class SCEVAddExpr : public SCEVCommutativeExpr {
friend class ScalarEvolution;
- SCEVAddExpr(const FoldingSetNodeIDRef ID,
- const SCEV *const *O, size_t N)
- : SCEVCommutativeExpr(ID, scAddExpr, O, N) {}
+ Type *Ty;
- public:
- Type *getType() const {
- // Use the type of the last operand, which is likely to be a pointer
- // type, if there is one. This doesn't usually matter, but it can help
- // reduce casts when the expressions are expanded.
- return getOperand(getNumOperands() - 1)->getType();
+ SCEVAddExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
+ : SCEVCommutativeExpr(ID, scAddExpr, O, N) {
+ auto *FirstPointerTypedOp = find_if(operands(), [](const SCEV *Op) {
+ return Op->getType()->isPointerTy();
+ });
+ if (FirstPointerTypedOp != operands().end())
+ Ty = (*FirstPointerTypedOp)->getType();
+ else
+ Ty = getOperand(0)->getType();
}
+ public:
+ Type *getType() const { return Ty; }
+
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const SCEV *S) {
return S->getSCEVType() == scAddExpr;
--- /dev/null
+; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
+; RUN: opt < %s -S -analyze -scalar-evolution | FileCheck %s
+
+; Reduced from test-suite/MultiSource/Benchmarks/MiBench/office-ispell/correct.c
+; getelementptr, obviously, takes pointer as it's base, and returns a pointer.
+; SCEV operands are sorted in hope that it increases folding potential,
+; and at the same time SCEVAddExpr's type is the type of the last(!) operand.
+; Which means, in some exceedingly rare cases, pointer operand may happen to
+; end up not being the last operand, and as a result SCEV for GEP will suddenly
+; have a non-pointer return type. We should ensure that does not happen.
+
+target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
+target triple = "x86_64-unknown-linux-gnu"
+
+@c = dso_local local_unnamed_addr global i32* null, align 8
+@a = dso_local local_unnamed_addr global i32 0, align 4
+@b = dso_local global [1 x i32] zeroinitializer, align 4
+
+define i32 @d(i32 %base) {
+; CHECK-LABEL: 'd'
+; CHECK-NEXT: Classifying expressions for: @d
+; CHECK-NEXT: %e = alloca [1 x [1 x i8]], align 1
+; CHECK-NEXT: --> %e U: full-set S: full-set
+; CHECK-NEXT: %0 = bitcast [1 x [1 x i8]]* %e to i8*
+; CHECK-NEXT: --> %e U: full-set S: full-set
+; CHECK-NEXT: %f.0 = phi i32 [ %base, %entry ], [ %inc, %for.cond ]
+; CHECK-NEXT: --> {%base,+,1}<nsw><%for.cond> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.cond: Computable }
+; CHECK-NEXT: %idxprom = sext i32 %f.0 to i64
+; CHECK-NEXT: --> {(sext i32 %base to i64),+,1}<nsw><%for.cond> U: [-2147483648,-9223372036854775808) S: [-2147483648,-9223372036854775808) Exits: <<Unknown>> LoopDispositions: { %for.cond: Computable }
+; CHECK-NEXT: %arrayidx = getelementptr inbounds [1 x [1 x i8]], [1 x [1 x i8]]* %e, i64 0, i64 %idxprom
+; CHECK-NEXT: --> {((sext i32 %base to i64) + %e)<nsw>,+,1}<nsw><%for.cond> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.cond: Computable }
+; CHECK-NEXT: %1 = load i32*, i32** @c, align 8
+; CHECK-NEXT: --> %1 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.cond: Variant }
+; CHECK-NEXT: %sub.ptr.lhs.cast = ptrtoint i32* %1 to i64
+; CHECK-NEXT: --> %sub.ptr.lhs.cast U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.cond: Variant }
+; CHECK-NEXT: %sub.ptr.sub = sub i64 %sub.ptr.lhs.cast, ptrtoint ([1 x i32]* @b to i64)
+; CHECK-NEXT: --> ((-1 * ptrtoint ([1 x i32]* @b to i64)) + %sub.ptr.lhs.cast) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.cond: Variant }
+; CHECK-NEXT: %sub.ptr.div = sdiv exact i64 %sub.ptr.sub, 4
+; CHECK-NEXT: --> %sub.ptr.div U: full-set S: [-2305843009213693952,2305843009213693952) Exits: <<Unknown>> LoopDispositions: { %for.cond: Variant }
+; CHECK-NEXT: %arrayidx1 = getelementptr inbounds [1 x i8], [1 x i8]* %arrayidx, i64 0, i64 %sub.ptr.div
+; CHECK-NEXT: --> ({((sext i32 %base to i64) + %e)<nsw>,+,1}<nsw><%for.cond> + %sub.ptr.div)<nsw> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.cond: Variant }
+; CHECK-NEXT: %2 = load i8, i8* %arrayidx1, align 1
+; CHECK-NEXT: --> %2 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.cond: Variant }
+; CHECK-NEXT: %conv = sext i8 %2 to i32
+; CHECK-NEXT: --> (sext i8 %2 to i32) U: [-128,128) S: [-128,128) Exits: <<Unknown>> LoopDispositions: { %for.cond: Variant }
+; CHECK-NEXT: %inc = add nsw i32 %f.0, 1
+; CHECK-NEXT: --> {(1 + %base),+,1}<nw><%for.cond> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.cond: Computable }
+; CHECK-NEXT: Determining loop execution counts for: @d
+; CHECK-NEXT: Loop %for.cond: <multiple exits> Unpredictable backedge-taken count.
+; CHECK-NEXT: Loop %for.cond: Unpredictable max backedge-taken count.
+; CHECK-NEXT: Loop %for.cond: Unpredictable predicated backedge-taken count.
+;
+entry:
+ %e = alloca [1 x [1 x i8]], align 1
+ %0 = bitcast [1 x [1 x i8]]* %e to i8*
+ call void @llvm.lifetime.start.p0i8(i64 1, i8* %0) #2
+ br label %for.cond
+
+for.cond: ; preds = %for.cond, %entry
+ %f.0 = phi i32 [ %base, %entry ], [ %inc, %for.cond ]
+ %idxprom = sext i32 %f.0 to i64
+ %arrayidx = getelementptr inbounds [1 x [1 x i8]], [1 x [1 x i8]]* %e, i64 0, i64 %idxprom
+ %1 = load i32*, i32** @c, align 8
+ %sub.ptr.lhs.cast = ptrtoint i32* %1 to i64
+ %sub.ptr.sub = sub i64 %sub.ptr.lhs.cast, ptrtoint ([1 x i32]* @b to i64)
+ %sub.ptr.div = sdiv exact i64 %sub.ptr.sub, 4
+ %arrayidx1 = getelementptr inbounds [1 x i8], [1 x i8]* %arrayidx, i64 0, i64 %sub.ptr.div
+ %2 = load i8, i8* %arrayidx1, align 1
+ %conv = sext i8 %2 to i32
+ store i32 %conv, i32* @a, align 4
+ %inc = add nsw i32 %f.0, 1
+ br label %for.cond
+}
+
+declare void @llvm.lifetime.start.p0i8(i64 immarg, i8* nocapture)