CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
+ // FP16 fallback is not needed as we handle FP16 below
+
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
+ CV_CheckEQ(inputs.size(), (size_t)2, "");
+ CV_CheckEQ(outputs.size(), (size_t)1, "");
+
const Mat& inp = inputs[0];
- const Mat& indices = inputs[1];
+
+ int indicesType = inputs[1].type();
+ CV_CheckType(indicesType, indicesType == CV_32FC1 || indicesType == CV_16SC1, "");
+ Mat indices32S;
+ if (indicesType == CV_16S/*FP16*/)
+ {
+ Mat indicesF32;
+ convertFp16(inputs[1], indicesF32);
+ indicesF32.convertTo(indices32S, CV_32S);
+ }
+ else
+ {
+ inputs[1].convertTo(indices32S, CV_32S);
+ }
+ const size_t indices_total = indices32S.total();
+ indices32S = indices32S.reshape(1, indices_total);
+
Mat& out = outputs[0];
+ CV_CheckTypeEQ(inp.type(), out.type(), "");
+ CV_CheckTypeEQ(indices32S.type(), CV_32SC1, "");
+
const int axis = normalize_axis(m_axis, shape(inp));
+ // FIXIT: why should we work with non-normalized input? it should be handled in importer or layers's output generator
+ const int axis_size = (int)inp.size[axis];
+ for (size_t j = 0 ; j < indices_total; ++j)
+ {
+ int& idx = indices32S.at<int>(j);
+ idx = normalize_axis(idx, axis_size); // validate and normalize indices
+ }
+
const size_t outer_size = axis == 0 ? inp.total() : inp.step1(axis - 1);
const size_t outer_dims = inp.total() / outer_size;
const size_t inner_size = inp.step1(axis);
- const float* idx = indices.ptr<const float>(); // TODO: change type to integer in the future.
+ const int* idx = indices32S.ptr<int>();
const char* src = inp.ptr<const char>();
char* dst = out.ptr<char>();
+ CV_CheckEQ(out.total(), outer_dims * indices_total * inner_size, "");
const size_t es = inp.elemSize1();
+ // TODO: optimize through switch (inner_size * es)
+ const size_t inner_bytes = inner_size * es;
for (size_t i = 0; i < outer_dims; ++i)
{
const size_t src_offset = i * outer_size;
- for (size_t j = 0 ; j < indices.total(); ++j)
+ for (size_t j = 0 ; j < indices_total; ++j)
{
- const size_t index = (static_cast<int>(idx[j]) + inp.size[axis]) % inp.size[axis];
- const size_t new_offset = src_offset + index * inp.step1(axis);
- std::memcpy(dst, src + new_offset * es, inner_size * es);
- dst += inner_size * es;
+ const int index = idx[j];
+ CV_DbgCheck(index, index >= 0 && index < axis_size, "");
+ const size_t new_offset = src_offset + index * inner_size;
+ std::memcpy(dst, src + new_offset * es, inner_bytes);
+ dst += inner_bytes;
}
}
}