bitexact gaussianblur implementation (#10345)
authorVitaly Tuzov <terfendail@users.noreply.github.com>
Mon, 22 Jan 2018 10:26:32 +0000 (13:26 +0300)
committerVadim Pisarevsky <vadim.pisarevsky@gmail.com>
Mon, 22 Jan 2018 10:26:32 +0000 (13:26 +0300)
* Bit-exact implementation of GaussianBlur smoothing

* Added universal intrinsics based implementation for bit-exact CV_8U GaussianBlur smoothing.

* Added parallel_for to evaluation of bit-exact GaussianBlur

* Added custom implementations for 3x3 and 5x5 bit-exact GaussianBlur

modules/imgproc/src/fixedpoint.inl.hpp
modules/imgproc/src/smooth.cpp
modules/imgproc/test/test_smooth_bitexact.cpp [new file with mode: 0644]

index 3183c72..1c5c88a 100644 (file)
@@ -76,6 +76,8 @@ public:
     //        int64_t nval = (int64_t)val + val2.val + nfrac >> 32;
     //        return nval > MAXINT32 ? beConv(MAXINT32, MAXINT32) : beConv((int32_t)(nval), 0);
     //    }
+    CV_ALWAYS_INLINE fixedpoint64 operator >> (int n) const { return fixedpoint64(val >> n); }
+    CV_ALWAYS_INLINE fixedpoint64 operator << (int n) const { return fixedpoint64(val << n); }
     template <typename ET>
     CV_ALWAYS_INLINE operator ET() const { return cv::saturate_cast<ET>((int64_t)fixedround((uint64_t)val) >> fixedShift); }
     CV_ALWAYS_INLINE operator double() const { return (double)val / (1LL << fixedShift); }
@@ -129,6 +131,8 @@ public:
     //        int64_t nval = (int64_t)val + val2.val + nfrac >> 32;
     //        return nval > MAXINT32 ? beConv(MAXINT32, MAXINT32) : beConv((int32_t)(nval), 0);
     //    }
+    CV_ALWAYS_INLINE ufixedpoint64 operator >> (int n) const { return ufixedpoint64(val >> n); }
+    CV_ALWAYS_INLINE ufixedpoint64 operator << (int n) const { return ufixedpoint64(val << n); }
     template <typename ET>
     CV_ALWAYS_INLINE operator ET() const { return cv::saturate_cast<ET>(fixedround(val) >> fixedShift); }
     CV_ALWAYS_INLINE operator double() const { return (double)val / (1LL << fixedShift); }
@@ -170,6 +174,8 @@ public:
     //        int32_t nval = (int32_t)val + val2.val + nfrac >> 32;
     //        return nval > MAXINT32 ? beConv(MAXINT32, MAXINT32) : beConv((int32_t)(nval), 0);
     //    }
+    CV_ALWAYS_INLINE fixedpoint32 operator >> (int n) const { return fixedpoint32(val >> n); }
+    CV_ALWAYS_INLINE fixedpoint32 operator << (int n) const { return fixedpoint32(val << n); }
     template <typename ET>
     CV_ALWAYS_INLINE operator ET() const { return cv::saturate_cast<ET>((int32_t)fixedround((uint32_t)val) >> fixedShift); }
     CV_ALWAYS_INLINE operator double() const { return (double)val / (1 << fixedShift); }
@@ -209,6 +215,8 @@ public:
     //        int32_t nval = (int32_t)val + val2.val + nfrac >> 32;
     //        return nval > MAXINT32 ? beConv(MAXINT32, MAXINT32) : beConv((int32_t)(nval), 0);
     //    }
+    CV_ALWAYS_INLINE ufixedpoint32 operator >> (int n) const { return ufixedpoint32(val >> n); }
+    CV_ALWAYS_INLINE ufixedpoint32 operator << (int n) const { return ufixedpoint32(val << n); }
     template <typename ET>
     CV_ALWAYS_INLINE operator ET() const { return cv::saturate_cast<ET>(fixedround(val) >> fixedShift); }
     CV_ALWAYS_INLINE operator double() const { return (double)val / (1 << fixedShift); }
@@ -241,6 +249,8 @@ public:
     CV_ALWAYS_INLINE fixedpoint32 operator * (const fixedpoint16& val2) const { return (int32_t)val * (int32_t)(val2.val); }
     CV_ALWAYS_INLINE fixedpoint16 operator + (const fixedpoint16& val2) const { return fixedpoint16((int16_t)(val + val2.val)); }
     CV_ALWAYS_INLINE fixedpoint16 operator - (const fixedpoint16& val2) const { return fixedpoint16((int16_t)(val - val2.val)); }
+    CV_ALWAYS_INLINE fixedpoint16 operator >> (int n) const { return fixedpoint16((int16_t)(val >> n)); }
+    CV_ALWAYS_INLINE fixedpoint16 operator << (int n) const { return fixedpoint16((int16_t)(val << n)); }
     template <typename ET>
     CV_ALWAYS_INLINE operator ET() const { return cv::saturate_cast<ET>((int16_t)fixedround((uint16_t)val) >> fixedShift); }
     CV_ALWAYS_INLINE operator double() const { return (double)val / (1 << fixedShift); }
@@ -271,12 +281,8 @@ public:
     CV_ALWAYS_INLINE ufixedpoint32 operator * (const ufixedpoint16& val2) const { return ((uint32_t)val * (uint32_t)(val2.val)); }
     CV_ALWAYS_INLINE ufixedpoint16 operator + (const ufixedpoint16& val2) const { return ufixedpoint16((uint16_t)(val + val2.val)); }
     CV_ALWAYS_INLINE ufixedpoint16 operator - (const ufixedpoint16& val2) const { return ufixedpoint16((uint16_t)(val - val2.val)); }
-    //    CV_ALWAYS_INLINE fixedpoint16 operator + (const fixedpoint16& val2) const
-    //    {
-    //        int16_t nfrac = (int32_t)frac + val2.frac;
-    //        int16_t nval = (int32_t)val + val2.val + nfrac >> 16;
-    //        return nval > MAXINT32 ? beConv(MAXINT16, MAXINT16) : beConv((int16_t)(nval), 0);
-    //    }
+    CV_ALWAYS_INLINE ufixedpoint16 operator >> (int n) const { return ufixedpoint16((uint16_t)(val >> n)); }
+    CV_ALWAYS_INLINE ufixedpoint16 operator << (int n) const { return ufixedpoint16((uint16_t)(val << n)); }
     template <typename ET>
     CV_ALWAYS_INLINE operator ET() const { return cv::saturate_cast<ET>(fixedround(val) >> fixedShift); }
     CV_ALWAYS_INLINE operator double() const { return (double)val / (1 << fixedShift); }
index 8ff072e..10d14e3 100644 (file)
@@ -42,6 +42,9 @@
 //M*/
 
 #include "precomp.hpp"
+
+#include <vector>
+
 #include "opencv2/core/hal/intrin.hpp"
 #include "opencl_kernels_imgproc.hpp"
 
@@ -49,6 +52,7 @@
 
 #include "filter.hpp"
 
+#include "fixedpoint.inl.hpp"
 /*
  * This file includes the code, contributed by Simon Perreault
  * (the function icvMedianBlur_8u_O1)
@@ -1763,7 +1767,1409 @@ cv::Mat cv::getGaussianKernel( int n, double sigma, int ktype )
 
 namespace cv {
 
-static void createGaussianKernels( Mat & kx, Mat & ky, int type, Size & ksize,
+template <typename T>
+static std::vector<T> getFixedpointGaussianKernel( int n, double sigma )
+{
+    if (sigma <= 0)
+    {
+        if(n == 1)
+            return std::vector<T>(1, softdouble(1.0));
+        else if(n == 3)
+        {
+            T v3[] = { softdouble(0.25), softdouble(0.5), softdouble(0.25) };
+            return std::vector<T>(v3, v3 + 3);
+        }
+        else if(n == 5)
+        {
+            T v5[] = { softdouble(0.0625), softdouble(0.25), softdouble(0.375), softdouble(0.25), softdouble(0.0625) };
+            return std::vector<T>(v5, v5 + 5);
+        }
+        else if(n == 7)
+        {
+            T v7[] = { softdouble(0.03125), softdouble(0.109375), softdouble(0.21875), softdouble(0.28125), softdouble(0.21875), softdouble(0.109375), softdouble(0.03125) };
+            return std::vector<T>(v7, v7 + 7);
+        }
+    }
+
+
+    softdouble sigmaX = sigma > 0 ? softdouble(sigma) : mulAdd(softdouble(n),softdouble(0.15),softdouble(0.35));// softdouble(((n-1)*0.5 - 1)*0.3 + 0.8)
+    softdouble scale2X = softdouble(-0.5*0.25)/(sigmaX*sigmaX);
+    std::vector<softdouble> values(n);
+    softdouble sum(0.);
+    for(int i = 0, x = 1 - n; i < n; i++, x+=2 )
+    {
+        // x = i - (n - 1)*0.5
+        // t = std::exp(scale2X*x*x)
+        values[i] = exp(softdouble(x*x)*scale2X);
+        sum += values[i];
+    }
+    sum = softdouble::one()/sum;
+
+    std::vector<T> kernel(n);
+    for(int i = 0; i < n; i++ )
+    {
+        kernel[i] = values[i] * sum;
+    }
+
+    return kernel;
+};
+
+template <typename ET, typename FT>
+void hlineSmooth1N(const ET* src, int cn, const FT* m, int, FT* dst, int len, int)
+{
+    for (int i = 0; i < len*cn; i++, src++, dst++)
+        *dst = (*m) * (*src);
+}
+template <>
+void hlineSmooth1N<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16* m, int, ufixedpoint16* dst, int len, int)
+{
+    int lencn = len*cn;
+    v_uint16x8 v_mul = v_setall_u16(*((uint16_t*)m));
+    int i = 0;
+    for (; i < lencn - 15; i += 16)
+    {
+        v_uint8x16 v_src = v_load(src + i);
+        v_uint16x8 v_tmp0, v_tmp1;
+        v_expand(v_src, v_tmp0, v_tmp1);
+        v_store((uint16_t*)dst + i, v_mul*v_tmp0);
+        v_store((uint16_t*)dst + i + 8, v_mul*v_tmp1);
+    }
+    if (i < lencn - 7)
+    {
+        v_uint16x8 v_src = v_load_expand(src + i);
+        v_store((uint16_t*)dst + i, v_mul*v_src);
+        i += 8;
+    }
+    for (; i < lencn; i++)
+        dst[i] = m[0] * src[i];
+}
+template <typename ET, typename FT>
+void hlineSmooth1N1(const ET* src, int cn, const FT*, int, FT* dst, int len, int)
+{
+    for (int i = 0; i < len*cn; i++, src++, dst++)
+        *dst = *src;
+}
+template <>
+void hlineSmooth1N1<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16*, int, ufixedpoint16* dst, int len, int)
+{
+    int lencn = len*cn;
+    int i = 0;
+    for (; i < lencn - 15; i += 16)
+    {
+        v_uint8x16 v_src = v_load(src + i);
+        v_uint16x8 v_tmp0, v_tmp1;
+        v_expand(v_src, v_tmp0, v_tmp1);
+        v_store((uint16_t*)dst + i, v_shl<8>(v_tmp0));
+        v_store((uint16_t*)dst + i + 8, v_shl<8>(v_tmp1));
+    }
+    if (i < lencn - 7)
+    {
+        v_uint16x8 v_src = v_load_expand(src + i);
+        v_store((uint16_t*)dst + i, v_shl<8>(v_src));
+        i += 8;
+    }
+    for (; i < lencn; i++)
+        dst[i] = src[i];
+}
+template <typename ET, typename FT>
+void hlineSmooth3N(const ET* src, int cn, const FT* m, int, FT* dst, int len, int borderType)
+{
+    if (len == 1)
+    {
+        FT msum = borderType != BORDER_CONSTANT ? m[0] + m[1] + m[2] : m[1];
+        for (int k = 0; k < cn; k++)
+            dst[k] = msum * src[k];
+    }
+    else
+    {
+        // Point that fall left from border
+        for (int k = 0; k < cn; k++)
+            dst[k] = m[1] * src[k] + m[2] * src[cn + k];
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+        {
+            int src_idx = borderInterpolate(-1, len, borderType);
+            for (int k = 0; k < cn; k++)
+                dst[k] = dst[k] + m[0] * src[src_idx*cn + k];
+        }
+
+        src += cn; dst += cn;
+        for (int i = cn; i < (len - 1)*cn; i++, src++, dst++)
+            *dst = m[0] * src[-cn] + m[1] * src[0] + m[2] * src[cn];
+
+        // Point that fall right from border
+        for (int k = 0; k < cn; k++)
+            dst[k] = m[0] * src[k - cn] + m[1] * src[k];
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+        {
+            int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn;
+            for (int k = 0; k < cn; k++)
+                dst[k] = dst[k] + m[2] * src[src_idx + k];
+        }
+    }
+}
+template <>
+void hlineSmooth3N<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16* m, int, ufixedpoint16* dst, int len, int borderType)
+{
+    if (len == 1)
+    {
+        ufixedpoint16 msum = borderType != BORDER_CONSTANT ? m[0] + m[1] + m[2] : m[1];
+        for (int k = 0; k < cn; k++)
+            dst[k] = msum * src[k];
+    }
+    else
+    {
+        // Point that fall left from border
+        for (int k = 0; k < cn; k++)
+            dst[k] = m[1] * src[k] + m[2] * src[cn + k];
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+        {
+            int src_idx = borderInterpolate(-1, len, borderType);
+            for (int k = 0; k < cn; k++)
+                dst[k] = dst[k] + m[0] * src[src_idx*cn + k];
+        }
+
+        src += cn; dst += cn;
+        int i = cn, lencn = (len - 1)*cn;
+        v_int16x8 v_mul01 = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)m)));
+        v_int16x8 v_mul2 = v_reinterpret_as_s16(v_setall_u16(*((uint16_t*)(m + 2))));
+        for (; i < lencn - 15; i += 16, src += 16, dst += 16)
+        {
+            v_uint16x8 v_src00, v_src01, v_src10, v_src11;
+            v_int16x8 v_tmp0, v_tmp1;
+
+            v_expand(v_load(src - cn), v_src00, v_src01);
+            v_expand(v_load(src), v_src10, v_src11);
+            v_zip(v_reinterpret_as_s16(v_src00), v_reinterpret_as_s16(v_src10), v_tmp0, v_tmp1);
+            v_int32x4 v_res0 = v_dotprod(v_tmp0, v_mul01);
+            v_int32x4 v_res1 = v_dotprod(v_tmp1, v_mul01);
+            v_zip(v_reinterpret_as_s16(v_src01), v_reinterpret_as_s16(v_src11), v_tmp0, v_tmp1);
+            v_int32x4 v_res2 = v_dotprod(v_tmp0, v_mul01);
+            v_int32x4 v_res3 = v_dotprod(v_tmp1, v_mul01);
+
+            v_int32x4 v_resj0, v_resj1, v_resj2, v_resj3;
+            v_expand(v_load(src + cn), v_src00, v_src01);
+            v_mul_expand(v_reinterpret_as_s16(v_src00), v_mul2, v_resj0, v_resj1);
+            v_mul_expand(v_reinterpret_as_s16(v_src01), v_mul2, v_resj2, v_resj3);
+            v_res0 += v_resj0;
+            v_res1 += v_resj1;
+            v_res2 += v_resj2;
+            v_res3 += v_resj3;
+
+            v_store((uint16_t*)dst, v_pack(v_reinterpret_as_u32(v_res0), v_reinterpret_as_u32(v_res1)));
+            v_store((uint16_t*)dst + 8, v_pack(v_reinterpret_as_u32(v_res2), v_reinterpret_as_u32(v_res3)));
+        }
+        for (; i < lencn; i++, src++, dst++)
+            *dst = m[0] * src[-cn] + m[1] * src[0] + m[2] * src[cn];
+
+        // Point that fall right from border
+        for (int k = 0; k < cn; k++)
+            dst[k] = m[0] * src[k - cn] + m[1] * src[k];
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+        {
+            int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn;
+            for (int k = 0; k < cn; k++)
+                dst[k] = dst[k] + m[2] * src[src_idx + k];
+        }
+    }
+}
+template <typename ET, typename FT>
+void hlineSmooth3N121(const ET* src, int cn, const FT*, int, FT* dst, int len, int borderType)
+{
+    if (len == 1)
+    {
+        if(borderType != BORDER_CONSTANT)
+            for (int k = 0; k < cn; k++)
+                dst[k] = FT(src[k]);
+        else
+            for (int k = 0; k < cn; k++)
+                dst[k] = FT(src[k])>>1;
+    }
+    else
+    {
+        // Point that fall left from border
+        for (int k = 0; k < cn; k++)
+            dst[k] = (FT(src[k])>>1) + (FT(src[cn + k])>>2);
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+        {
+            int src_idx = borderInterpolate(-1, len, borderType);
+            for (int k = 0; k < cn; k++)
+                dst[k] = dst[k] + (FT(src[src_idx*cn + k])>>2);
+        }
+
+        src += cn; dst += cn;
+        for (int i = cn; i < (len - 1)*cn; i++, src++, dst++)
+            *dst = ((FT(src[-cn]) + FT(src[cn]))>>2) + (FT(src[0])>>1);
+
+        // Point that fall right from border
+        for (int k = 0; k < cn; k++)
+            dst[k] = (FT(src[k - cn])>>2) + (FT(src[k])>>1);
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+        {
+            int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn;
+            for (int k = 0; k < cn; k++)
+                dst[k] = dst[k] + (FT(src[src_idx + k])>>2);
+        }
+    }
+}
+template <>
+void hlineSmooth3N121<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16*, int, ufixedpoint16* dst, int len, int borderType)
+{
+    if (len == 1)
+    {
+        if (borderType != BORDER_CONSTANT)
+            for (int k = 0; k < cn; k++)
+                dst[k] = ufixedpoint16(src[k]);
+        else
+            for (int k = 0; k < cn; k++)
+                dst[k] = ufixedpoint16(src[k]) >> 1;
+    }
+    else
+    {
+        // Point that fall left from border
+        for (int k = 0; k < cn; k++)
+            dst[k] = (ufixedpoint16(src[k])>>1) + (ufixedpoint16(src[cn + k])>>2);
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+        {
+            int src_idx = borderInterpolate(-1, len, borderType);
+            for (int k = 0; k < cn; k++)
+                dst[k] = dst[k] + (ufixedpoint16(src[src_idx*cn + k])>>2);
+        }
+
+        src += cn; dst += cn;
+        int i = cn, lencn = (len - 1)*cn;
+        for (; i < lencn - 15; i += 16, src += 16, dst += 16)
+        {
+            v_uint16x8 v_src00, v_src01, v_src10, v_src11, v_src20, v_src21;
+            v_expand(v_load(src - cn), v_src00, v_src01);
+            v_expand(v_load(src), v_src10, v_src11);
+            v_expand(v_load(src + cn), v_src20, v_src21);
+            v_store((uint16_t*)dst, (v_src00 + v_src20 + (v_src10 << 1)) << 6);
+            v_store((uint16_t*)dst + 8, (v_src01 + v_src21 + (v_src11 << 1)) << 6);
+        }
+        for (; i < lencn; i++, src++, dst++)
+            *((uint16_t*)dst) = (uint16_t(src[-cn]) + uint16_t(src[cn]) + (uint16_t(src[0]) << 1)) << 6;
+
+        // Point that fall right from border
+        for (int k = 0; k < cn; k++)
+            dst[k] = (ufixedpoint16(src[k - cn])>>2) + (ufixedpoint16(src[k])>>1);
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+        {
+            int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn;
+            for (int k = 0; k < cn; k++)
+                dst[k] = dst[k] + (ufixedpoint16(src[src_idx + k])>>2);
+        }
+    }
+}
+template <typename ET, typename FT>
+void hlineSmooth5N(const ET* src, int cn, const FT* m, int, FT* dst, int len, int borderType)
+{
+    if (len == 1)
+    {
+        ufixedpoint16 msum = borderType != BORDER_CONSTANT ? m[0] + m[1] + m[2] + m[3] + m[4] : m[2];
+        for (int k = 0; k < cn; k++)
+            dst[k] = msum * src[k];
+    }
+    else if (len == 2)
+    {
+        if (borderType == BORDER_CONSTANT)
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k   ] = m[2] * src[k] + m[3] * src[k+cn];
+                dst[k+cn] = m[1] * src[k] + m[2] * src[k+cn];
+            }
+        else
+        {
+            int idxm2 = borderInterpolate(-2, len, borderType)*cn;
+            int idxm1 = borderInterpolate(-1, len, borderType)*cn;
+            int idxp1 = borderInterpolate(2, len, borderType)*cn;
+            int idxp2 = borderInterpolate(3, len, borderType)*cn;
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k     ] = m[1] * src[k + idxm1] + m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + idxp1] + m[0] * src[k + idxm2];
+                dst[k + cn] = m[0] * src[k + idxm1] + m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + idxp1] + m[4] * src[k + idxp2];
+            }
+        }
+    }
+    else if (len == 3)
+    {
+        if (borderType == BORDER_CONSTANT)
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k       ] = m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + 2*cn];
+                dst[k +   cn] = m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + 2*cn];
+                dst[k + 2*cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2*cn];
+            }
+        else
+        {
+            int idxm2 = borderInterpolate(-2, len, borderType)*cn;
+            int idxm1 = borderInterpolate(-1, len, borderType)*cn;
+            int idxp1 = borderInterpolate(3, len, borderType)*cn;
+            int idxp2 = borderInterpolate(4, len, borderType)*cn;
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k       ] = m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + 2*cn] + m[0] * src[k + idxm2] + m[1] * src[k + idxm1];
+                dst[k +   cn] = m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + 2*cn] + m[0] * src[k + idxm1] + m[4] * src[k + idxp1];
+                dst[k + 2*cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2*cn] + m[3] * src[k + idxp1] + m[4] * src[k + idxp2];
+            }
+        }
+    }
+    else
+    {
+        // Points that fall left from border
+        for (int k = 0; k < cn; k++)
+        {
+            dst[k] = m[2] * src[k] + m[3] * src[cn + k] + m[4] * src[2*cn + k];
+            dst[k + cn] = m[1] * src[k] + m[2] * src[cn + k] + m[3] * src[2*cn + k] + m[4] * src[3*cn + k];
+        }
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+        {
+            int idxm2 = borderInterpolate(-2, len, borderType)*cn;
+            int idxm1 = borderInterpolate(-1, len, borderType)*cn;
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = dst[k] + m[0] * src[idxm2 + k] + m[1] * src[idxm1 + k];
+                dst[k + cn] = dst[k + cn] + m[0] * src[idxm1 + k];
+            }
+        }
+
+        src += 2*cn; dst += 2*cn;
+        for (int i = 2*cn; i < (len - 2)*cn; i++, src++, dst++)
+            *dst = m[0] * src[-2*cn] + m[1] * src[-cn] + m[2] * src[0] + m[3] * src[cn] + m[4] * src[2*cn];
+
+        // Points that fall right from border
+        for (int k = 0; k < cn; k++)
+        {
+            dst[k] = m[0] * src[k - 2*cn] + m[1] * src[k - cn] + m[2] * src[k] + m[3] * src[k + cn];
+            dst[k + cn] = m[0] * src[k - cn] + m[1] * src[k] + m[2] * src[k + cn];
+        }
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+        {
+            int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn;
+            int idxp2 = (borderInterpolate(len+1, len, borderType) - (len - 2))*cn;
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = dst[k] + m[4] * src[idxp1 + k];
+                dst[k + cn] = dst[k + cn] + m[3] * src[idxp1 + k] + m[4] * src[idxp2 + k];
+            }
+        }
+    }
+}
+template <>
+void hlineSmooth5N<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16* m, int, ufixedpoint16* dst, int len, int borderType)
+{
+    if (len == 1)
+    {
+        ufixedpoint16 msum = borderType != BORDER_CONSTANT ? m[0] + m[1] + m[2] + m[3] + m[4] : m[2];
+        for (int k = 0; k < cn; k++)
+            dst[k] = msum * src[k];
+    }
+    else if (len == 2)
+    {
+        if (borderType == BORDER_CONSTANT)
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = m[2] * src[k] + m[3] * src[k + cn];
+                dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn];
+            }
+        else
+        {
+            int idxm2 = borderInterpolate(-2, len, borderType)*cn;
+            int idxm1 = borderInterpolate(-1, len, borderType)*cn;
+            int idxp1 = borderInterpolate(2, len, borderType)*cn;
+            int idxp2 = borderInterpolate(3, len, borderType)*cn;
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = m[1] * src[k + idxm1] + m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + idxp1] + m[0] * src[k + idxm2];
+                dst[k + cn] = m[0] * src[k + idxm1] + m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + idxp1] + m[4] * src[k + idxp2];
+            }
+        }
+    }
+    else if (len == 3)
+    {
+        if (borderType == BORDER_CONSTANT)
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + 2 * cn];
+                dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + 2 * cn];
+                dst[k + 2 * cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2 * cn];
+            }
+        else
+        {
+            int idxm2 = borderInterpolate(-2, len, borderType)*cn;
+            int idxm1 = borderInterpolate(-1, len, borderType)*cn;
+            int idxp1 = borderInterpolate(3, len, borderType)*cn;
+            int idxp2 = borderInterpolate(4, len, borderType)*cn;
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + 2 * cn] + m[0] * src[k + idxm2] + m[1] * src[k + idxm1];
+                dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + 2 * cn] + m[0] * src[k + idxm1] + m[4] * src[k + idxp1];
+                dst[k + 2 * cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2 * cn] + m[3] * src[k + idxp1] + m[4] * src[k + idxp2];
+            }
+        }
+    }
+    else
+    {
+        // Points that fall left from border
+        for (int k = 0; k < cn; k++)
+        {
+            dst[k] = m[2] * src[k] + m[3] * src[cn + k] + m[4] * src[2 * cn + k];
+            dst[k + cn] = m[1] * src[k] + m[2] * src[cn + k] + m[3] * src[2 * cn + k] + m[4] * src[3 * cn + k];
+        }
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+        {
+            int idxm2 = borderInterpolate(-2, len, borderType)*cn;
+            int idxm1 = borderInterpolate(-1, len, borderType)*cn;
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = dst[k] + m[0] * src[idxm2 + k] + m[1] * src[idxm1 + k];
+                dst[k + cn] = dst[k + cn] + m[0] * src[idxm1 + k];
+            }
+        }
+
+        src += 2 * cn; dst += 2 * cn;
+        int i = 2*cn, lencn = (len - 2)*cn;
+        v_int16x8 v_mul01 = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)m)));
+        v_int16x8 v_mul23 = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)(m + 2))));
+        v_int16x8 v_mul4 = v_reinterpret_as_s16(v_setall_u16(*((uint16_t*)(m + 4))));
+        for (; i < lencn - 15; i += 16, src += 16, dst += 16)
+        {
+            v_uint16x8 v_src00, v_src01, v_src10, v_src11;
+            v_int16x8 v_tmp0, v_tmp1;
+
+            v_expand(v_load(src - 2*cn), v_src00, v_src01);
+            v_expand(v_load(src - cn), v_src10, v_src11);
+            v_zip(v_reinterpret_as_s16(v_src00), v_reinterpret_as_s16(v_src10), v_tmp0, v_tmp1);
+            v_int32x4 v_res0 = v_dotprod(v_tmp0, v_mul01);
+            v_int32x4 v_res1 = v_dotprod(v_tmp1, v_mul01);
+            v_zip(v_reinterpret_as_s16(v_src01), v_reinterpret_as_s16(v_src11), v_tmp0, v_tmp1);
+            v_int32x4 v_res2 = v_dotprod(v_tmp0, v_mul01);
+            v_int32x4 v_res3 = v_dotprod(v_tmp1, v_mul01);
+
+
+            v_expand(v_load(src), v_src00, v_src01);
+            v_expand(v_load(src + cn), v_src10, v_src11);
+            v_zip(v_reinterpret_as_s16(v_src00), v_reinterpret_as_s16(v_src10), v_tmp0, v_tmp1);
+            v_res0 += v_dotprod(v_tmp0, v_mul23);
+            v_res1 += v_dotprod(v_tmp1, v_mul23);
+            v_zip(v_reinterpret_as_s16(v_src01), v_reinterpret_as_s16(v_src11), v_tmp0, v_tmp1);
+            v_res2 += v_dotprod(v_tmp0, v_mul23);
+            v_res3 += v_dotprod(v_tmp1, v_mul23);
+
+            v_int32x4 v_resj0, v_resj1, v_resj2, v_resj3;
+            v_expand(v_load(src + 2*cn), v_src00, v_src01);
+            v_mul_expand(v_reinterpret_as_s16(v_src00), v_mul4, v_resj0, v_resj1);
+            v_mul_expand(v_reinterpret_as_s16(v_src01), v_mul4, v_resj2, v_resj3);
+            v_res0 += v_resj0;
+            v_res1 += v_resj1;
+            v_res2 += v_resj2;
+            v_res3 += v_resj3;
+
+            v_store((uint16_t*)dst, v_pack(v_reinterpret_as_u32(v_res0), v_reinterpret_as_u32(v_res1)));
+            v_store((uint16_t*)dst + 8, v_pack(v_reinterpret_as_u32(v_res2), v_reinterpret_as_u32(v_res3)));
+        }
+        for (; i < lencn; i++, src++, dst++)
+            *dst = m[0] * src[-2*cn] + m[1] * src[-cn] + m[2] * src[0] + m[3] * src[cn] + m[4] * src[2*cn];
+
+        // Points that fall right from border
+        for (int k = 0; k < cn; k++)
+        {
+            dst[k] = m[0] * src[k - 2 * cn] + m[1] * src[k - cn] + m[2] * src[k] + m[3] * src[k + cn];
+            dst[k + cn] = m[0] * src[k - cn] + m[1] * src[k] + m[2] * src[k + cn];
+        }
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+        {
+            int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn;
+            int idxp2 = (borderInterpolate(len + 1, len, borderType) - (len - 2))*cn;
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = dst[k] + m[4] * src[idxp1 + k];
+                dst[k + cn] = dst[k + cn] + m[3] * src[idxp1 + k] + m[4] * src[idxp2 + k];
+            }
+        }
+    }
+}
+template <typename ET, typename FT>
+void hlineSmooth5N14641(const ET* src, int cn, const FT*, int, FT* dst, int len, int borderType)
+{
+    if (len == 1)
+    {
+        if (borderType == BORDER_CONSTANT)
+            for (int k = 0; k < cn; k++)
+                dst[k] = (FT(src[k])>>3)*3;
+        else
+            for (int k = 0; k < cn; k++)
+                dst[k] = src[k];
+    }
+    else if (len == 2)
+    {
+        if (borderType == BORDER_CONSTANT)
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = (FT(src[k])>>4)*6 + (FT(src[k + cn])>>2);
+                dst[k + cn] = (FT(src[k]) >> 2) + (FT(src[k + cn])>>4)*6;
+            }
+        else
+        {
+            int idxm2 = borderInterpolate(-2, len, borderType)*cn;
+            int idxm1 = borderInterpolate(-1, len, borderType)*cn;
+            int idxp1 = borderInterpolate(2, len, borderType)*cn;
+            int idxp2 = borderInterpolate(3, len, borderType)*cn;
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = (FT(src[k])>>4)*6 + (FT(src[k + idxm1])>>2) + (FT(src[k + cn])>>2) + (FT(src[k + idxp1])>>4) + (FT(src[k + idxm2])>>4);
+                dst[k + cn] = (FT(src[k + cn])>>4)*6 + (FT(src[k])>>2) + (FT(src[k + idxp1])>>2) + (FT(src[k + idxm1])>>4) + (FT(src[k + idxp2])>>4);
+            }
+        }
+    }
+    else if (len == 3)
+    {
+        if (borderType == BORDER_CONSTANT)
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = (FT(src[k])>>4)*6 + (FT(src[k + cn])>>2) + (FT(src[k + 2 * cn])>>4);
+                dst[k + cn] = (FT(src[k + cn])>>4)*6 + (FT(src[k])>>2) + (FT(src[k + 2 * cn])>>2);
+                dst[k + 2 * cn] = (FT(src[k + 2 * cn])>>4)*6 + (FT(src[k + cn])>>2) + (FT(src[k])>>4);
+            }
+        else
+        {
+            int idxm2 = borderInterpolate(-2, len, borderType)*cn;
+            int idxm1 = borderInterpolate(-1, len, borderType)*cn;
+            int idxp1 = borderInterpolate(3, len, borderType)*cn;
+            int idxp2 = borderInterpolate(4, len, borderType)*cn;
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = (FT(src[k])>>4)*6 + (FT(src[k + cn])>>2) + (FT(src[k + idxm1])>>2) + (FT(src[k + 2 * cn])>>4) + (FT(src[k + idxm2])>>4);
+                dst[k + cn] = (FT(src[k + cn])>>4)*6 + (FT(src[k])>>2) + (FT(src[k + 2 * cn])>>2) + (FT(src[k + idxm1])>>4) + (FT(src[k + idxp1])>>4);
+                dst[k + 2 * cn] = (FT(src[k + 2 * cn])>>4)*6 + (FT(src[k + cn])>>2) + (FT(src[k + idxp1])>>2) + (FT(src[k])>>4) + (FT(src[k + idxp2])>>4);
+            }
+        }
+    }
+    else
+    {
+        // Points that fall left from border
+        for (int k = 0; k < cn; k++)
+        {
+            dst[k] = (FT(src[k])>>4)*6 + (FT(src[cn + k])>>2) + (FT(src[2 * cn + k])>>4);
+            dst[k + cn] = (FT(src[cn + k])>>4)*6 + (FT(src[k])>>2) + (FT(src[2 * cn + k])>>2) + (FT(src[3 * cn + k])>>4);
+        }
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+        {
+            int idxm2 = borderInterpolate(-2, len, borderType)*cn;
+            int idxm1 = borderInterpolate(-1, len, borderType)*cn;
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = dst[k] + (FT(src[idxm2 + k])>>4) + (FT(src[idxm1 + k])>>2);
+                dst[k + cn] = dst[k + cn] + (FT(src[idxm1 + k])>>4);
+            }
+        }
+
+        src += 2 * cn; dst += 2 * cn;
+        for (int i = 2 * cn; i < (len - 2)*cn; i++, src++, dst++)
+            *dst = (FT(src[0])>>4)*6 + (FT(src[-cn])>>2) + (FT(src[cn])>>2) + (FT(src[-2 * cn])>>4) + (FT(src[2 * cn])>>4);
+
+        // Points that fall right from border
+        for (int k = 0; k < cn; k++)
+        {
+            dst[k] = (FT(src[k])>>4)*6 + (FT(src[k - cn])>>2) + (FT(src[k + cn])>>2) + (FT(src[k - 2 * cn])>>4);
+            dst[k + cn] = (FT(src[k + cn])>>4)*6 + (FT(src[k])>>2) + (FT(src[k - cn])>>4);
+        }
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+        {
+            int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn;
+            int idxp2 = (borderInterpolate(len + 1, len, borderType) - (len - 2))*cn;
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = dst[k] + (FT(src[idxp1 + k])>>4);
+                dst[k + cn] = dst[k + cn] + (FT(src[idxp1 + k])>>2) + (FT(src[idxp2 + k])>>4);
+            }
+        }
+    }
+}
+template <>
+void hlineSmooth5N14641<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16*, int, ufixedpoint16* dst, int len, int borderType)
+{
+    if (len == 1)
+    {
+        if (borderType == BORDER_CONSTANT)
+            for (int k = 0; k < cn; k++)
+                dst[k] = (ufixedpoint16(src[k])>>3) * 3;
+        else
+        {
+            for (int k = 0; k < cn; k++)
+                dst[k] = src[k];
+        }
+    }
+    else if (len == 2)
+    {
+        if (borderType == BORDER_CONSTANT)
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = (ufixedpoint16(src[k]) >> 4) * 6 + (ufixedpoint16(src[k + cn]) >> 2);
+                dst[k + cn] = (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + cn]) >> 4) * 6;
+            }
+        else
+        {
+            int idxm2 = borderInterpolate(-2, len, borderType)*cn;
+            int idxm1 = borderInterpolate(-1, len, borderType)*cn;
+            int idxp1 = borderInterpolate(2, len, borderType)*cn;
+            int idxp2 = borderInterpolate(3, len, borderType)*cn;
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = (ufixedpoint16(src[k]) >> 4) * 6 + (ufixedpoint16(src[k + idxm1]) >> 2) + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + idxp1]) >> 4) + (ufixedpoint16(src[k + idxm2]) >> 4);
+                dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * 6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + idxp1]) >> 2) + (ufixedpoint16(src[k + idxm1]) >> 4) + (ufixedpoint16(src[k + idxp2]) >> 4);
+            }
+        }
+    }
+    else if (len == 3)
+    {
+        if (borderType == BORDER_CONSTANT)
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = (ufixedpoint16(src[k]) >> 4) * 6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 4);
+                dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * 6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 2);
+                dst[k + 2 * cn] = (ufixedpoint16(src[k + 2 * cn]) >> 4) * 6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k]) >> 4);
+            }
+        else
+        {
+            int idxm2 = borderInterpolate(-2, len, borderType)*cn;
+            int idxm1 = borderInterpolate(-1, len, borderType)*cn;
+            int idxp1 = borderInterpolate(3, len, borderType)*cn;
+            int idxp2 = borderInterpolate(4, len, borderType)*cn;
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = (ufixedpoint16(src[k]) >> 4) * 6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + idxm1]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 4) + (ufixedpoint16(src[k + idxm2]) >> 4);
+                dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * 6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 2) + (ufixedpoint16(src[k + idxm1]) >> 4) + (ufixedpoint16(src[k + idxp1]) >> 4);
+                dst[k + 2 * cn] = (ufixedpoint16(src[k + 2 * cn]) >> 4) * 6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + idxp1]) >> 2) + (ufixedpoint16(src[k]) >> 4) + (ufixedpoint16(src[k + idxp2]) >> 4);
+            }
+        }
+    }
+    else
+    {
+        // Points that fall left from border
+        for (int k = 0; k < cn; k++)
+        {
+            dst[k] = (ufixedpoint16(src[k]) >> 4) * 6 + (ufixedpoint16(src[cn + k]) >> 2) + (ufixedpoint16(src[2 * cn + k]) >> 4);
+            dst[k + cn] = (ufixedpoint16(src[cn + k]) >> 4) * 6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[2 * cn + k]) >> 2) + (ufixedpoint16(src[3 * cn + k]) >> 4);
+        }
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+        {
+            int idxm2 = borderInterpolate(-2, len, borderType)*cn;
+            int idxm1 = borderInterpolate(-1, len, borderType)*cn;
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = dst[k] + (ufixedpoint16(src[idxm2 + k]) >> 4) + (ufixedpoint16(src[idxm1 + k]) >> 2);
+                dst[k + cn] = dst[k + cn] + (ufixedpoint16(src[idxm1 + k]) >> 4);
+            }
+        }
+
+        src += 2 * cn; dst += 2 * cn;
+        int i = 2 * cn, lencn = (len - 2)*cn;
+        v_uint16x8 v_6 = v_setall_u16(6);
+        for (; i < lencn - 15; i += 16, src += 16, dst += 16)
+        {
+            v_uint16x8 v_src00, v_src01, v_src10, v_src11, v_src20, v_src21, v_src30, v_src31, v_src40, v_src41;
+            v_expand(v_load(src - 2*cn), v_src00, v_src01);
+            v_expand(v_load(src - cn), v_src10, v_src11);
+            v_expand(v_load(src), v_src20, v_src21);
+            v_expand(v_load(src + cn), v_src30, v_src31);
+            v_expand(v_load(src + 2*cn), v_src40, v_src41);
+            v_store((uint16_t*)dst, (v_src20 * v_6 + ((v_src10 + v_src30) << 2) + v_src00 + v_src40) << 4);
+            v_store((uint16_t*)dst + 8, (v_src21 * v_6 + ((v_src11 + v_src31) << 2) + v_src01 + v_src41) << 4);
+        }
+        for (; i < lencn; i++, src++, dst++)
+            *((uint16_t*)dst) = (uint16_t(src[0]) * 6 + ((uint16_t(src[-cn]) + uint16_t(src[cn])) << 2) + uint16_t(src[-2 * cn]) + uint16_t(src[2 * cn])) << 4;
+
+        // Points that fall right from border
+        for (int k = 0; k < cn; k++)
+        {
+            dst[k] = (ufixedpoint16(src[k]) >> 4) * 6 + (ufixedpoint16(src[k - cn]) >> 2) + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k - 2 * cn]) >> 4);
+            dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * 6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k - cn]) >> 4);
+        }
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+        {
+            int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn;
+            int idxp2 = (borderInterpolate(len + 1, len, borderType) - (len - 2))*cn;
+            for (int k = 0; k < cn; k++)
+            {
+                dst[k] = dst[k] + (ufixedpoint16(src[idxp1 + k]) >> 4);
+                dst[k + cn] = dst[k + cn] + (ufixedpoint16(src[idxp1 + k]) >> 2) + (ufixedpoint16(src[idxp2 + k]) >> 4);
+            }
+        }
+    }
+}
+template <typename ET, typename FT>
+void hlineSmooth(const ET* src, int cn, const FT* m, int n, FT* dst, int len, int borderType)
+{
+    int pre_shift = n / 2;
+    int post_shift = n - pre_shift;
+    int i = 0;
+    for (; i < min(pre_shift, len); i++, dst += cn) // Points that fall left from border
+    {
+        for (int k = 0; k < cn; k++)
+            dst[k] = m[pre_shift-i] * src[k];
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+            for (int j = i - pre_shift, mid = 0; j < 0; j++, mid++)
+            {
+                int src_idx = borderInterpolate(j, len, borderType);
+                for (int k = 0; k < cn; k++)
+                    dst[k] = dst[k] + m[mid] * src[src_idx*cn + k];
+            }
+        int j, mid;
+        for (j = 1, mid = pre_shift - i + 1; j < min(i + post_shift, len); j++, mid++)
+            for (int k = 0; k < cn; k++)
+                dst[k] = dst[k] + m[mid] * src[j*cn + k];
+        if (borderType != BORDER_CONSTANT)
+            for (; j < i + post_shift; j++, mid++)
+            {
+                int src_idx = borderInterpolate(j, len, borderType);
+                for (int k = 0; k < cn; k++)
+                    dst[k] = dst[k] + m[mid] * src[src_idx*cn + k];
+            }
+    }
+    i *= cn;
+    for (; i < (len - post_shift + 1)*cn; i++, src++, dst++)
+    {
+        *dst = m[0] * src[0];
+        for (int j = 1; j < n; j++)
+            *dst = *dst + m[j] * src[j*cn];
+    }
+    i /= cn;
+    for (i -= pre_shift; i < len - pre_shift; i++, src += cn, dst += cn) // Points that fall right from border
+    {
+        for (int k = 0; k < cn; k++)
+            dst[k] = m[0] * src[k];
+        int j = 1;
+        for (; j < len - i; j++)
+            for (int k = 0; k < cn; k++)
+                dst[k] = dst[k] + m[j] * src[j*cn + k];
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+            for (; j < n; j++)
+            {
+                int src_idx = borderInterpolate(i + j, len, borderType) - i;
+                for (int k = 0; k < cn; k++)
+                    dst[k] = dst[k] + m[j] * src[src_idx*cn + k];
+            }
+    }
+}
+template <>
+void hlineSmooth<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16* m, int n, ufixedpoint16* dst, int len, int borderType)
+{
+    int pre_shift = n / 2;
+    int post_shift = n - pre_shift;
+    int i = 0;
+    for (; i < min(pre_shift, len); i++, dst += cn) // Points that fall left from border
+    {
+        for (int k = 0; k < cn; k++)
+            dst[k] = m[pre_shift - i] * src[k];
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+            for (int j = i - pre_shift, mid = 0; j < 0; j++, mid++)
+            {
+                int src_idx = borderInterpolate(j, len, borderType);
+                for (int k = 0; k < cn; k++)
+                    dst[k] = dst[k] + m[mid] * src[src_idx*cn + k];
+            }
+        int j, mid;
+        for (j = 1, mid = pre_shift - i + 1; j < min(i + post_shift, len); j++, mid++)
+            for (int k = 0; k < cn; k++)
+                dst[k] = dst[k] + m[mid] * src[j*cn + k];
+        if (borderType != BORDER_CONSTANT)
+            for (; j < i + post_shift; j++, mid++)
+            {
+                int src_idx = borderInterpolate(j, len, borderType);
+                for (int k = 0; k < cn; k++)
+                    dst[k] = dst[k] + m[mid] * src[src_idx*cn + k];
+            }
+    }
+    i *= cn;
+    int lencn = (len - post_shift + 1)*cn;
+    for (; i < lencn - 15; i+=16, src+=16, dst+=16)
+    {
+        v_uint16x8 v_src00, v_src01, v_src10, v_src11;
+        v_int16x8 v_tmp0, v_tmp1;
+
+        v_int16x8 v_mul = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)m)));
+
+        v_expand(v_load(src), v_src00, v_src01);
+        v_expand(v_load(src+cn), v_src10, v_src11);
+        v_zip(v_reinterpret_as_s16(v_src00), v_reinterpret_as_s16(v_src10), v_tmp0, v_tmp1);
+        v_int32x4 v_res0 = v_dotprod(v_tmp0, v_mul);
+        v_int32x4 v_res1 = v_dotprod(v_tmp1, v_mul);
+        v_zip(v_reinterpret_as_s16(v_src01), v_reinterpret_as_s16(v_src11), v_tmp0, v_tmp1);
+        v_int32x4 v_res2 = v_dotprod(v_tmp0, v_mul);
+        v_int32x4 v_res3 = v_dotprod(v_tmp1, v_mul);
+
+        int j = 2;
+        for (; j < n - 1; j += 2)
+        {
+            v_mul = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)(m + j))));
+
+            v_expand(v_load(src + j * cn), v_src00, v_src01);
+            v_expand(v_load(src + (j + 1) * cn), v_src10, v_src11);
+            v_zip(v_reinterpret_as_s16(v_src00), v_reinterpret_as_s16(v_src10), v_tmp0, v_tmp1);
+            v_res0 += v_dotprod(v_tmp0, v_mul);
+            v_res1 += v_dotprod(v_tmp1, v_mul);
+            v_zip(v_reinterpret_as_s16(v_src01), v_reinterpret_as_s16(v_src11), v_tmp0, v_tmp1);
+            v_res2 += v_dotprod(v_tmp0, v_mul);
+            v_res3 += v_dotprod(v_tmp1, v_mul);
+        }
+        if (j < n)
+        {
+            v_int32x4 v_resj0, v_resj1, v_resj2, v_resj3;
+            v_mul = v_reinterpret_as_s16(v_setall_u16(*((uint16_t*)(m + j))));
+            v_expand(v_load(src + j * cn), v_src00, v_src01);
+            v_mul_expand(v_reinterpret_as_s16(v_src00), v_mul, v_resj0, v_resj1);
+            v_mul_expand(v_reinterpret_as_s16(v_src01), v_mul, v_resj2, v_resj3);
+            v_res0 += v_resj0;
+            v_res1 += v_resj1;
+            v_res2 += v_resj2;
+            v_res3 += v_resj3;
+        }
+
+        v_store((uint16_t*)dst, v_pack(v_reinterpret_as_u32(v_res0), v_reinterpret_as_u32(v_res1)));
+        v_store((uint16_t*)dst+8, v_pack(v_reinterpret_as_u32(v_res2), v_reinterpret_as_u32(v_res3)));
+    }
+    for (; i < lencn; i++, src++, dst++)
+    {
+            *dst = m[0] * src[0];
+            for (int j = 1; j < n; j++)
+                *dst = *dst + m[j] * src[j*cn];
+    }
+    i /= cn;
+    for (i -= pre_shift; i < len - pre_shift; i++, src += cn, dst += cn) // Points that fall right from border
+    {
+        for (int k = 0; k < cn; k++)
+            dst[k] = m[0] * src[k];
+        int j = 1;
+        for (; j < len - i; j++)
+            for (int k = 0; k < cn; k++)
+                dst[k] = dst[k] + m[j] * src[j*cn + k];
+        if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+            for (; j < n; j++)
+            {
+                int src_idx = borderInterpolate(i + j, len, borderType) - i;
+                for (int k = 0; k < cn; k++)
+                    dst[k] = dst[k] + m[j] * src[src_idx*cn + k];
+            }
+    }
+}
+template <typename ET, typename FT>
+void vlineSmooth1N(const FT* const * src, const FT* m, int, ET* dst, int len)
+{
+    const FT* src0 = src[0];
+    for (int i = 0; i < len; i++)
+        dst[i] = m * src0[i];
+}
+template <>
+void vlineSmooth1N<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16* m, int, uint8_t* dst, int len)
+{
+    const ufixedpoint16* src0 = src[0];
+    v_uint16x8 v_mul = v_setall_u16(*((uint16_t*)m));
+    int i = 0;
+    for (; i < len - 7; i += 8)
+    {
+        v_uint16x8 v_src0 = v_load((uint16_t*)src0 + i);
+        v_uint32x4 v_res0, v_res1;
+        v_mul_expand(v_src0, v_mul, v_res0, v_res1);
+        v_pack_store(dst + i, v_rshr_pack<16>(v_res0, v_res1));
+    }
+    for (; i < len; i++)
+        dst[i] = m[0] * src0[i];
+}
+template <typename ET, typename FT>
+void vlineSmooth1N1(const FT* const * src, const FT*, int, ET* dst, int len)
+{
+    const FT* src0 = src[0];
+    for (int i = 0; i < len; i++)
+        dst[i] = src0[i];
+}
+template <>
+void vlineSmooth1N1<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16*, int, uint8_t* dst, int len)
+{
+    const ufixedpoint16* src0 = src[0];
+    int i = 0;
+    for (; i < len - 7; i += 8)
+        v_rshr_pack_store<8>(dst + i, v_load((uint16_t*)(src0 + i)));
+    for (; i < len; i++)
+        dst[i] = src0[i];
+}
+template <typename ET, typename FT>
+void vlineSmooth3N(const FT* const * src, const FT* m, int, ET* dst, int len)
+{
+    for (int i = 0; i < len; i++)
+        dst[i] = m[0] * src[0][i] + m[1] * src[1][i] + m[2] * src[2][i];
+}
+template <>
+void vlineSmooth3N<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16* m, int, uint8_t* dst, int len)
+{
+    static const v_int16x8 v_128 = v_reinterpret_as_s16(v_setall_u16((uint16_t)1 << 15));
+
+    v_int32x4 v_128_4 = v_setall_s32(128 << 16);
+    if (len > 7)
+    {
+        ufixedpoint32 val[] = { (m[0] + m[1] + m[2]) * ufixedpoint16((uint8_t)128) };
+        v_128_4 = v_setall_s32(*((int32_t*)val));
+    }
+
+    int i = 0;
+    v_int16x8 v_mul01 = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)m)));
+    v_int16x8 v_mul2 = v_reinterpret_as_s16(v_setall_u16(*((uint16_t*)(m + 2))));
+    for (; i < len - 7; i += 8)
+    {
+        v_int16x8 v_src0, v_src1;
+        v_int16x8 v_tmp0, v_tmp1;
+
+        v_src0 = v_load((int16_t*)(src[0]) + i);
+        v_src1 = v_load((int16_t*)(src[1]) + i);
+        v_zip(v_add_wrap(v_src0, v_128), v_add_wrap(v_src1, v_128), v_tmp0, v_tmp1);
+        v_int32x4 v_res0 = v_dotprod(v_tmp0, v_mul01);
+        v_int32x4 v_res1 = v_dotprod(v_tmp1, v_mul01);
+
+        v_int32x4 v_resj0, v_resj1;
+        v_src0 = v_load((int16_t*)(src[2]) + i);
+        v_mul_expand(v_add_wrap(v_src0, v_128), v_mul2, v_resj0, v_resj1);
+        v_res0 += v_resj0;
+        v_res1 += v_resj1;
+
+        v_res0 += v_128_4;
+        v_res1 += v_128_4;
+
+        v_uint16x8 v_res = v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1));
+        v_pack_store(dst + i, v_res);
+    }
+    for (; i < len; i++)
+        dst[i] = m[0] * src[0][i] + m[1] * src[1][i] + m[2] * src[2][i];
+}
+template <typename ET, typename FT>
+void vlineSmooth3N121(const FT* const * src, const FT*, int, ET* dst, int len)
+{
+    for (int i = 0; i < len; i++)
+        dst[i] = ((FT::WT(src[0][i]) + FT::WT(src[2][i])) >> 2) + (FT::WT(src[1][i]) >> 1);
+}
+template <>
+void vlineSmooth3N121<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16*, int, uint8_t* dst, int len)
+{
+    int i = 0;
+    for (; i < len - 7; i += 8)
+    {
+        v_uint32x4 v_src00, v_src01, v_src10, v_src11, v_src20, v_src21;
+        v_expand(v_load((uint16_t*)(src[0]) + i), v_src00, v_src01);
+        v_expand(v_load((uint16_t*)(src[1]) + i), v_src10, v_src11);
+        v_expand(v_load((uint16_t*)(src[2]) + i), v_src20, v_src21);
+        v_uint16x8 v_res = v_rshr_pack<10>(v_src00 + v_src20 + (v_src10 << 1), v_src01 + v_src21 + (v_src11 << 1));
+        v_pack_store(dst + i, v_res);
+    }
+    for (; i < len; i++)
+        dst[i] = (((uint32_t)(((uint16_t*)(src[0]))[i]) + (uint32_t)(((uint16_t*)(src[2]))[i]) + ((uint32_t)(((uint16_t*)(src[1]))[i]) << 1)) + (1 << 9)) >> 10;
+}
+template <typename ET, typename FT>
+void vlineSmooth5N(const FT* const * src, const FT* m, int, ET* dst, int len)
+{
+    for (int i = 0; i < len; i++)
+        dst[i] = m[0] * src[0][i] + m[1] * src[1][i] + m[2] * src[2][i] + m[3] * src[3][i] + m[4] * src[4][i];
+}
+template <>
+void vlineSmooth5N<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16* m, int, uint8_t* dst, int len)
+{
+    static const v_int16x8 v_128 = v_reinterpret_as_s16(v_setall_u16((uint16_t)1 << 15));
+
+    v_int32x4 v_128_4 = v_setall_s32(128 << 16);
+    if (len > 7)
+    {
+        ufixedpoint32 val[] = { (m[0] + m[1] + m[2] + m[3] + m[4]) * ufixedpoint16((uint8_t)128) };
+        v_128_4 = v_setall_s32(*((int32_t*)val));
+    }
+
+    int i = 0;
+    v_int16x8 v_mul01 = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)m)));
+    v_int16x8 v_mul23 = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)(m + 2))));
+    v_int16x8 v_mul4 = v_reinterpret_as_s16(v_setall_u16(*((uint16_t*)(m + 4))));
+    for (; i < len - 7; i += 8)
+    {
+        v_int16x8 v_src0, v_src1;
+        v_int16x8 v_tmp0, v_tmp1;
+
+        v_src0 = v_load((int16_t*)(src[0]) + i);
+        v_src1 = v_load((int16_t*)(src[1]) + i);
+        v_zip(v_add_wrap(v_src0, v_128), v_add_wrap(v_src1, v_128), v_tmp0, v_tmp1);
+        v_int32x4 v_res0 = v_dotprod(v_tmp0, v_mul01);
+        v_int32x4 v_res1 = v_dotprod(v_tmp1, v_mul01);
+
+        v_src0 = v_load((int16_t*)(src[2]) + i);
+        v_src1 = v_load((int16_t*)(src[3]) + i);
+        v_zip(v_add_wrap(v_src0, v_128), v_add_wrap(v_src1, v_128), v_tmp0, v_tmp1);
+        v_res0 += v_dotprod(v_tmp0, v_mul23);
+        v_res1 += v_dotprod(v_tmp1, v_mul23);
+
+        v_int32x4 v_resj0, v_resj1;
+        v_src0 = v_load((int16_t*)(src[4]) + i);
+        v_mul_expand(v_add_wrap(v_src0, v_128), v_mul4, v_resj0, v_resj1);
+        v_res0 += v_resj0;
+        v_res1 += v_resj1;
+
+        v_res0 += v_128_4;
+        v_res1 += v_128_4;
+
+        v_uint16x8 v_res = v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1));
+        v_pack_store(dst + i, v_res);
+    }
+    for (; i < len; i++)
+        dst[i] = m[0] * src[0][i] + m[1] * src[1][i] + m[2] * src[2][i] + m[3] * src[3][i] + m[4] * src[4][i];
+}
+template <typename ET, typename FT>
+void vlineSmooth5N14641(const FT* const * src, const FT*, int, ET* dst, int len)
+{
+    for (int i = 0; i < len; i++)
+        dst[i] = (FT::WT(src[2][i])*6 + ((FT::WT(src[1][i]) + FT::WT(src[3][i]))<<2) + FT::WT(src[0][i]) + FT::WT(src[4][i])) >> 4;
+}
+template <>
+void vlineSmooth5N14641<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16*, int, uint8_t* dst, int len)
+{
+    int i = 0;
+    v_uint32x4 v_6 = v_setall_u32(6);
+    for (; i < len - 7; i += 8)
+    {
+        v_uint32x4 v_src00, v_src01, v_src10, v_src11, v_src20, v_src21, v_src30, v_src31, v_src40, v_src41;
+        v_expand(v_load((uint16_t*)(src[0]) + i), v_src00, v_src01);
+        v_expand(v_load((uint16_t*)(src[1]) + i), v_src10, v_src11);
+        v_expand(v_load((uint16_t*)(src[2]) + i), v_src20, v_src21);
+        v_expand(v_load((uint16_t*)(src[3]) + i), v_src30, v_src31);
+        v_expand(v_load((uint16_t*)(src[4]) + i), v_src40, v_src41);
+        v_uint16x8 v_res = v_rshr_pack<12>(v_src20*v_6 + ((v_src10 + v_src30) << 2) + v_src00 + v_src40,
+                                           v_src21*v_6 + ((v_src11 + v_src31) << 2) + v_src01 + v_src41);
+        v_pack_store(dst + i, v_res);
+    }
+    for (; i < len; i++)
+        dst[i] = ((uint32_t)(((uint16_t*)(src[2]))[i]) * 6 +
+                  (((uint32_t)(((uint16_t*)(src[1]))[i]) + (uint32_t)(((uint16_t*)(src[3]))[i])) << 2) +
+                  (uint32_t)(((uint16_t*)(src[0]))[i]) + (uint32_t)(((uint16_t*)(src[4]))[i]) + (1 << 11)) >> 12;
+}
+template <typename ET, typename FT>
+void vlineSmooth(const FT* const * src, const FT* m, int n, ET* dst, int len)
+{
+    for (int i = 0; i < len; i++)
+    {
+        typename FT::WT val = m[0] * src[0][i];
+        for (int j = 1; j < n; j++)
+            val = val + m[j] * src[j][i];
+        dst[i] = val;
+    }
+}
+template <>
+void vlineSmooth<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16* m, int n, uint8_t* dst, int len)
+{
+    static const v_int16x8 v_128 = v_reinterpret_as_s16(v_setall_u16((uint16_t)1 << 15));
+
+    v_int32x4 v_128_4 = v_setall_s32(128 << 16);
+    if (len > 7)
+    {
+        ufixedpoint16 msum = m[0] + m[1];
+        for (int j = 2; j < n; j++)
+            msum = msum + m[j];
+        ufixedpoint32 val[] = { msum * ufixedpoint16((uint8_t)128) };
+        v_128_4 = v_setall_s32(*((int32_t*)val));
+    }
+
+    int i = 0;
+    for (; i < len - 7; i += 8)
+    {
+        v_int16x8 v_src0, v_src1;
+        v_int16x8 v_tmp0, v_tmp1;
+
+        v_int16x8 v_mul = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)m)));
+
+        v_src0 = v_load((int16_t*)(src[0]) + i);
+        v_src1 = v_load((int16_t*)(src[1]) + i);
+        v_zip(v_add_wrap(v_src0, v_128), v_add_wrap(v_src1, v_128), v_tmp0, v_tmp1);
+        v_int32x4 v_res0 = v_dotprod(v_tmp0, v_mul);
+        v_int32x4 v_res1 = v_dotprod(v_tmp1, v_mul);
+
+        int j = 2;
+        for (; j < n - 1; j+=2)
+        {
+            v_mul = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)(m+j))));
+
+            v_src0 = v_load((int16_t*)(src[j]) + i);
+            v_src1 = v_load((int16_t*)(src[j+1]) + i);
+            v_zip(v_add_wrap(v_src0, v_128), v_add_wrap(v_src1, v_128), v_tmp0, v_tmp1);
+            v_res0 += v_dotprod(v_tmp0, v_mul);
+            v_res1 += v_dotprod(v_tmp1, v_mul);
+        }
+        if(j < n)
+        {
+            v_int32x4 v_resj0, v_resj1;
+            v_mul = v_reinterpret_as_s16(v_setall_u16(*((uint16_t*)(m + j))));
+            v_src0 = v_load((int16_t*)(src[j]) + i);
+            v_mul_expand(v_add_wrap(v_src0, v_128), v_mul, v_resj0, v_resj1);
+            v_res0 += v_resj0;
+            v_res1 += v_resj1;
+        }
+        v_res0 += v_128_4;
+        v_res1 += v_128_4;
+
+        v_uint16x8 v_res = v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1));
+        v_pack_store(dst + i, v_res);
+    }
+    for (; i < len; i++)
+    {
+        ufixedpoint32 val = m[0] * src[0][i];
+        for (int j = 1; j < n; j++)
+        {
+            val = val + m[j] * src[j][i];
+        }
+        dst[i] = val;
+    }
+}
+template <typename ET, typename FT>
+class fixedSmoothInvoker : public ParallelLoopBody
+{
+public:
+    fixedSmoothInvoker(const ET* _src, size_t _src_stride, ET* _dst, size_t _dst_stride,
+                       int _width, int _height, int _cn, const FT* _kx, int _kxlen, const FT* _ky, int _kylen, int _borderType) : ParallelLoopBody(),
+                       src(_src), dst(_dst), src_stride(_src_stride), dst_stride(_dst_stride),
+                       width(_width), height(_height), cn(_cn), kx(_kx), ky(_ky), kxlen(_kxlen), kylen(_kylen), borderType(_borderType)
+    {
+        if (kxlen == 1)
+        {
+            if ((kx[0] - FT::one()).isZero())
+                hlineSmoothFunc = hlineSmooth1N1;
+            else
+                hlineSmoothFunc = hlineSmooth1N;
+        }
+        else if (kxlen == 3)
+        {
+            if ((kx[0] - (FT::one()>>2)).isZero()&&(kx[1] - (FT::one()>>1)).isZero()&&(kx[2] - (FT::one()>>2)).isZero())
+                hlineSmoothFunc = hlineSmooth3N121;
+            else
+                hlineSmoothFunc = hlineSmooth3N;
+        }
+        else if (kxlen == 5)
+        {
+            if ((kx[2] - (FT::one()*3>>3)).isZero()&&
+                (kx[1] - (FT::one()>>2)).isZero()&&(kx[3] - (FT::one()>>2)).isZero()&&
+                (kx[0] - (FT::one()>>4)).isZero()&&(kx[4] - (FT::one()>>4)).isZero())
+                hlineSmoothFunc = hlineSmooth5N14641;
+            else
+                hlineSmoothFunc = hlineSmooth5N;
+        }
+        else
+            hlineSmoothFunc = hlineSmooth;
+        if (kylen == 1)
+        {
+            if ((ky[0] - FT::one()).isZero())
+                vlineSmoothFunc = vlineSmooth1N1;
+            else
+                vlineSmoothFunc = vlineSmooth1N;
+        }
+        else if (kylen == 3)
+        {
+            if ((ky[0] - (FT::one() >> 2)).isZero() && (ky[1] - (FT::one() >> 1)).isZero() && (ky[2] - (FT::one() >> 2)).isZero())
+                vlineSmoothFunc = vlineSmooth3N121;
+            else
+                vlineSmoothFunc = vlineSmooth3N;
+        }
+        else if (kylen == 5)
+        {
+            if ((ky[2] - (FT::one() * 3 >> 3)).isZero() &&
+                (ky[1] - (FT::one() >> 2)).isZero() && (ky[3] - (FT::one() >> 2)).isZero() &&
+                (ky[0] - (FT::one() >> 4)).isZero() && (ky[4] - (FT::one() >> 4)).isZero())
+                vlineSmoothFunc = vlineSmooth5N14641;
+            else
+                vlineSmoothFunc = vlineSmooth5N;
+        }
+        else
+            vlineSmoothFunc = vlineSmooth;
+    }
+    virtual void operator() (const Range& range) const
+    {
+        AutoBuffer<FT> _buf(width*cn*kylen);
+        FT* buf = _buf;
+        AutoBuffer<FT*> _ptrs(kylen*2);
+        FT** ptrs = _ptrs;
+
+        if (kylen == 1)
+        {
+            ptrs[0] = buf;
+            for (int i = range.start; i < range.end; i++)
+            {
+                hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[0], width, borderType);
+                vlineSmoothFunc(ptrs, ky, kylen, dst + i * dst_stride, width*cn);
+            }
+        }
+        else if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
+        {
+            int pre_shift = kylen / 2;
+            int post_shift = kylen - pre_shift - 1;
+            // First line evaluation
+            int idst = range.start;
+            int ifrom = max(0, idst - pre_shift);
+            int ito = idst + post_shift + 1;
+            int i = ifrom;
+            int bufline = 0;
+            for (; i < min(ito, height); i++, bufline++)
+            {
+                ptrs[bufline+kylen] = ptrs[bufline] = buf + bufline * width*cn;
+                hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType);
+            }
+            for (; i < ito; i++, bufline++)
+            {
+                int src_idx = borderInterpolate(i, height, borderType);
+                if (src_idx < ifrom)
+                {
+                    ptrs[bufline + kylen] = ptrs[bufline] = buf + bufline * width*cn;
+                    hlineSmoothFunc(src + src_idx * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType);
+                }
+                else
+                {
+                    ptrs[bufline + kylen] = ptrs[bufline] = ptrs[src_idx - ifrom];
+                }
+            }
+            for (int j = idst - pre_shift; j < 0; j++)
+            {
+                int src_idx = borderInterpolate(j, height, borderType);
+                if (src_idx >= ito)
+                {
+                    ptrs[2*kylen + j] = ptrs[kylen + j] = buf + (kylen + j) * width*cn;
+                    hlineSmoothFunc(src + src_idx * src_stride, cn, kx, kxlen, ptrs[kylen + j], width, borderType);
+                }
+                else
+                {
+                    ptrs[2*kylen + j] = ptrs[kylen + j] = ptrs[src_idx];
+                }
+            }
+            vlineSmoothFunc(ptrs + bufline, ky, kylen, dst + idst*dst_stride, width*cn); idst++;
+
+            // border mode dependent part evaluation
+            // i points to last src row to evaluate in convolution
+            bufline %= kylen; ito = min(height, range.end + post_shift);
+            for (; i < min(kylen, ito); i++, idst++)
+            {
+                ptrs[bufline + kylen] = ptrs[bufline] = buf + bufline * width*cn;
+                hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType);
+                bufline = (bufline + 1) % kylen;
+                vlineSmoothFunc(ptrs + bufline, ky, kylen, dst + idst*dst_stride, width*cn);
+            }
+            // Points inside the border
+            for (; i < ito; i++, idst++)
+            {
+                hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType);
+                bufline = (bufline + 1) % kylen;
+                vlineSmoothFunc(ptrs + bufline, ky, kylen, dst + idst*dst_stride, width*cn);
+            }
+            // Points that could fall below border
+            for (; i < range.end + post_shift; i++, idst++)
+            {
+                int src_idx = borderInterpolate(i, height, borderType);
+                if ((i - src_idx) > kylen)
+                    hlineSmoothFunc(src + src_idx * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType);
+                else
+                    ptrs[bufline + kylen] = ptrs[bufline] = ptrs[(bufline + kylen - (i - src_idx)) % kylen];
+                bufline = (bufline + 1) % kylen;
+                vlineSmoothFunc(ptrs + bufline, ky, kylen, dst + idst*dst_stride, width*cn);
+            }
+        }
+        else
+        {
+            int pre_shift = kylen / 2;
+            int post_shift = kylen - pre_shift - 1;
+            // First line evaluation
+            int idst = range.start;
+            int ifrom = idst - pre_shift;
+            int ito = min(idst + post_shift + 1, height);
+            int i = max(0, ifrom);
+            int bufline = 0;
+            for (; i < ito; i++, bufline++)
+            {
+                ptrs[bufline + kylen] = ptrs[bufline] = buf + bufline * width*cn;
+                hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType);
+            }
+
+            if (bufline == 1)
+                vlineSmooth1N(ptrs, ky - min(ifrom, 0), bufline, dst + idst*dst_stride, width*cn);
+            else if (bufline == 3)
+                vlineSmooth3N(ptrs, ky - min(ifrom, 0), bufline, dst + idst*dst_stride, width*cn);
+            else if (bufline == 5)
+                vlineSmooth5N(ptrs, ky - min(ifrom, 0), bufline, dst + idst*dst_stride, width*cn);
+            else
+                vlineSmooth(ptrs, ky - min(ifrom, 0), bufline, dst + idst*dst_stride, width*cn);
+            idst++;
+
+            // border mode dependent part evaluation
+            // i points to last src row to evaluate in convolution
+            bufline %= kylen; ito = min(height, range.end + post_shift);
+            for (; i < min(kylen, ito); i++, idst++)
+            {
+                ptrs[bufline + kylen] = ptrs[bufline] = buf + bufline * width*cn;
+                hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType);
+                bufline++;
+                if (bufline == 3)
+                    vlineSmooth3N(ptrs, ky + kylen - bufline, i + 1, dst + idst*dst_stride, width*cn);
+                else if (bufline == 5)
+                    vlineSmooth5N(ptrs, ky + kylen - bufline, i + 1, dst + idst*dst_stride, width*cn);
+                else
+                    vlineSmooth(ptrs, ky + kylen - bufline, i + 1, dst + idst*dst_stride, width*cn);
+                bufline %= kylen;
+            }
+            // Points inside the border
+            if (i - max(0, ifrom) >= kylen)
+            {
+                for (; i < ito; i++, idst++)
+                {
+                    hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType);
+                    bufline = (bufline + 1) % kylen;
+                    vlineSmoothFunc(ptrs + bufline, ky, kylen, dst + idst*dst_stride, width*cn);
+                }
+
+                // Points that could fall below border
+                // i points to first src row to evaluate in convolution
+                bufline = (bufline + 1) % kylen;
+                for (i = idst - pre_shift; i < range.end - pre_shift; i++, idst++, bufline++)
+                    if (height - i == 3)
+                        vlineSmooth3N(ptrs + bufline, ky, height - i, dst + idst*dst_stride, width*cn);
+                    else if (height - i == 5)
+                        vlineSmooth5N(ptrs + bufline, ky, height - i, dst + idst*dst_stride, width*cn);
+                    else
+                        vlineSmooth(ptrs + bufline, ky, height - i, dst + idst*dst_stride, width*cn);
+            }
+            else
+            {
+                // i points to first src row to evaluate in convolution
+                for (i = idst - pre_shift; i < min(range.end - pre_shift, 0); i++, idst++)
+                    if (height == 3)
+                        vlineSmooth3N(ptrs, ky - i, height, dst + idst*dst_stride, width*cn);
+                    else if (height == 5)
+                        vlineSmooth5N(ptrs, ky - i, height, dst + idst*dst_stride, width*cn);
+                    else
+                        vlineSmooth(ptrs, ky - i, height, dst + idst*dst_stride, width*cn);
+                for (; i < range.end - pre_shift; i++, idst++)
+                    if (height - i == 3)
+                        vlineSmooth3N(ptrs + i - max(0, ifrom), ky, height - i, dst + idst*dst_stride, width*cn);
+                    else if (height - i == 5)
+                        vlineSmooth5N(ptrs + i - max(0, ifrom), ky, height - i, dst + idst*dst_stride, width*cn);
+                    else
+                        vlineSmooth(ptrs + i - max(0, ifrom), ky, height - i, dst + idst*dst_stride, width*cn);
+            }
+        }
+    }
+private:
+    const ET* src;
+    ET* dst;
+    size_t src_stride, dst_stride;
+    int width, height, cn;
+    const FT *kx, *ky;
+    int kxlen, kylen;
+    int borderType;
+    void(*hlineSmoothFunc)(const ET* src, int cn, const FT* m, int n, FT* dst, int len, int borderType);
+    void(*vlineSmoothFunc)(const FT* const * src, const FT* m, int n, ET* dst, int len);
+
+    fixedSmoothInvoker(const fixedSmoothInvoker&);
+    fixedSmoothInvoker& operator=(const fixedSmoothInvoker&);
+};
+
+static void getGaussianKernel(int n, double sigma, int ktype, Mat& res) { res = getGaussianKernel(n, sigma, ktype); }
+template <typename T> static void getGaussianKernel(int n, double sigma, int, std::vector<T>& res) { res = getFixedpointGaussianKernel<T>(n, sigma); }
+
+template <typename T>
+static void createGaussianKernels( T & kx, T & ky, int type, Size &ksize,
                                    double sigma1, double sigma2 )
 {
     int depth = CV_MAT_DEPTH(type);
@@ -1782,11 +3188,11 @@ static void createGaussianKernels( Mat & kx, Mat & ky, int type, Size & ksize,
     sigma1 = std::max( sigma1, 0. );
     sigma2 = std::max( sigma2, 0. );
 
-    kx = getGaussianKernel( ksize.width, sigma1, std::max(depth, CV_32F) );
+    getGaussianKernel( ksize.width, sigma1, std::max(depth, CV_32F), kx );
     if( ksize.height == ksize.width && std::abs(sigma1 - sigma2) < DBL_EPSILON )
         ky = kx;
     else
-        ky = getGaussianKernel( ksize.height, sigma2, std::max(depth, CV_32F) );
+        getGaussianKernel( ksize.height, sigma2, std::max(depth, CV_32F), ky );
 }
 
 }
@@ -2082,7 +3488,8 @@ void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize,
     Size size = _src.size();
     _dst.create( size, type );
 
-    if( borderType != BORDER_CONSTANT && (borderType & BORDER_ISOLATED) != 0 )
+    if( (borderType & ~BORDER_ISOLATED) != BORDER_CONSTANT &&
+        ((borderType & BORDER_ISOLATED) != 0 || !_src.getMat().isSubmatrix()) )
     {
         if( size.height == 1 )
             ksize.height = 1;
@@ -2104,6 +3511,20 @@ void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize,
 
     int sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
 
+    if(sdepth == CV_8U && ((borderType & BORDER_ISOLATED) || !_src.getMat().isSubmatrix()))
+    {
+        std::vector<ufixedpoint16> fkx, fky;
+        createGaussianKernels(fkx, fky, type, ksize, sigma1, sigma2);
+        Mat src = _src.getMat();
+        Mat dst = _dst.getMat();
+        if (src.data == dst.data)
+            src = src.clone();
+        fixedSmoothInvoker<uint8_t, ufixedpoint16> invoker(src.ptr<uint8_t>(), src.step1(), dst.ptr<uint8_t>(), dst.step1(), dst.cols, dst.rows, dst.channels(), &fkx[0], (int)fkx.size(), &fky[0], (int)fky.size(), borderType & ~BORDER_ISOLATED);
+        parallel_for_(Range(0, dst.rows), invoker, dst.total() * cn / (double)(1 << 13));
+        return;
+    }
+
+
     Mat kx, ky;
     createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2);
 
diff --git a/modules/imgproc/test/test_smooth_bitexact.cpp b/modules/imgproc/test/test_smooth_bitexact.cpp
new file mode 100644 (file)
index 0000000..449cea3
--- /dev/null
@@ -0,0 +1,167 @@
+// This file is part of OpenCV project.
+// It is subject to the license terms in the LICENSE file found in the top-level directory
+// of this distribution and at http://opencv.org/license.html.
+
+#include "test_precomp.hpp"
+
+#include <vector>
+
+using namespace cv;
+using namespace std;
+
+namespace
+{
+    static const int fixedShiftU8 = 8;
+    static const int64_t fixedOne = (1L << fixedShiftU8);
+
+    int64_t v[][9] = {
+        { fixedOne }, // size 1, sigma 0
+        { fixedOne >> 2, fixedOne >> 1, fixedOne >> 2 }, // size 3, sigma 0
+        { fixedOne >> 4, fixedOne >> 2, 6 * (fixedOne >> 4), fixedOne >> 2, fixedOne >> 4 }, // size 5, sigma 0
+        { fixedOne >> 5, 7 * (fixedOne >> 6), 7 * (fixedOne >> 5), 9 * (fixedOne >> 5), 7 * (fixedOne >> 5), 7 * (fixedOne >> 6), fixedOne >> 5 }, // size 7, sigma 0
+        { 4, 13, 30, 51, 61, 51, 30, 13, 4 }, // size 9, sigma 0
+        { 81, 95, 81 }, // size 3, sigma 1.75
+        { 65, 125, 65 }, // size 3, sigma 0.875
+        { 0, 7, 242, 7, 0 }, // size 5, sigma 0.375
+        { 4, 56, 136, 56, 4 } // size 5, sigma 0.75
+    };
+
+    template <typename T, int fixedShift>
+    T eval(Mat src, vector<int64_t> kernelx, vector<int64_t> kernely)
+    {
+        static const int64_t fixedRound = ((1LL << (fixedShift * 2)) >> 1);
+        int64_t val = 0;
+        for (size_t j = 0; j < kernely.size(); j++)
+        {
+            int64_t lineval = 0;
+            for (size_t i = 0; i < kernelx.size(); i++)
+                lineval += src.at<T>((int)j, (int)i) * kernelx[i];
+            val += lineval * kernely[j];
+        }
+        return saturate_cast<T>((val + fixedRound) >> (fixedShift * 2));
+    }
+}
+
+TEST(GaussianBlur_Bitexact, Linear8U)
+{
+    struct testmode
+    {
+        int type;
+        Size sz;
+        Size kernel;
+        double sigma_x;
+        double sigma_y;
+        vector<int64_t> kernel_x;
+        vector<int64_t> kernel_y;
+    } modes[] = {
+        { CV_8UC1, Size(   1,   1), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
+        { CV_8UC1, Size(   2,   2), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
+        { CV_8UC1, Size(   3,   1), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
+        { CV_8UC1, Size(   1,   3), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
+        { CV_8UC1, Size(   3,   3), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
+        { CV_8UC1, Size(   3,   3), Size(5, 5), 0, 0, vector<int64_t>(v[2], v[2]+5), vector<int64_t>(v[2], v[2]+5) },
+        { CV_8UC1, Size(   3,   3), Size(7, 7), 0, 0, vector<int64_t>(v[3], v[3]+7), vector<int64_t>(v[3], v[3]+7) },
+        { CV_8UC1, Size(   5,   5), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
+        { CV_8UC1, Size(   5,   5), Size(5, 5), 0, 0, vector<int64_t>(v[2], v[2]+5), vector<int64_t>(v[2], v[2]+5) },
+        { CV_8UC1, Size(   3,   5), Size(5, 5), 0, 0, vector<int64_t>(v[2], v[2]+5), vector<int64_t>(v[2], v[2]+5) },
+        { CV_8UC1, Size(   5,   5), Size(5, 5), 0, 0, vector<int64_t>(v[2], v[2]+5), vector<int64_t>(v[2], v[2]+5) },
+        { CV_8UC1, Size(   5,   5), Size(7, 7), 0, 0, vector<int64_t>(v[3], v[3]+7), vector<int64_t>(v[3], v[3]+7) },
+        { CV_8UC1, Size(   7,   7), Size(7, 7), 0, 0, vector<int64_t>(v[3], v[3]+7), vector<int64_t>(v[3], v[3]+7) },
+        { CV_8UC1, Size( 256, 128), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
+        { CV_8UC2, Size( 256, 128), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
+        { CV_8UC3, Size( 256, 128), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
+        { CV_8UC4, Size( 256, 128), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
+        { CV_8UC1, Size( 256, 128), Size(5, 5), 0, 0, vector<int64_t>(v[2], v[2]+5), vector<int64_t>(v[2], v[2]+5) },
+        { CV_8UC1, Size( 256, 128), Size(7, 7), 0, 0, vector<int64_t>(v[3], v[3]+7), vector<int64_t>(v[3], v[3]+7) },
+        { CV_8UC1, Size( 256, 128), Size(9, 9), 0, 0, vector<int64_t>(v[4], v[4]+9), vector<int64_t>(v[4], v[4]+9) },
+        { CV_8UC1, Size( 256, 128), Size(3, 3), 1.75, 0.875, vector<int64_t>(v[5], v[5]+3), vector<int64_t>(v[6], v[6]+3) },
+        { CV_8UC2, Size( 256, 128), Size(3, 3), 1.75, 0.875, vector<int64_t>(v[5], v[5]+3), vector<int64_t>(v[6], v[6]+3) },
+        { CV_8UC3, Size( 256, 128), Size(3, 3), 1.75, 0.875, vector<int64_t>(v[5], v[5]+3), vector<int64_t>(v[6], v[6]+3) },
+        { CV_8UC4, Size( 256, 128), Size(3, 3), 1.75, 0.875, vector<int64_t>(v[5], v[5]+3), vector<int64_t>(v[6], v[6]+3) },
+        { CV_8UC1, Size( 256, 128), Size(5, 5), 0.375, 0.75, vector<int64_t>(v[7], v[7]+5), vector<int64_t>(v[8], v[8]+5) }
+    };
+
+    int bordermodes[] = {
+        BORDER_CONSTANT | BORDER_ISOLATED,
+        BORDER_REPLICATE | BORDER_ISOLATED,
+        BORDER_REFLECT | BORDER_ISOLATED,
+        BORDER_WRAP | BORDER_ISOLATED,
+        BORDER_REFLECT_101 | BORDER_ISOLATED
+//        BORDER_CONSTANT,
+//        BORDER_REPLICATE,
+//        BORDER_REFLECT,
+//        BORDER_WRAP,
+//        BORDER_REFLECT_101
+    };
+
+    for (int modeind = 0, _modecnt = sizeof(modes) / sizeof(modes[0]); modeind < _modecnt; ++modeind)
+    {
+        int type = modes[modeind].type, depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
+        int dcols = modes[modeind].sz.width, drows = modes[modeind].sz.height;
+        Size kernel = modes[modeind].kernel;
+
+        int rows = drows + 20, cols = dcols + 20;
+        Mat src(rows, cols, type), refdst(drows, dcols, type), dst;
+        for (int j = 0; j < rows; j++)
+        {
+            uint8_t* line = src.ptr(j);
+            for (int i = 0; i < cols; i++)
+                for (int c = 0; c < cn; c++)
+                {
+                    RNG rnd(0x123456789abcdefULL);
+                    double val = j < rows / 2 ? (i < cols / 2 ? ((sin((i + 1)*CV_PI / 256.)*sin((j + 1)*CV_PI / 256.)*sin((cn + 4)*CV_PI / 8.) + 1.)*128.) :
+                        (((i / 128 + j / 128) % 2) * 250 + (j / 128) % 2)) :
+                        (i < cols / 2 ? ((i / 128) * (85 - j / 256 * 40) * ((j / 128) % 2) + (7 - i / 128) * (85 - j / 256 * 40) * ((j / 128 + 1) % 2)) :
+                        ((uchar)rnd));
+                    if (depth == CV_8U)
+                        line[i*cn + c] = (uint8_t)val;
+                    else if (depth == CV_16U)
+                        ((uint16_t*)line)[i*cn + c] = (uint16_t)val;
+                    else if (depth == CV_16S)
+                        ((int16_t*)line)[i*cn + c] = (int16_t)val;
+                    else if (depth == CV_32S)
+                        ((int32_t*)line)[i*cn + c] = (int32_t)val;
+                    else
+                        CV_Assert(0);
+                }
+        }
+        Mat src_roi = src(Rect(10, 10, dcols, drows));
+
+
+        for (int borderind = 0, _bordercnt = sizeof(bordermodes) / sizeof(bordermodes[0]); borderind < _bordercnt; ++borderind)
+        {
+            Mat src_border;
+            copyMakeBorder(src_roi, src_border, kernel.height / 2, kernel.height / 2, kernel.width / 2, kernel.width / 2, bordermodes[borderind]);
+            for (int c = 0; c < src_border.channels(); c++)
+            {
+                int fromTo[2] = { c, 0 };
+                int toFrom[2] = { 0, c };
+                Mat src_chan(src_border.size(), CV_MAKETYPE(src_border.depth(),1));
+                Mat dst_chan(refdst.size(), CV_MAKETYPE(refdst.depth(), 1));
+                mixChannels(src_border, src_chan, fromTo, 1);
+                for (int j = 0; j < drows; j++)
+                    for (int i = 0; i < dcols; i++)
+                    {
+                        if (depth == CV_8U)
+                            dst_chan.at<uint8_t>(j, i) = eval<uint8_t, fixedShiftU8>(src_chan(Rect(i,j,kernel.width,kernel.height)), modes[modeind].kernel_x, modes[modeind].kernel_y);
+                        else if (depth == CV_16U)
+                            dst_chan.at<uint16_t>(j, i) = eval<uint16_t, fixedShiftU8>(src_chan(Rect(i, j, kernel.width, kernel.height)), modes[modeind].kernel_x, modes[modeind].kernel_y);
+                        else if (depth == CV_16S)
+                            dst_chan.at<int16_t>(j, i) = eval<int16_t, fixedShiftU8>(src_chan(Rect(i, j, kernel.width, kernel.height)), modes[modeind].kernel_x, modes[modeind].kernel_y);
+                        else if (depth == CV_32S)
+                            dst_chan.at<int32_t>(j, i) = eval<int32_t, fixedShiftU8>(src_chan(Rect(i, j, kernel.width, kernel.height)), modes[modeind].kernel_x, modes[modeind].kernel_y);
+                        else
+                            CV_Assert(0);
+                    }
+                mixChannels(dst_chan, refdst, toFrom, 1);
+            }
+
+            GaussianBlur(src_roi, dst, kernel, modes[modeind].sigma_x, modes[modeind].sigma_y, bordermodes[borderind]);
+
+            EXPECT_GE(0, cvtest::norm(refdst, dst, cv::NORM_L1))
+                << "GaussianBlur " << cn << "-chan mat " << drows << "x" << dcols << " by kernel " << kernel << " sigma(" << modes[modeind].sigma_x << ";" << modes[modeind].sigma_y << ") failed with max diff " << cvtest::norm(refdst, dst, cv::NORM_INF);
+        }
+    }
+}
+
+///* End of file. */