--- /dev/null
+/*
+ * Copyright © 2017 Connor Abbott
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include "nir_serialize.h"
+#include "nir_control_flow.h"
+#include "util/u_dynarray.h"
+
+typedef struct {
+ size_t blob_offset;
+ nir_ssa_def *src;
+ nir_block *block;
+} write_phi_fixup;
+
+typedef struct {
+ const nir_shader *nir;
+
+ struct blob *blob;
+
+ /* maps pointer to index */
+ struct hash_table *remap_table;
+
+ /* the next index to assign to a NIR in-memory object */
+ uintptr_t next_idx;
+
+ /* Array of write_phi_fixup structs representing phi sources that need to
+ * be resolved in the second pass.
+ */
+ struct util_dynarray phi_fixups;
+} write_ctx;
+
+typedef struct {
+ nir_shader *nir;
+
+ struct blob_reader *blob;
+
+ /* the next index to assign to a NIR in-memory object */
+ uintptr_t next_idx;
+
+ /* The length of the index -> object table */
+ uintptr_t idx_table_len;
+
+ /* map from index to deserialized pointer */
+ void **idx_table;
+
+ /* List of phi sources. */
+ struct list_head phi_srcs;
+
+} read_ctx;
+
+static void
+write_add_object(write_ctx *ctx, const void *obj)
+{
+ uintptr_t index = ctx->next_idx++;
+ _mesa_hash_table_insert(ctx->remap_table, obj, (void *) index);
+}
+
+static uintptr_t
+write_lookup_object(write_ctx *ctx, const void *obj)
+{
+ struct hash_entry *entry = _mesa_hash_table_search(ctx->remap_table, obj);
+ assert(entry);
+ return (uintptr_t) entry->data;
+}
+
+static void
+write_object(write_ctx *ctx, const void *obj)
+{
+ blob_write_intptr(ctx->blob, write_lookup_object(ctx, obj));
+}
+
+static void
+read_add_object(read_ctx *ctx, void *obj)
+{
+ assert(ctx->next_idx < ctx->idx_table_len);
+ ctx->idx_table[ctx->next_idx++] = obj;
+}
+
+static void *
+read_lookup_object(read_ctx *ctx, uintptr_t idx)
+{
+ assert(idx < ctx->idx_table_len);
+ return ctx->idx_table[idx];
+}
+
+static void *
+read_object(read_ctx *ctx)
+{
+ return read_lookup_object(ctx, blob_read_intptr(ctx->blob));
+}
+
+static void
+write_constant(write_ctx *ctx, const nir_constant *c)
+{
+ blob_write_bytes(ctx->blob, c->values, sizeof(c->values));
+ blob_write_uint32(ctx->blob, c->num_elements);
+ for (unsigned i = 0; i < c->num_elements; i++)
+ write_constant(ctx, c->elements[i]);
+}
+
+static nir_constant *
+read_constant(read_ctx *ctx, nir_variable *nvar)
+{
+ nir_constant *c = ralloc(nvar, nir_constant);
+
+ blob_copy_bytes(ctx->blob, (uint8_t *)c->values, sizeof(c->values));
+ c->num_elements = blob_read_uint32(ctx->blob);
+ c->elements = ralloc_array(ctx->nir, nir_constant *, c->num_elements);
+ for (unsigned i = 0; i < c->num_elements; i++)
+ c->elements[i] = read_constant(ctx, nvar);
+
+ return c;
+}
+
+static void
+write_variable(write_ctx *ctx, const nir_variable *var)
+{
+ write_add_object(ctx, var);
+ encode_type_to_blob(ctx->blob, var->type);
+ blob_write_uint32(ctx->blob, !!(var->name));
+ blob_write_string(ctx->blob, var->name);
+ blob_write_bytes(ctx->blob, (uint8_t *) &var->data, sizeof(var->data));
+ blob_write_uint32(ctx->blob, var->num_state_slots);
+ blob_write_bytes(ctx->blob, (uint8_t *) var->state_slots,
+ var->num_state_slots * sizeof(nir_state_slot));
+ blob_write_uint32(ctx->blob, !!(var->constant_initializer));
+ if (var->constant_initializer)
+ write_constant(ctx, var->constant_initializer);
+ blob_write_uint32(ctx->blob, !!(var->interface_type));
+ if (var->interface_type)
+ encode_type_to_blob(ctx->blob, var->interface_type);
+}
+
+static nir_variable *
+read_variable(read_ctx *ctx)
+{
+ nir_variable *var = rzalloc(ctx->nir, nir_variable);
+ read_add_object(ctx, var);
+
+ var->type = decode_type_from_blob(ctx->blob);
+ bool has_name = blob_read_uint32(ctx->blob);
+ if (has_name) {
+ const char *name = blob_read_string(ctx->blob);
+ var->name = ralloc_strdup(var, name);
+ } else {
+ var->name = NULL;
+ }
+ blob_copy_bytes(ctx->blob, (uint8_t *) &var->data, sizeof(var->data));
+ var->num_state_slots = blob_read_uint32(ctx->blob);
+ var->state_slots = ralloc_array(var, nir_state_slot, var->num_state_slots);
+ blob_copy_bytes(ctx->blob, (uint8_t *) var->state_slots,
+ var->num_state_slots * sizeof(nir_state_slot));
+ bool has_const_initializer = blob_read_uint32(ctx->blob);
+ if (has_const_initializer)
+ var->constant_initializer = read_constant(ctx, var);
+ else
+ var->constant_initializer = NULL;
+ bool has_interface_type = blob_read_uint32(ctx->blob);
+ if (has_interface_type)
+ var->interface_type = decode_type_from_blob(ctx->blob);
+ else
+ var->interface_type = NULL;
+
+ return var;
+}
+
+static void
+write_var_list(write_ctx *ctx, const struct exec_list *src)
+{
+ blob_write_uint32(ctx->blob, exec_list_length(src));
+ foreach_list_typed(nir_variable, var, node, src) {
+ write_variable(ctx, var);
+ }
+}
+
+static void
+read_var_list(read_ctx *ctx, struct exec_list *dst)
+{
+ exec_list_make_empty(dst);
+ unsigned num_vars = blob_read_uint32(ctx->blob);
+ for (unsigned i = 0; i < num_vars; i++) {
+ nir_variable *var = read_variable(ctx);
+ exec_list_push_tail(dst, &var->node);
+ }
+}
+
+static void
+write_register(write_ctx *ctx, const nir_register *reg)
+{
+ write_add_object(ctx, reg);
+ blob_write_uint32(ctx->blob, reg->num_components);
+ blob_write_uint32(ctx->blob, reg->bit_size);
+ blob_write_uint32(ctx->blob, reg->num_array_elems);
+ blob_write_uint32(ctx->blob, reg->index);
+ blob_write_uint32(ctx->blob, !!(reg->name));
+ if (reg->name)
+ blob_write_string(ctx->blob, reg->name);
+ blob_write_uint32(ctx->blob, reg->is_global << 1 | reg->is_packed);
+}
+
+static nir_register *
+read_register(read_ctx *ctx)
+{
+ nir_register *reg = ralloc(ctx->nir, nir_register);
+ read_add_object(ctx, reg);
+ reg->num_components = blob_read_uint32(ctx->blob);
+ reg->bit_size = blob_read_uint32(ctx->blob);
+ reg->num_array_elems = blob_read_uint32(ctx->blob);
+ reg->index = blob_read_uint32(ctx->blob);
+ bool has_name = blob_read_uint32(ctx->blob);
+ if (has_name) {
+ const char *name = blob_read_string(ctx->blob);
+ reg->name = ralloc_strdup(reg, name);
+ } else {
+ reg->name = NULL;
+ }
+ unsigned flags = blob_read_uint32(ctx->blob);
+ reg->is_global = flags & 0x2;
+ reg->is_packed = flags & 0x1;
+
+ list_inithead(®->uses);
+ list_inithead(®->defs);
+ list_inithead(®->if_uses);
+
+ return reg;
+}
+
+static void
+write_reg_list(write_ctx *ctx, const struct exec_list *src)
+{
+ blob_write_uint32(ctx->blob, exec_list_length(src));
+ foreach_list_typed(nir_register, reg, node, src)
+ write_register(ctx, reg);
+}
+
+static void
+read_reg_list(read_ctx *ctx, struct exec_list *dst)
+{
+ exec_list_make_empty(dst);
+ unsigned num_regs = blob_read_uint32(ctx->blob);
+ for (unsigned i = 0; i < num_regs; i++) {
+ nir_register *reg = read_register(ctx);
+ exec_list_push_tail(dst, ®->node);
+ }
+}
+
+static void
+write_src(write_ctx *ctx, const nir_src *src)
+{
+ /* Since sources are very frequent, we try to save some space when storing
+ * them. In particular, we store whether the source is a register and
+ * whether the register has an indirect index in the low two bits. We can
+ * assume that the high two bits of the index are zero, since otherwise our
+ * address space would've been exhausted allocating the remap table!
+ */
+ if (src->is_ssa) {
+ uintptr_t idx = write_lookup_object(ctx, src->ssa) << 2;
+ idx |= 1;
+ blob_write_intptr(ctx->blob, idx);
+ } else {
+ uintptr_t idx = write_lookup_object(ctx, src->reg.reg) << 2;
+ if (src->reg.indirect)
+ idx |= 2;
+ blob_write_intptr(ctx->blob, idx);
+ blob_write_uint32(ctx->blob, src->reg.base_offset);
+ if (src->reg.indirect) {
+ write_src(ctx, src->reg.indirect);
+ }
+ }
+}
+
+static void
+read_src(read_ctx *ctx, nir_src *src, void *mem_ctx)
+{
+ uintptr_t val = blob_read_intptr(ctx->blob);
+ uintptr_t idx = val >> 2;
+ src->is_ssa = val & 0x1;
+ if (src->is_ssa) {
+ src->ssa = read_lookup_object(ctx, idx);
+ } else {
+ bool is_indirect = val & 0x2;
+ src->reg.reg = read_lookup_object(ctx, idx);
+ src->reg.base_offset = blob_read_uint32(ctx->blob);
+ if (is_indirect) {
+ src->reg.indirect = ralloc(mem_ctx, nir_src);
+ read_src(ctx, src->reg.indirect, mem_ctx);
+ } else {
+ src->reg.indirect = NULL;
+ }
+ }
+}
+
+static void
+write_dest(write_ctx *ctx, const nir_dest *dst)
+{
+ uint32_t val = dst->is_ssa;
+ if (dst->is_ssa) {
+ val |= !!(dst->ssa.name) << 1;
+ val |= dst->ssa.num_components << 2;
+ val |= dst->ssa.bit_size << 5;
+ } else {
+ val |= !!(dst->reg.indirect) << 1;
+ }
+ blob_write_uint32(ctx->blob, val);
+ if (dst->is_ssa) {
+ write_add_object(ctx, &dst->ssa);
+ if (dst->ssa.name)
+ blob_write_string(ctx->blob, dst->ssa.name);
+ } else {
+ blob_write_intptr(ctx->blob, write_lookup_object(ctx, dst->reg.reg));
+ blob_write_uint32(ctx->blob, dst->reg.base_offset);
+ if (dst->reg.indirect)
+ write_src(ctx, dst->reg.indirect);
+ }
+}
+
+static void
+read_dest(read_ctx *ctx, nir_dest *dst, nir_instr *instr)
+{
+ uint32_t val = blob_read_uint32(ctx->blob);
+ bool is_ssa = val & 0x1;
+ if (is_ssa) {
+ bool has_name = val & 0x2;
+ unsigned num_components = (val >> 2) & 0x7;
+ unsigned bit_size = val >> 5;
+ char *name = has_name ? blob_read_string(ctx->blob) : NULL;
+ nir_ssa_dest_init(instr, dst, num_components, bit_size, name);
+ read_add_object(ctx, &dst->ssa);
+ } else {
+ bool is_indirect = val & 0x2;
+ dst->reg.reg = read_object(ctx);
+ dst->reg.base_offset = blob_read_uint32(ctx->blob);
+ if (is_indirect) {
+ dst->reg.indirect = ralloc(instr, nir_src);
+ read_src(ctx, dst->reg.indirect, instr);
+ }
+ }
+}
+
+static void
+write_deref_chain(write_ctx *ctx, const nir_deref_var *deref_var)
+{
+ write_object(ctx, deref_var->var);
+
+ uint32_t len = 0;
+ for (const nir_deref *d = deref_var->deref.child; d; d = d->child)
+ len++;
+ blob_write_uint32(ctx->blob, len);
+
+ for (const nir_deref *d = deref_var->deref.child; d; d = d->child) {
+ blob_write_uint32(ctx->blob, d->deref_type);
+ switch (d->deref_type) {
+ case nir_deref_type_array: {
+ const nir_deref_array *deref_array = nir_deref_as_array(d);
+ blob_write_uint32(ctx->blob, deref_array->deref_array_type);
+ blob_write_uint32(ctx->blob, deref_array->base_offset);
+ if (deref_array->deref_array_type == nir_deref_array_type_indirect)
+ write_src(ctx, &deref_array->indirect);
+ break;
+ }
+ case nir_deref_type_struct: {
+ const nir_deref_struct *deref_struct = nir_deref_as_struct(d);
+ blob_write_uint32(ctx->blob, deref_struct->index);
+ break;
+ }
+ case nir_deref_type_var:
+ unreachable("Invalid deref type");
+ }
+
+ encode_type_to_blob(ctx->blob, d->type);
+ }
+}
+
+static nir_deref_var *
+read_deref_chain(read_ctx *ctx, void *mem_ctx)
+{
+ nir_variable *var = read_object(ctx);
+ nir_deref_var *deref_var = nir_deref_var_create(mem_ctx, var);
+
+ uint32_t len = blob_read_uint32(ctx->blob);
+
+ nir_deref *tail = &deref_var->deref;
+ for (uint32_t i = 0; i < len; i++) {
+ nir_deref_type deref_type = blob_read_uint32(ctx->blob);
+ nir_deref *deref = NULL;
+ switch (deref_type) {
+ case nir_deref_type_array: {
+ nir_deref_array *deref_array = nir_deref_array_create(tail);
+ deref_array->deref_array_type = blob_read_uint32(ctx->blob);
+ deref_array->base_offset = blob_read_uint32(ctx->blob);
+ if (deref_array->deref_array_type == nir_deref_array_type_indirect)
+ read_src(ctx, &deref_array->indirect, mem_ctx);
+ deref = &deref_array->deref;
+ break;
+ }
+ case nir_deref_type_struct: {
+ uint32_t index = blob_read_uint32(ctx->blob);
+ nir_deref_struct *deref_struct = nir_deref_struct_create(tail, index);
+ deref = &deref_struct->deref;
+ break;
+ }
+ case nir_deref_type_var:
+ unreachable("Invalid deref type");
+ }
+
+ deref->type = decode_type_from_blob(ctx->blob);
+
+ tail->child = deref;
+ tail = deref;
+ }
+
+ return deref_var;
+}
+
+static void
+write_alu(write_ctx *ctx, const nir_alu_instr *alu)
+{
+ blob_write_uint32(ctx->blob, alu->op);
+ uint32_t flags = alu->exact;
+ flags |= alu->dest.saturate << 1;
+ flags |= alu->dest.write_mask << 2;
+ blob_write_uint32(ctx->blob, flags);
+
+ write_dest(ctx, &alu->dest.dest);
+
+ for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
+ write_src(ctx, &alu->src[i].src);
+ flags = alu->src[i].negate;
+ flags |= alu->src[i].abs << 1;
+ for (unsigned j = 0; j < 4; j++)
+ flags |= alu->src[i].swizzle[j] << (2 + 2 * j);
+ blob_write_uint32(ctx->blob, flags);
+ }
+}
+
+static nir_alu_instr *
+read_alu(read_ctx *ctx)
+{
+ nir_op op = blob_read_uint32(ctx->blob);
+ nir_alu_instr *alu = nir_alu_instr_create(ctx->nir, op);
+
+ uint32_t flags = blob_read_uint32(ctx->blob);
+ alu->exact = flags & 1;
+ alu->dest.saturate = flags & 2;
+ alu->dest.write_mask = flags >> 2;
+
+ read_dest(ctx, &alu->dest.dest, &alu->instr);
+
+ for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++) {
+ read_src(ctx, &alu->src[i].src, &alu->instr);
+ flags = blob_read_uint32(ctx->blob);
+ alu->src[i].negate = flags & 1;
+ alu->src[i].abs = flags & 2;
+ for (unsigned j = 0; j < 4; j++)
+ alu->src[i].swizzle[j] = (flags >> (2 * j + 2)) & 3;
+ }
+
+ return alu;
+}
+
+static void
+write_intrinsic(write_ctx *ctx, const nir_intrinsic_instr *intrin)
+{
+ blob_write_uint32(ctx->blob, intrin->intrinsic);
+
+ unsigned num_variables = nir_intrinsic_infos[intrin->intrinsic].num_variables;
+ unsigned num_srcs = nir_intrinsic_infos[intrin->intrinsic].num_srcs;
+ unsigned num_indices = nir_intrinsic_infos[intrin->intrinsic].num_indices;
+
+ blob_write_uint32(ctx->blob, intrin->num_components);
+
+ if (nir_intrinsic_infos[intrin->intrinsic].has_dest)
+ write_dest(ctx, &intrin->dest);
+
+ for (unsigned i = 0; i < num_variables; i++)
+ write_deref_chain(ctx, intrin->variables[i]);
+
+ for (unsigned i = 0; i < num_srcs; i++)
+ write_src(ctx, &intrin->src[i]);
+
+ for (unsigned i = 0; i < num_indices; i++)
+ blob_write_uint32(ctx->blob, intrin->const_index[i]);
+}
+
+static nir_intrinsic_instr *
+read_intrinsic(read_ctx *ctx)
+{
+ nir_intrinsic_op op = blob_read_uint32(ctx->blob);
+
+ nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(ctx->nir, op);
+
+ unsigned num_variables = nir_intrinsic_infos[op].num_variables;
+ unsigned num_srcs = nir_intrinsic_infos[op].num_srcs;
+ unsigned num_indices = nir_intrinsic_infos[op].num_indices;
+
+ intrin->num_components = blob_read_uint32(ctx->blob);
+
+ if (nir_intrinsic_infos[op].has_dest)
+ read_dest(ctx, &intrin->dest, &intrin->instr);
+
+ for (unsigned i = 0; i < num_variables; i++)
+ intrin->variables[i] = read_deref_chain(ctx, &intrin->instr);
+
+ for (unsigned i = 0; i < num_srcs; i++)
+ read_src(ctx, &intrin->src[i], &intrin->instr);
+
+ for (unsigned i = 0; i < num_indices; i++)
+ intrin->const_index[i] = blob_read_uint32(ctx->blob);
+
+ return intrin;
+}
+
+static void
+write_load_const(write_ctx *ctx, const nir_load_const_instr *lc)
+{
+ uint32_t val = lc->def.num_components;
+ val |= lc->def.bit_size << 3;
+ blob_write_uint32(ctx->blob, val);
+ blob_write_bytes(ctx->blob, (uint8_t *) &lc->value, sizeof(lc->value));
+ write_add_object(ctx, &lc->def);
+}
+
+static nir_load_const_instr *
+read_load_const(read_ctx *ctx)
+{
+ uint32_t val = blob_read_uint32(ctx->blob);
+
+ nir_load_const_instr *lc =
+ nir_load_const_instr_create(ctx->nir, val & 0x7, val >> 3);
+
+ blob_copy_bytes(ctx->blob, (uint8_t *) &lc->value, sizeof(lc->value));
+ read_add_object(ctx, &lc->def);
+ return lc;
+}
+
+static void
+write_ssa_undef(write_ctx *ctx, const nir_ssa_undef_instr *undef)
+{
+ uint32_t val = undef->def.num_components;
+ val |= undef->def.bit_size << 3;
+ blob_write_uint32(ctx->blob, val);
+ write_add_object(ctx, &undef->def);
+}
+
+static nir_ssa_undef_instr *
+read_ssa_undef(read_ctx *ctx)
+{
+ uint32_t val = blob_read_uint32(ctx->blob);
+
+ nir_ssa_undef_instr *undef =
+ nir_ssa_undef_instr_create(ctx->nir, val & 0x7, val >> 3);
+
+ read_add_object(ctx, &undef->def);
+ return undef;
+}
+
+union packed_tex_data {
+ uint32_t u32;
+ struct {
+ enum glsl_sampler_dim sampler_dim:4;
+ nir_alu_type dest_type:8;
+ unsigned coord_components:3;
+ unsigned is_array:1;
+ unsigned is_shadow:1;
+ unsigned is_new_style_shadow:1;
+ unsigned component:2;
+ unsigned has_texture_deref:1;
+ unsigned has_sampler_deref:1;
+ };
+};
+
+static void
+write_tex(write_ctx *ctx, const nir_tex_instr *tex)
+{
+ blob_write_uint32(ctx->blob, tex->num_srcs);
+ blob_write_uint32(ctx->blob, tex->op);
+ blob_write_uint32(ctx->blob, tex->texture_index);
+ blob_write_uint32(ctx->blob, tex->texture_array_size);
+ blob_write_uint32(ctx->blob, tex->sampler_index);
+
+ STATIC_ASSERT(sizeof(union packed_tex_data) == sizeof(uint32_t));
+ union packed_tex_data packed = {
+ .sampler_dim = tex->sampler_dim,
+ .dest_type = tex->dest_type,
+ .coord_components = tex->coord_components,
+ .is_array = tex->is_array,
+ .is_shadow = tex->is_shadow,
+ .is_new_style_shadow = tex->is_new_style_shadow,
+ .component = tex->component,
+ .has_texture_deref = tex->texture != NULL,
+ .has_sampler_deref = tex->sampler != NULL,
+ };
+ blob_write_uint32(ctx->blob, packed.u32);
+
+ write_dest(ctx, &tex->dest);
+ for (unsigned i = 0; i < tex->num_srcs; i++) {
+ blob_write_uint32(ctx->blob, tex->src[i].src_type);
+ write_src(ctx, &tex->src[i].src);
+ }
+
+ if (tex->texture)
+ write_deref_chain(ctx, tex->texture);
+ if (tex->sampler)
+ write_deref_chain(ctx, tex->sampler);
+}
+
+static nir_tex_instr *
+read_tex(read_ctx *ctx)
+{
+ unsigned num_srcs = blob_read_uint32(ctx->blob);
+ nir_tex_instr *tex = nir_tex_instr_create(ctx->nir, num_srcs);
+
+ tex->op = blob_read_uint32(ctx->blob);
+ tex->texture_index = blob_read_uint32(ctx->blob);
+ tex->texture_array_size = blob_read_uint32(ctx->blob);
+ tex->sampler_index = blob_read_uint32(ctx->blob);
+
+ union packed_tex_data packed;
+ packed.u32 = blob_read_uint32(ctx->blob);
+ tex->sampler_dim = packed.sampler_dim;
+ tex->dest_type = packed.dest_type;
+ tex->coord_components = packed.coord_components;
+ tex->is_array = packed.is_array;
+ tex->is_shadow = packed.is_shadow;
+ tex->is_new_style_shadow = packed.is_new_style_shadow;
+ tex->component = packed.component;
+
+ read_dest(ctx, &tex->dest, &tex->instr);
+ for (unsigned i = 0; i < tex->num_srcs; i++) {
+ tex->src[i].src_type = blob_read_uint32(ctx->blob);
+ read_src(ctx, &tex->src[i].src, &tex->instr);
+ }
+
+ tex->texture = packed.has_texture_deref ?
+ read_deref_chain(ctx, &tex->instr) : NULL;
+ tex->sampler = packed.has_sampler_deref ?
+ read_deref_chain(ctx, &tex->instr) : NULL;
+
+ return tex;
+}
+
+static void
+write_phi(write_ctx *ctx, const nir_phi_instr *phi)
+{
+ /* Phi nodes are special, since they may reference SSA definitions and
+ * basic blocks that don't exist yet. We leave two empty uintptr_t's here,
+ * and then store enough information so that a later fixup pass can fill
+ * them in correctly.
+ */
+ write_dest(ctx, &phi->dest);
+
+ blob_write_uint32(ctx->blob, exec_list_length(&phi->srcs));
+
+ nir_foreach_phi_src(src, phi) {
+ assert(src->src.is_ssa);
+ size_t blob_offset = blob_reserve_intptr(ctx->blob);
+ MAYBE_UNUSED size_t blob_offset2 = blob_reserve_intptr(ctx->blob);
+ assert(blob_offset + sizeof(uintptr_t) == blob_offset2);
+ write_phi_fixup fixup = {
+ .blob_offset = blob_offset,
+ .src = src->src.ssa,
+ .block = src->pred,
+ };
+ util_dynarray_append(&ctx->phi_fixups, write_phi_fixup, fixup);
+ }
+}
+
+static void
+write_fixup_phis(write_ctx *ctx)
+{
+ util_dynarray_foreach(&ctx->phi_fixups, write_phi_fixup, fixup) {
+ uintptr_t *blob_ptr = (uintptr_t *)(ctx->blob->data + fixup->blob_offset);
+ blob_ptr[0] = write_lookup_object(ctx, fixup->src);
+ blob_ptr[1] = write_lookup_object(ctx, fixup->block);
+ }
+
+ util_dynarray_clear(&ctx->phi_fixups);
+}
+
+static nir_phi_instr *
+read_phi(read_ctx *ctx, nir_block *blk)
+{
+ nir_phi_instr *phi = nir_phi_instr_create(ctx->nir);
+
+ read_dest(ctx, &phi->dest, &phi->instr);
+
+ unsigned num_srcs = blob_read_uint32(ctx->blob);
+
+ /* For similar reasons as before, we just store the index directly into the
+ * pointer, and let a later pass resolve the phi sources.
+ *
+ * In order to ensure that the copied sources (which are just the indices
+ * from the blob for now) don't get inserted into the old shader's use-def
+ * lists, we have to add the phi instruction *before* we set up its
+ * sources.
+ */
+ nir_instr_insert_after_block(blk, &phi->instr);
+
+ for (unsigned i = 0; i < num_srcs; i++) {
+ nir_phi_src *src = ralloc(phi, nir_phi_src);
+
+ src->src.is_ssa = true;
+ src->src.ssa = (nir_ssa_def *) blob_read_intptr(ctx->blob);
+ src->pred = (nir_block *) blob_read_intptr(ctx->blob);
+
+ /* Since we're not letting nir_insert_instr handle use/def stuff for us,
+ * we have to set the parent_instr manually. It doesn't really matter
+ * when we do it, so we might as well do it here.
+ */
+ src->src.parent_instr = &phi->instr;
+
+ /* Stash it in the list of phi sources. We'll walk this list and fix up
+ * sources at the very end of read_function_impl.
+ */
+ list_add(&src->src.use_link, &ctx->phi_srcs);
+
+ exec_list_push_tail(&phi->srcs, &src->node);
+ }
+
+ return phi;
+}
+
+static void
+read_fixup_phis(read_ctx *ctx)
+{
+ list_for_each_entry_safe(nir_phi_src, src, &ctx->phi_srcs, src.use_link) {
+ src->pred = read_lookup_object(ctx, (uintptr_t)src->pred);
+ src->src.ssa = read_lookup_object(ctx, (uintptr_t)src->src.ssa);
+
+ /* Remove from this list */
+ list_del(&src->src.use_link);
+
+ list_addtail(&src->src.use_link, &src->src.ssa->uses);
+ }
+ assert(list_empty(&ctx->phi_srcs));
+}
+
+static void
+write_jump(write_ctx *ctx, const nir_jump_instr *jmp)
+{
+ blob_write_uint32(ctx->blob, jmp->type);
+}
+
+static nir_jump_instr *
+read_jump(read_ctx *ctx)
+{
+ nir_jump_type type = blob_read_uint32(ctx->blob);
+ nir_jump_instr *jmp = nir_jump_instr_create(ctx->nir, type);
+ return jmp;
+}
+
+static void
+write_call(write_ctx *ctx, const nir_call_instr *call)
+{
+ blob_write_intptr(ctx->blob, write_lookup_object(ctx, call->callee));
+
+ for (unsigned i = 0; i < call->num_params; i++)
+ write_deref_chain(ctx, call->params[i]);
+
+ write_deref_chain(ctx, call->return_deref);
+}
+
+static nir_call_instr *
+read_call(read_ctx *ctx)
+{
+ nir_function *callee = read_object(ctx);
+ nir_call_instr *call = nir_call_instr_create(ctx->nir, callee);
+
+ for (unsigned i = 0; i < call->num_params; i++)
+ call->params[i] = read_deref_chain(ctx, &call->instr);
+
+ call->return_deref = read_deref_chain(ctx, &call->instr);
+
+ return call;
+}
+
+static void
+write_instr(write_ctx *ctx, const nir_instr *instr)
+{
+ blob_write_uint32(ctx->blob, instr->type);
+ switch (instr->type) {
+ case nir_instr_type_alu:
+ write_alu(ctx, nir_instr_as_alu(instr));
+ break;
+ case nir_instr_type_intrinsic:
+ write_intrinsic(ctx, nir_instr_as_intrinsic(instr));
+ break;
+ case nir_instr_type_load_const:
+ write_load_const(ctx, nir_instr_as_load_const(instr));
+ break;
+ case nir_instr_type_ssa_undef:
+ write_ssa_undef(ctx, nir_instr_as_ssa_undef(instr));
+ break;
+ case nir_instr_type_tex:
+ write_tex(ctx, nir_instr_as_tex(instr));
+ break;
+ case nir_instr_type_phi:
+ write_phi(ctx, nir_instr_as_phi(instr));
+ break;
+ case nir_instr_type_jump:
+ write_jump(ctx, nir_instr_as_jump(instr));
+ break;
+ case nir_instr_type_call:
+ write_call(ctx, nir_instr_as_call(instr));
+ break;
+ case nir_instr_type_parallel_copy:
+ unreachable("Cannot write parallel copies");
+ default:
+ unreachable("bad instr type");
+ }
+}
+
+static void
+read_instr(read_ctx *ctx, nir_block *block)
+{
+ nir_instr_type type = blob_read_uint32(ctx->blob);
+ nir_instr *instr;
+ switch (type) {
+ case nir_instr_type_alu:
+ instr = &read_alu(ctx)->instr;
+ break;
+ case nir_instr_type_intrinsic:
+ instr = &read_intrinsic(ctx)->instr;
+ break;
+ case nir_instr_type_load_const:
+ instr = &read_load_const(ctx)->instr;
+ break;
+ case nir_instr_type_ssa_undef:
+ instr = &read_ssa_undef(ctx)->instr;
+ break;
+ case nir_instr_type_tex:
+ instr = &read_tex(ctx)->instr;
+ break;
+ case nir_instr_type_phi:
+ /* Phi instructions are a bit of a special case when reading because we
+ * don't want inserting the instruction to automatically handle use/defs
+ * for us. Instead, we need to wait until all the blocks/instructions
+ * are read so that we can set their sources up.
+ */
+ read_phi(ctx, block);
+ return;
+ case nir_instr_type_jump:
+ instr = &read_jump(ctx)->instr;
+ break;
+ case nir_instr_type_call:
+ instr = &read_call(ctx)->instr;
+ break;
+ case nir_instr_type_parallel_copy:
+ unreachable("Cannot read parallel copies");
+ default:
+ unreachable("bad instr type");
+ }
+
+ nir_instr_insert_after_block(block, instr);
+}
+
+static void
+write_block(write_ctx *ctx, const nir_block *block)
+{
+ write_add_object(ctx, block);
+ blob_write_uint32(ctx->blob, exec_list_length(&block->instr_list));
+ nir_foreach_instr(instr, block)
+ write_instr(ctx, instr);
+}
+
+static void
+read_block(read_ctx *ctx, struct exec_list *cf_list)
+{
+ /* Don't actually create a new block. Just use the one from the tail of
+ * the list. NIR guarantees that the tail of the list is a block and that
+ * no two blocks are side-by-side in the IR; It should be empty.
+ */
+ nir_block *block =
+ exec_node_data(nir_block, exec_list_get_tail(cf_list), cf_node.node);
+
+ read_add_object(ctx, block);
+ unsigned num_instrs = blob_read_uint32(ctx->blob);
+ for (unsigned i = 0; i < num_instrs; i++) {
+ read_instr(ctx, block);
+ }
+}
+
+static void
+write_cf_list(write_ctx *ctx, const struct exec_list *cf_list);
+
+static void
+read_cf_list(read_ctx *ctx, struct exec_list *cf_list);
+
+static void
+write_if(write_ctx *ctx, nir_if *nif)
+{
+ write_src(ctx, &nif->condition);
+
+ write_cf_list(ctx, &nif->then_list);
+ write_cf_list(ctx, &nif->else_list);
+}
+
+static void
+read_if(read_ctx *ctx, struct exec_list *cf_list)
+{
+ nir_if *nif = nir_if_create(ctx->nir);
+
+ read_src(ctx, &nif->condition, nif);
+
+ nir_cf_node_insert_end(cf_list, &nif->cf_node);
+
+ read_cf_list(ctx, &nif->then_list);
+ read_cf_list(ctx, &nif->else_list);
+}
+
+static void
+write_loop(write_ctx *ctx, nir_loop *loop)
+{
+ write_cf_list(ctx, &loop->body);
+}
+
+static void
+read_loop(read_ctx *ctx, struct exec_list *cf_list)
+{
+ nir_loop *loop = nir_loop_create(ctx->nir);
+
+ nir_cf_node_insert_end(cf_list, &loop->cf_node);
+
+ read_cf_list(ctx, &loop->body);
+}
+
+static void
+write_cf_node(write_ctx *ctx, nir_cf_node *cf)
+{
+ blob_write_uint32(ctx->blob, cf->type);
+
+ switch (cf->type) {
+ case nir_cf_node_block:
+ write_block(ctx, nir_cf_node_as_block(cf));
+ break;
+ case nir_cf_node_if:
+ write_if(ctx, nir_cf_node_as_if(cf));
+ break;
+ case nir_cf_node_loop:
+ write_loop(ctx, nir_cf_node_as_loop(cf));
+ break;
+ default:
+ unreachable("bad cf type");
+ }
+}
+
+static void
+read_cf_node(read_ctx *ctx, struct exec_list *list)
+{
+ nir_cf_node_type type = blob_read_uint32(ctx->blob);
+
+ switch (type) {
+ case nir_cf_node_block:
+ read_block(ctx, list);
+ break;
+ case nir_cf_node_if:
+ read_if(ctx, list);
+ break;
+ case nir_cf_node_loop:
+ read_loop(ctx, list);
+ break;
+ default:
+ unreachable("bad cf type");
+ }
+}
+
+static void
+write_cf_list(write_ctx *ctx, const struct exec_list *cf_list)
+{
+ blob_write_uint32(ctx->blob, exec_list_length(cf_list));
+ foreach_list_typed(nir_cf_node, cf, node, cf_list) {
+ write_cf_node(ctx, cf);
+ }
+}
+
+static void
+read_cf_list(read_ctx *ctx, struct exec_list *cf_list)
+{
+ uint32_t num_cf_nodes = blob_read_uint32(ctx->blob);
+ for (unsigned i = 0; i < num_cf_nodes; i++)
+ read_cf_node(ctx, cf_list);
+}
+
+static void
+write_function_impl(write_ctx *ctx, const nir_function_impl *fi)
+{
+ write_var_list(ctx, &fi->locals);
+ write_reg_list(ctx, &fi->registers);
+ blob_write_uint32(ctx->blob, fi->reg_alloc);
+
+ blob_write_uint32(ctx->blob, fi->num_params);
+ for (unsigned i = 0; i < fi->num_params; i++) {
+ write_variable(ctx, fi->params[i]);
+ }
+
+ blob_write_uint32(ctx->blob, !!(fi->return_var));
+ if (fi->return_var)
+ write_variable(ctx, fi->return_var);
+
+ write_cf_list(ctx, &fi->body);
+ write_fixup_phis(ctx);
+}
+
+static nir_function_impl *
+read_function_impl(read_ctx *ctx, nir_function *fxn)
+{
+ nir_function_impl *fi = nir_function_impl_create_bare(ctx->nir);
+ fi->function = fxn;
+
+ read_var_list(ctx, &fi->locals);
+ read_reg_list(ctx, &fi->registers);
+ fi->reg_alloc = blob_read_uint32(ctx->blob);
+
+ fi->num_params = blob_read_uint32(ctx->blob);
+ for (unsigned i = 0; i < fi->num_params; i++) {
+ fi->params[i] = read_variable(ctx);
+ }
+
+ bool has_return = blob_read_uint32(ctx->blob);
+ if (has_return)
+ fi->return_var = read_variable(ctx);
+ else
+ fi->return_var = NULL;
+
+ read_cf_list(ctx, &fi->body);
+ read_fixup_phis(ctx);
+
+ fi->valid_metadata = 0;
+
+ return fi;
+}
+
+static void
+write_function(write_ctx *ctx, const nir_function *fxn)
+{
+ blob_write_uint32(ctx->blob, !!(fxn->name));
+ if (fxn->name)
+ blob_write_string(ctx->blob, fxn->name);
+
+ write_add_object(ctx, fxn);
+
+ blob_write_uint32(ctx->blob, fxn->num_params);
+ for (unsigned i = 0; i < fxn->num_params; i++) {
+ blob_write_uint32(ctx->blob, fxn->params[i].param_type);
+ encode_type_to_blob(ctx->blob, fxn->params[i].type);
+ }
+
+ encode_type_to_blob(ctx->blob, fxn->return_type);
+
+ /* At first glance, it looks like we should write the function_impl here.
+ * However, call instructions need to be able to reference at least the
+ * function and those will get processed as we write the function_impls.
+ * We stop here and write function_impls as a second pass.
+ */
+}
+
+static void
+read_function(read_ctx *ctx)
+{
+ bool has_name = blob_read_uint32(ctx->blob);
+ char *name = has_name ? blob_read_string(ctx->blob) : NULL;
+
+ nir_function *fxn = nir_function_create(ctx->nir, name);
+
+ read_add_object(ctx, fxn);
+
+ fxn->num_params = blob_read_uint32(ctx->blob);
+ for (unsigned i = 0; i < fxn->num_params; i++) {
+ fxn->params[i].param_type = blob_read_uint32(ctx->blob);
+ fxn->params[i].type = decode_type_from_blob(ctx->blob);
+ }
+
+ fxn->return_type = decode_type_from_blob(ctx->blob);
+}
+
+void
+nir_serialize(struct blob *blob, const nir_shader *nir)
+{
+ write_ctx ctx;
+ ctx.remap_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
+ _mesa_key_pointer_equal);
+ ctx.next_idx = 0;
+ ctx.blob = blob;
+ ctx.nir = nir;
+ util_dynarray_init(&ctx.phi_fixups, NULL);
+
+ size_t idx_size_offset = blob_reserve_intptr(blob);
+
+ struct shader_info info = nir->info;
+ uint32_t strings = 0;
+ if (info.name)
+ strings |= 0x1;
+ if (info.label)
+ strings |= 0x2;
+ blob_write_uint32(blob, strings);
+ if (info.name)
+ blob_write_string(blob, info.name);
+ if (info.label)
+ blob_write_string(blob, info.label);
+ info.name = info.label = NULL;
+ blob_write_bytes(blob, (uint8_t *) &info, sizeof(info));
+
+ write_var_list(&ctx, &nir->uniforms);
+ write_var_list(&ctx, &nir->inputs);
+ write_var_list(&ctx, &nir->outputs);
+ write_var_list(&ctx, &nir->shared);
+ write_var_list(&ctx, &nir->globals);
+ write_var_list(&ctx, &nir->system_values);
+
+ write_reg_list(&ctx, &nir->registers);
+ blob_write_uint32(blob, nir->reg_alloc);
+ blob_write_uint32(blob, nir->num_inputs);
+ blob_write_uint32(blob, nir->num_uniforms);
+ blob_write_uint32(blob, nir->num_outputs);
+ blob_write_uint32(blob, nir->num_shared);
+
+ blob_write_uint32(blob, exec_list_length(&nir->functions));
+ nir_foreach_function(fxn, nir) {
+ write_function(&ctx, fxn);
+ }
+
+ nir_foreach_function(fxn, nir) {
+ write_function_impl(&ctx, fxn->impl);
+ }
+
+ *(uintptr_t *)(blob->data + idx_size_offset) = ctx.next_idx;
+
+ _mesa_hash_table_destroy(ctx.remap_table, NULL);
+ util_dynarray_fini(&ctx.phi_fixups);
+}
+
+nir_shader *
+nir_deserialize(void *mem_ctx,
+ const struct nir_shader_compiler_options *options,
+ struct blob_reader *blob)
+{
+ read_ctx ctx;
+ ctx.blob = blob;
+ list_inithead(&ctx.phi_srcs);
+ ctx.idx_table_len = blob_read_intptr(blob);
+ ctx.idx_table = calloc(ctx.idx_table_len, sizeof(uintptr_t));
+ ctx.next_idx = 0;
+
+ uint32_t strings = blob_read_uint32(blob);
+ char *name = (strings & 0x1) ? blob_read_string(blob) : NULL;
+ char *label = (strings & 0x2) ? blob_read_string(blob) : NULL;
+
+ struct shader_info info;
+ blob_copy_bytes(blob, (uint8_t *) &info, sizeof(info));
+
+ ctx.nir = nir_shader_create(mem_ctx, info.stage, options, NULL);
+
+ info.name = name ? ralloc_strdup(ctx.nir, name) : NULL;
+ info.label = label ? ralloc_strdup(ctx.nir, label) : NULL;
+
+ ctx.nir->info = info;
+
+ read_var_list(&ctx, &ctx.nir->uniforms);
+ read_var_list(&ctx, &ctx.nir->inputs);
+ read_var_list(&ctx, &ctx.nir->outputs);
+ read_var_list(&ctx, &ctx.nir->shared);
+ read_var_list(&ctx, &ctx.nir->globals);
+ read_var_list(&ctx, &ctx.nir->system_values);
+
+ read_reg_list(&ctx, &ctx.nir->registers);
+ ctx.nir->reg_alloc = blob_read_uint32(blob);
+ ctx.nir->num_inputs = blob_read_uint32(blob);
+ ctx.nir->num_uniforms = blob_read_uint32(blob);
+ ctx.nir->num_outputs = blob_read_uint32(blob);
+ ctx.nir->num_shared = blob_read_uint32(blob);
+
+ unsigned num_functions = blob_read_uint32(blob);
+ for (unsigned i = 0; i < num_functions; i++)
+ read_function(&ctx);
+
+ nir_foreach_function(fxn, ctx.nir)
+ fxn->impl = read_function_impl(&ctx, fxn);
+
+ free(ctx.idx_table);
+
+ return ctx.nir;
+}