                    modelDescription,
+                    flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
+
+    flatBufferBuilder.Finish(flatbufferModel);
+
+    return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
+                             flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
+}
+
+template <typename T>
+void RedefineTest(tflite::BuiltinOperator redefineOperatorCode,
+                  tflite::TensorType tensorType,
+                  const std::vector<armnn::BackendId>& backends,
+                  const std::vector<int32_t>& inputShape,
+                  const std::vector<int32_t>& outputShape,
+                  std::vector<T>& inputValues,
+                  std::vector<T>& expectedOutputValues,
+                  std::vector<int32_t>& targetShape,
+                  bool useOption = true,
+                  float quantScale = 1.0f,
+                  int quantOffset  = 0)
+{
+    using namespace tflite;
+    std::vector<char> modelBuffer = CreateRedefineTfLiteModel(redefineOperatorCode,
+                                                              tensorType,
+                                                              inputShape,
+                                                              outputShape,
+                                                              targetShape,
+                                                              useOption,
+                                                              quantScale,
+                                                              quantOffset);
+
+    const Model* tfLiteModel = GetModel(modelBuffer.data());
+    CHECK(tfLiteModel != nullptr);
+    // Create TfLite Interpreters
+    std::unique_ptr<Interpreter> armnnDelegateInterpreter;
+    CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver())
+                  (&armnnDelegateInterpreter) == kTfLiteOk);
+    CHECK(armnnDelegateInterpreter != nullptr);
+    CHECK(armnnDelegateInterpreter->AllocateTensors() == kTfLiteOk);
+
+    std::unique_ptr<Interpreter> tfLiteInterpreter;
+    CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver())
+                  (&tfLiteInterpreter) == kTfLiteOk);
+    CHECK(tfLiteInterpreter != nullptr);
+    CHECK(tfLiteInterpreter->AllocateTensors() == kTfLiteOk);
+
+    // Create the ArmNN Delegate
+    armnnDelegate::DelegateOptions delegateOptions(backends);
+    std::unique_ptr<TfLiteDelegate, decltype(&armnnDelegate::TfLiteArmnnDelegateDelete)>
+        theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions),
+                         armnnDelegate::TfLiteArmnnDelegateDelete);
+    CHECK(theArmnnDelegate != nullptr);
+    // Modify armnnDelegateInterpreter to use armnnDelegate
+    CHECK(armnnDelegateInterpreter->ModifyGraphWithDelegate(theArmnnDelegate.get()) == kTfLiteOk);
+
+    // Set input data
+    armnnDelegate::FillInput<T>(tfLiteInterpreter, 0, inputValues);
+    armnnDelegate::FillInput<T>(armnnDelegateInterpreter, 0, inputValues);
+
+    // Run EnqueueWorkload
+    CHECK(tfLiteInterpreter->Invoke() == kTfLiteOk);
+    CHECK(armnnDelegateInterpreter->Invoke() == kTfLiteOk);
+
+    auto tfLiteDelegateOutputId = tfLiteInterpreter->outputs()[0];
+    auto tfLiteDelegateOutputData = tfLiteInterpreter->typed_tensor<T>(tfLiteDelegateOutputId);
+    auto tfLiteDelegateOutputTensor = tfLiteInterpreter->tensor(tfLiteDelegateOutputId);
+    auto armnnDelegateOutputId = armnnDelegateInterpreter->outputs()[0];
+    auto armnnDelegateOutputData = armnnDelegateInterpreter->typed_tensor<T>(armnnDelegateOutputId);
+    auto armnnDelegateOutputTensor = armnnDelegateInterpreter->tensor(armnnDelegateOutputId);
+
+    CHECK(outputShape.size() == tfLiteDelegateOutputTensor->dims->size);
+    CHECK(outputShape.size() == armnnDelegateOutputTensor->dims->size);
+
+    for (size_t i = 0; i < static_cast<size_t>(tfLiteDelegateOutputTensor->dims->size); i++)
+    {
+        CHECK(outputShape[i] == armnnDelegateOutputTensor->dims->data[i]);
+        CHECK(tfLiteDelegateOutputTensor->dims->data[i] == armnnDelegateOutputTensor->dims->data[i]);
+    }
+
+    for (size_t i = 0; i < expectedOutputValues.size(); i++)
+    {
+        CHECK(expectedOutputValues[i] == armnnDelegateOutputData[i]);
+        CHECK(tfLiteDelegateOutputData[i] == expectedOutputValues[i]);
+        CHECK(tfLiteDelegateOutputData[i] == armnnDelegateOutputData[i]);
+    }
+}
+
+} // anonymous namespace
\ No newline at end of file
diff --git a/delegate/src/test/ReshapeTest.cpp b/delegate/src/test/ReshapeTest.cpp
new file mode 100644 (file)
index 0000000..715fed6
--- /dev/null
@@ -0,0 +1,449 @@
+//
+// Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include "RedefineTestHelper.hpp"
+
+#include <armnn_delegate.hpp>
+
+#include <flatbuffers/flatbuffers.h>
+#include <tensorflow/lite/schema/schema_generated.h>
+
+#include <doctest/doctest.h>
+
+namespace armnnDelegate
+{
+
+void ReshapeSimpleTest(std::vector<armnn::BackendId>& backends, bool useOption = true)
+{
+    // Set input data
+    std::vector<int32_t> inputShape { 1, 3, 4, 1 };
+    std::vector<int32_t> outputShape { 1, 3, 2, 2 };
+    std::vector<int32_t> targetShape { 1, 3, 2, 2 };
+
+    std::vector<float> inputValues = { -5.0f, 8.0f, -10.0f, 7.0f,
+                                       8.0f, 12.0f, -15.0f, 2.0f,
+                                       3.0f, -4.0f, -1.0f, -11.0f };
+
+    std::vector<float> expectedOutputValues = { -5.0f, 8.0f, -10.0f, 7.0f,
+                                                8.0f, 12.0f, -15.0f, 2.0f,
+                                                3.0f, -4.0f, -1.0f, -11.0f };
+
+    RedefineTest<float>(tflite::BuiltinOperator_RESHAPE,
+                        ::tflite::TensorType_FLOAT32,
+                        backends,
+                        inputShape,
+                        outputShape,
+                        inputValues,
+                        expectedOutputValues,
+                        targetShape,
+                        useOption);
+}
+
+void ReshapeReduceDimTest(std::vector<armnn::BackendId>& backends, bool useOption = true)
+{
+    // Set input data
+    std::vector<int32_t> inputShape { 1, 3, 4, 1 };
+    std::vector<int32_t> outputShape { 1, 4, 3 };
+    std::vector<int32_t> targetShape { 1, 4, 3 };
+
+    std::vector<float> inputValues = { -5.0f, 8.0f, -10.0f, 7.0f,
+                                       8.0f, 12.0f, -15.0f, 2.0f,
+                                       3.0f, -4.0f, -1.0f, -11.0f };
+
+    std::vector<float> expectedOutputValues = { -5.0f, 8.0f, -10.0f, 7.0f,
+                                                8.0f, 12.0f, -15.0f, 2.0f,
+                                                3.0f, -4.0f, -1.0f, -11.0f };
+
+    RedefineTest<float>(tflite::BuiltinOperator_RESHAPE,
+                        ::tflite::TensorType_FLOAT32,
+                        backends,
+                        inputShape,
+                        outputShape,
+                        inputValues,
+                        expectedOutputValues,
+                        targetShape,
+                        useOption);
+}
+
+void ReshapeFlattenTest(std::vector<armnn::BackendId>& backends, bool useOption = true)
+{
+    // Set input data
+    std::vector<int32_t> inputShape { 1, 3, 4, 1 };
+    std::vector<int32_t> outputShape { 6, 2 };
+    std::vector<int32_t> targetShape { -1, 2 };
+
+    std::vector<float> inputValues = { -5.0f, 8.0f, -10.0f, 7.0f,
+                                       8.0f, 12.0f, -15.0f, 2.0f,
+                                       3.0f, -4.0f, -1.0f, -11.0f };
+
+    std::vector<float> expectedOutputValues = { -5.0f, 8.0f, -10.0f, 7.0f,
+                                                8.0f, 12.0f, -15.0f, 2.0f,
+                                                3.0f, -4.0f, -1.0f, -11.0f };
+
+    RedefineTest<float>(tflite::BuiltinOperator_RESHAPE,
+                        ::tflite::TensorType_FLOAT32,
+                        backends,
+                        inputShape,
+                        outputShape,
+                        inputValues,
+                        expectedOutputValues,
+                        targetShape,
+                        useOption);
+}
+
+void ReshapeFlattenAllTest(std::vector<armnn::BackendId>& backends, bool useOption = true)
+{
+    // Set input data
+    std::vector<int32_t> inputShape { 1, 3, 4, 1 };
+    std::vector<int32_t> outputShape { 12 };
+    std::vector<int32_t> targetShape { -1 };
+
+    std::vector<float> inputValues = { -5.0f, 8.0f, -10.0f, 7.0f,
+                                       8.0f, 12.0f, -15.0f, 2.0f,
+                                       3.0f, -4.0f, -1.0f, -11.0f };
+
+    std::vector<float> expectedOutputValues = { -5.0f, 8.0f, -10.0f, 7.0f,
+                                                8.0f, 12.0f, -15.0f, 2.0f,
+                                                3.0f, -4.0f, -1.0f, -11.0f };
+
+    RedefineTest<float>(tflite::BuiltinOperator_RESHAPE,
+                        ::tflite::TensorType_FLOAT32,
+                        backends,
+                        inputShape,
+                        outputShape,
+                        inputValues,
+                        expectedOutputValues,
+                        targetShape,
+                        useOption);
+}
+
+void ReshapeInt8Test(std::vector<armnn::BackendId>& backends, bool useOption = true)
+{
+    // Set input data
+    std::vector<int32_t> inputShape { 1, 3, 4, 1 };
+    std::vector<int32_t> outputShape { 6, 2 };
+    std::vector<int32_t> targetShape { -1, 2 };
+
+    std::vector<int8_t> inputValues = { -5, 8, -10, 7,
+                                        8, 12, -15, 2,
+                                        3, -4, -1, -11 };
+
+    std::vector<int8_t> expectedOutputValues = { -5, 8, -10, 7,
+                                                 8, 12, -15, 2,
+                                                 3, -4, -1, -11 };
+
+    RedefineTest<int8_t>(tflite::BuiltinOperator_RESHAPE,
+                         ::tflite::TensorType_INT8,
+                         backends,
+                         inputShape,
+                         outputShape,
+                         inputValues,
+                         expectedOutputValues,
+                         targetShape,
+                         useOption,
+                         2.5f,
+                         1);
+}
+
+void ReshapeUint8Test(std::vector<armnn::BackendId>& backends, bool useOption = true)
+{
+    // Set input data
+    std::vector<int32_t> inputShape { 1, 3, 4, 1 };
+    std::vector<int32_t> outputShape { 6, 2 };
+    std::vector<int32_t> targetShape { -1, 2 };
+
+    std::vector<uint8_t> inputValues = { 5, 8, 10, 7,
+                                         8, 12, 15, 2,
+                                         3, 4, 1, 11 };
+
+    std::vector<uint8_t> expectedOutputValues = { 5, 8, 10, 7,
+                                                  8, 12, 15, 2,
+                                                  3, 4, 1, 11 };
+
+    RedefineTest<uint8_t>(tflite::BuiltinOperator_RESHAPE,
+                          ::tflite::TensorType_UINT8,
+                          backends,
+                          inputShape,
+                          outputShape,
+                          inputValues,
+                          expectedOutputValues,
+                          targetShape,
+                          useOption,
+                          2.5f,
+                          1);
+}
+
+void ReshapeInt16Test(std::vector<armnn::BackendId>& backends, bool useOption = true)
+{
+    // Set input data
+    std::vector<int32_t> inputShape { 1, 3, 4, 1 };
+    std::vector<int32_t> outputShape { 6, 2 };
+    std::vector<int32_t> targetShape { -1, 2 };
+
+    std::vector<int16_t> inputValues = { -5, 8, -10, 7,
+                                         8, 12, -15, 2,
+                                         3, -4, -1, -11 };
+
+    std::vector<int16_t> expectedOutputValues = { -5, 8, -10, 7,
+                                                  8, 12, -15, 2,
+                                                  3, -4, -1, -11 };
+
+    RedefineTest<int16_t>(tflite::BuiltinOperator_RESHAPE,
+                          ::tflite::TensorType_INT16,
+                          backends,
+                          inputShape,
+                          outputShape,
+                          inputValues,
+                          expectedOutputValues,
+                          targetShape,
+                          useOption,
+                          2.5f,
+                          0);
+}
+
+TEST_SUITE("Reshape_GpuAccTests")
+{
+
+TEST_CASE ("Reshape_Simple_GpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
+    ReshapeSimpleTest(backends);
+}
+
+TEST_CASE ("Reshape_ReduceDimension_GpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
+    ReshapeReduceDimTest(backends);
+}
+
+TEST_CASE ("Reshape_Flatten_GpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
+    ReshapeFlattenTest(backends);
+}
+
+TEST_CASE ("Reshape_FlattenAll_GpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
+    ReshapeFlattenAllTest(backends);
+}
+
+TEST_CASE ("Reshape_Int8_GpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
+    ReshapeInt8Test(backends);
+}
+
+TEST_CASE ("Reshape_Uint8_GpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
+    ReshapeUint8Test(backends);
+}
+
+TEST_CASE ("Reshape_Simple_ShapeTensor_GpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
+    ReshapeSimpleTest(backends, false);
+}
+
+TEST_CASE ("Reshape_ReduceDimension_ShapeTensor_GpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
+    ReshapeReduceDimTest(backends, false);
+}
+
+TEST_CASE ("Reshape_Flatten_ShapeTensor_GpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
+    ReshapeFlattenTest(backends, false);
+}
+
+TEST_CASE ("Reshape_FlattenAll_ShapeTensor_GpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
+    ReshapeFlattenAllTest(backends, false);
+}
+
+TEST_CASE ("Reshape_Int8_ShapeTensor_GpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
+    ReshapeInt8Test(backends, false);
+}
+
+TEST_CASE ("Reshape_Uint8_ShapeTensor_GpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
+    ReshapeUint8Test(backends, false);
+}
+
+} // TEST_SUITE("Reshape_GpuAccTests")
+
+TEST_SUITE("Reshape_CpuAccTests")
+{
+
+TEST_CASE ("Reshape_Simple_CpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
+    ReshapeSimpleTest(backends);
+}
+
+TEST_CASE ("Reshape_ReduceDimension_CpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
+    ReshapeReduceDimTest(backends);
+}
+
+TEST_CASE ("Reshape_Flatten_CpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
+    ReshapeFlattenTest(backends);
+}
+
+TEST_CASE ("Reshape_FlattenAll_CpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
+    ReshapeFlattenAllTest(backends);
+}
+
+TEST_CASE ("Reshape_Int8_CpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
+    ReshapeInt8Test(backends);
+}
+
+TEST_CASE ("Reshape_Uint8_CpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
+    ReshapeUint8Test(backends);
+}
+
+TEST_CASE ("Reshape_Simple_ShapeTensor_CpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
+    ReshapeSimpleTest(backends, false);
+}
+
+TEST_CASE ("Reshape_ReduceDimension_ShapeTensor_CpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
+    ReshapeReduceDimTest(backends, false);
+}
+
+TEST_CASE ("Reshape_Flatten_ShapeTensor_CpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
+    ReshapeFlattenTest(backends, false);
+}
+
+TEST_CASE ("Reshape_FlattenAll_ShapeTensor_CpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
+    ReshapeFlattenAllTest(backends, false);
+}
+
+TEST_CASE ("Reshape_Int8_ShapeTensor_CpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
+    ReshapeInt8Test(backends, false);
+}
+
+TEST_CASE ("Reshape_Uint8_ShapeTensor_CpuAcc_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
+    ReshapeUint8Test(backends, false);
+}
+
+} // TEST_SUITE("Reshape_CpuAccTests")
+
+TEST_SUITE("Reshape_CpuRefTests")
+{
+
+TEST_CASE ("Reshape_Simple_CpuRef_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
+    ReshapeSimpleTest(backends);
+}
+
+TEST_CASE ("Reshape_ReduceDimension_CpuRef_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
+    ReshapeReduceDimTest(backends);
+}
+
+TEST_CASE ("Reshape_Flatten_CpuRef_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
+    ReshapeFlattenTest(backends);
+}
+
+TEST_CASE ("Reshape_FlattenAll_CpuRef_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
+    ReshapeFlattenAllTest(backends);
+}
+
+TEST_CASE ("Reshape_Int8_CpuRef_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
+    ReshapeInt8Test(backends);
+}
+
+TEST_CASE ("Reshape_Uint8_CpuRef_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
+    ReshapeUint8Test(backends);
+}
+
+TEST_CASE ("Reshape_Int16_CpuRef_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
+    ReshapeInt16Test(backends);
+}
+
+TEST_CASE ("Reshape_Simple_ShapeTensor_CpuRef_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
+    ReshapeSimpleTest(backends, false);
+}
+
+TEST_CASE ("Reshape_ReduceDimension_ShapeTensor_CpuRef_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
+    ReshapeReduceDimTest(backends, false);
+}
+
+TEST_CASE ("Reshape_Flatten_ShapeTensor_CpuRef_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
+    ReshapeFlattenTest(backends, false);
+}
+
+TEST_CASE ("Reshape_FlattenAll_ShapeTensor_CpuRef_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
+    ReshapeFlattenAllTest(backends, false);
+}
+
+TEST_CASE ("Reshape_Int8_ShapeTensor_CpuRef_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
+    ReshapeInt8Test(backends, false);
+}
+
+TEST_CASE ("Reshape_Uint8_ShapeTensor_CpuRef_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
+    ReshapeUint8Test(backends, false);
+}
+
+TEST_CASE ("Reshape_Int16_ShapeTensor_CpuRef_Test")
+{
+    std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
+    ReshapeInt16Test(backends, false);
+}
+
+} // TEST_SUITE("Reshape_CpuRefTests")
+
+} // namespace armnnDelegate
\ No newline at end of file