}
std::vector<cv::dnn::MatShape> lInputShape, lOutputShape;
- LOGI("%d, %d, %d, %d", mInputTensorInfo[idx].shape[0],
+ LOGI("%zu, %zu, %zu, %zu", mInputTensorInfo[idx].shape[0],
mInputTensorInfo[idx].shape[1],
mInputTensorInfo[idx].shape[2],
mInputTensorInfo[idx].shape[3]);
tensor_info.shape_type = INFERENCE_TENSOR_SHAPE_NCHW;
// lOutputShape may have multiple tensors
// even though the output layer's name is only one
- LOGI("size of OutputShape: %d", lOutputShape.size());
+ LOGI("size of OutputShape: %zu", lOutputShape.size());
std::vector<size_t> ieInputTensorShape(lOutputShape[0].begin(), lOutputShape[0].end());
tensor_info.shape = ieInputTensorShape;
LOGE("tensor_info");
for (std::vector<size_t>::iterator iter2 = tensor_info.shape.begin();
iter2 != tensor_info.shape.end(); ++iter2) {
- LOGI("%d", (*iter2));
+ LOGI("%zu", (*iter2));
tensor_info.size *= (*iter2);
}
mOutputTensorInfo.push_back(tensor_info);
int idx = 0;
if (mOutputBlobs.size() != output_buffers.size()) {
- LOGE("output_buffers size is %d but outputBlobs %d", output_buffers.size(), mOutputBlobs.size());
+ LOGE("output_buffers size is %zu but outputBlobs %zu", output_buffers.size(), mOutputBlobs.size());
return INFERENCE_ENGINE_ERROR_INVALID_PARAMETER;
}