--- /dev/null
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
+// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// @Authors
+// Jin Ma jin@multicorewareinc.com
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors as is and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+__kernel void centeredGradientKernel(__global const float* src_ptr, int src_col, int src_row, int src_step,
+ __global float* dx, __global float* dy, int d_step)
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+
+ if((x < src_col)&&(y < src_row))
+ {
+ int src_x1 = (x + 1) < (src_col -1)? (x + 1) : (src_col - 1);
+ int src_x2 = (x - 1) > 0 ? (x -1) : 0;
+ dx[y * d_step+ x] = 0.5f * (src_ptr[y * src_step + src_x1] - src_ptr[y * src_step+ src_x2]);
+
+ int src_y1 = (y+1) < (src_row - 1) ? (y + 1) : (src_row - 1);
+ int src_y2 = (y - 1) > 0 ? (y - 1) : 0;
+ dy[y * d_step+ x] = 0.5f * (src_ptr[src_y1 * src_step + x] - src_ptr[src_y2 * src_step+ x]);
+ }
+
+}
+
+inline float bicubicCoeff(float x_)
+{
+
+ float x = fabs(x_);
+ if (x <= 1.0f)
+ return x * x * (1.5f * x - 2.5f) + 1.0f;
+ else if (x < 2.0f)
+ return x * (x * (-0.5f * x + 2.5f) - 4.0f) + 2.0f;
+ else
+ return 0.0f;
+}
+
+__kernel void warpBackwardKernel(__global const float* I0, int I0_step, int I0_col, int I0_row,
+ image2d_t tex_I1, image2d_t tex_I1x, image2d_t tex_I1y,
+ __global const float* u1, int u1_step,
+ __global const float* u2,
+ __global float* I1w,
+ __global float* I1wx, /*int I1wx_step,*/
+ __global float* I1wy, /*int I1wy_step,*/
+ __global float* grad, /*int grad_step,*/
+ __global float* rho,
+ int I1w_step,
+ int u2_step,
+ int u1_offset_x,
+ int u1_offset_y,
+ int u2_offset_x,
+ int u2_offset_y)
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+
+ if(x < I0_col&&y < I0_row)
+ {
+ //float u1Val = u1(y, x);
+ float u1Val = u1[(y + u1_offset_y) * u1_step + x + u1_offset_x];
+ //float u2Val = u2(y, x);
+ float u2Val = u2[(y + u2_offset_y) * u2_step + x + u2_offset_x];
+
+ float wx = x + u1Val;
+ float wy = y + u2Val;
+
+ int xmin = ceil(wx - 2.0f);
+ int xmax = floor(wx + 2.0f);
+
+ int ymin = ceil(wy - 2.0f);
+ int ymax = floor(wy + 2.0f);
+
+ float sum = 0.0f;
+ float sumx = 0.0f;
+ float sumy = 0.0f;
+ float wsum = 0.0f;
+ sampler_t sampleri = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;
+ for (int cy = ymin; cy <= ymax; ++cy)
+ {
+ for (int cx = xmin; cx <= xmax; ++cx)
+ {
+ float w = bicubicCoeff(wx - cx) * bicubicCoeff(wy - cy);
+ //sum += w * tex2D(tex_I1 , cx, cy);
+ int2 cood = (int2)(cx, cy);
+ sum += w * read_imagef(tex_I1, sampleri, cood).x;
+ //sumx += w * tex2D(tex_I1x, cx, cy);
+ sumx += w * read_imagef(tex_I1x, sampleri, cood).x;
+ //sumy += w * tex2D(tex_I1y, cx, cy);
+ sumy += w * read_imagef(tex_I1y, sampleri, cood).x;
+ wsum += w;
+ }
+ }
+ float coeff = 1.0f / wsum;
+ float I1wVal = sum * coeff;
+ float I1wxVal = sumx * coeff;
+ float I1wyVal = sumy * coeff;
+ I1w[y * I1w_step + x] = I1wVal;
+ I1wx[y * I1w_step + x] = I1wxVal;
+ I1wy[y * I1w_step + x] = I1wyVal;
+ float Ix2 = I1wxVal * I1wxVal;
+ float Iy2 = I1wyVal * I1wyVal;
+
+ // store the |Grad(I1)|^2
+ grad[y * I1w_step + x] = Ix2 + Iy2;
+
+ // compute the constant part of the rho function
+ float I0Val = I0[y * I0_step + x];
+ rho[y * I1w_step + x] = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val;
+ }
+}
+
+inline float readImage(__global float *image, int x, int y, int rows, int cols, int elemCntPerRow)
+{
+ int i0 = clamp(x, 0, cols - 1);
+ int j0 = clamp(y, 0, rows - 1);
+
+ return image[j0 * elemCntPerRow + i0];
+}
+
+__kernel void warpBackwardKernelNoImage2d(__global const float* I0, int I0_step, int I0_col, int I0_row,
+ __global const float* tex_I1, __global const float* tex_I1x, __global const float* tex_I1y,
+ __global const float* u1, int u1_step,
+ __global const float* u2,
+ __global float* I1w,
+ __global float* I1wx, /*int I1wx_step,*/
+ __global float* I1wy, /*int I1wy_step,*/
+ __global float* grad, /*int grad_step,*/
+ __global float* rho,
+ int I1w_step,
+ int u2_step,
+ int I1_step,
+ int I1x_step)
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+
+ if(x < I0_col&&y < I0_row)
+ {
+ //float u1Val = u1(y, x);
+ float u1Val = u1[y * u1_step + x];
+ //float u2Val = u2(y, x);
+ float u2Val = u2[y * u2_step + x];
+
+ float wx = x + u1Val;
+ float wy = y + u2Val;
+
+ int xmin = ceil(wx - 2.0f);
+ int xmax = floor(wx + 2.0f);
+
+ int ymin = ceil(wy - 2.0f);
+ int ymax = floor(wy + 2.0f);
+
+ float sum = 0.0f;
+ float sumx = 0.0f;
+ float sumy = 0.0f;
+ float wsum = 0.0f;
+
+ for (int cy = ymin; cy <= ymax; ++cy)
+ {
+ for (int cx = xmin; cx <= xmax; ++cx)
+ {
+ float w = bicubicCoeff(wx - cx) * bicubicCoeff(wy - cy);
+
+ int2 cood = (int2)(cx, cy);
+ sum += w * readImage(tex_I1, cood.x, cood.y, I0_col, I0_row, I1_step);
+ sumx += w * readImage(tex_I1x, cood.x, cood.y, I0_col, I0_row, I1x_step);
+ sumy += w * readImage(tex_I1y, cood.x, cood.y, I0_col, I0_row, I1x_step);
+ wsum += w;
+ }
+ }
+
+ float coeff = 1.0f / wsum;
+
+ float I1wVal = sum * coeff;
+ float I1wxVal = sumx * coeff;
+ float I1wyVal = sumy * coeff;
+
+ I1w[y * I1w_step + x] = I1wVal;
+ I1wx[y * I1w_step + x] = I1wxVal;
+ I1wy[y * I1w_step + x] = I1wyVal;
+
+ float Ix2 = I1wxVal * I1wxVal;
+ float Iy2 = I1wyVal * I1wyVal;
+
+ // store the |Grad(I1)|^2
+ grad[y * I1w_step + x] = Ix2 + Iy2;
+
+ // compute the constant part of the rho function
+ float I0Val = I0[y * I0_step + x];
+ rho[y * I1w_step + x] = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val;
+ }
+
+}
+
+
+__kernel void estimateDualVariablesKernel(__global const float* u1, int u1_col, int u1_row, int u1_step,
+ __global const float* u2,
+ __global float* p11, int p11_step,
+ __global float* p12,
+ __global float* p21,
+ __global float* p22,
+ float taut,
+ int u2_step,
+ int u1_offset_x,
+ int u1_offset_y,
+ int u2_offset_x,
+ int u2_offset_y)
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+
+ if(x < u1_col && y < u1_row)
+ {
+ int src_x1 = (x + 1) < (u1_col - 1) ? (x + 1) : (u1_col - 1);
+ float u1x = u1[(y + u1_offset_y) * u1_step + src_x1 + u1_offset_x] - u1[(y + u1_offset_y) * u1_step + x + u1_offset_x];
+
+ int src_y1 = (y + 1) < (u1_row - 1) ? (y + 1) : (u1_row - 1);
+ float u1y = u1[(src_y1 + u1_offset_y) * u1_step + x + u1_offset_x] - u1[(y + u1_offset_y) * u1_step + x + u1_offset_x];
+
+ int src_x2 = (x + 1) < (u1_col - 1) ? (x + 1) : (u1_col - 1);
+ float u2x = u2[(y + u2_offset_y) * u2_step + src_x2 + u2_offset_x] - u2[(y + u2_offset_y) * u2_step + x + u2_offset_x];
+
+ int src_y2 = (y + 1) < (u1_row - 1) ? (y + 1) : (u1_row - 1);
+ float u2y = u2[(src_y2 + u2_offset_y) * u2_step + x + u2_offset_x] - u2[(y + u2_offset_y) * u2_step + x + u2_offset_x];
+
+ float g1 = hypot(u1x, u1y);
+ float g2 = hypot(u2x, u2y);
+
+ float ng1 = 1.0f + taut * g1;
+ float ng2 = 1.0f + taut * g2;
+
+ p11[y * p11_step + x] = (p11[y * p11_step + x] + taut * u1x) / ng1;
+ p12[y * p11_step + x] = (p12[y * p11_step + x] + taut * u1y) / ng1;
+ p21[y * p11_step + x] = (p21[y * p11_step + x] + taut * u2x) / ng2;
+ p22[y * p11_step + x] = (p22[y * p11_step + x] + taut * u2y) / ng2;
+ }
+
+}
+
+inline float divergence(__global const float* v1, __global const float* v2, int y, int x, int v1_step, int v2_step)
+{
+
+ if (x > 0 && y > 0)
+ {
+ float v1x = v1[y * v1_step + x] - v1[y * v1_step + x - 1];
+ float v2y = v2[y * v2_step + x] - v2[(y - 1) * v2_step + x];
+ return v1x + v2y;
+ }
+ else
+ {
+ if (y > 0)
+ return v1[y * v1_step + 0] + v2[y * v2_step + 0] - v2[(y - 1) * v2_step + 0];
+ else
+ {
+ if (x > 0)
+ return v1[0 * v1_step + x] - v1[0 * v1_step + x - 1] + v2[0 * v2_step + x];
+ else
+ return v1[0 * v1_step + 0] + v2[0 * v2_step + 0];
+ }
+ }
+
+}
+
+__kernel void estimateUKernel(__global const float* I1wx, int I1wx_col, int I1wx_row, int I1wx_step,
+ __global const float* I1wy, /*int I1wy_step,*/
+ __global const float* grad, /*int grad_step,*/
+ __global const float* rho_c, /*int rho_c_step,*/
+ __global const float* p11, /*int p11_step,*/
+ __global const float* p12, /*int p12_step,*/
+ __global const float* p21, /*int p21_step,*/
+ __global const float* p22, /*int p22_step,*/
+ __global float* u1, int u1_step,
+ __global float* u2,
+ __global float* error, float l_t, float theta, int u2_step,
+ int u1_offset_x,
+ int u1_offset_y,
+ int u2_offset_x,
+ int u2_offset_y,
+ char calc_error)
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+
+ if(x < I1wx_col && y < I1wx_row)
+ {
+ float I1wxVal = I1wx[y * I1wx_step + x];
+ float I1wyVal = I1wy[y * I1wx_step + x];
+ float gradVal = grad[y * I1wx_step + x];
+ float u1OldVal = u1[(y + u1_offset_y) * u1_step + x + u1_offset_x];
+ float u2OldVal = u2[(y + u2_offset_y) * u2_step + x + u2_offset_x];
+
+ float rho = rho_c[y * I1wx_step + x] + (I1wxVal * u1OldVal + I1wyVal * u2OldVal);
+
+ // estimate the values of the variable (v1, v2) (thresholding operator TH)
+
+ float d1 = 0.0f;
+ float d2 = 0.0f;
+
+ if (rho < -l_t * gradVal)
+ {
+ d1 = l_t * I1wxVal;
+ d2 = l_t * I1wyVal;
+ }
+ else if (rho > l_t * gradVal)
+ {
+ d1 = -l_t * I1wxVal;
+ d2 = -l_t * I1wyVal;
+ }
+ else if (gradVal > 1.192092896e-07f)
+ {
+ float fi = -rho / gradVal;
+ d1 = fi * I1wxVal;
+ d2 = fi * I1wyVal;
+ }
+
+ float v1 = u1OldVal + d1;
+ float v2 = u2OldVal + d2;
+
+ // compute the divergence of the dual variable (p1, p2)
+
+ float div_p1 = divergence(p11, p12, y, x, I1wx_step, I1wx_step);
+ float div_p2 = divergence(p21, p22, y, x, I1wx_step, I1wx_step);
+
+ // estimate the values of the optical flow (u1, u2)
+
+ float u1NewVal = v1 + theta * div_p1;
+ float u2NewVal = v2 + theta * div_p2;
+
+ u1[(y + u1_offset_y) * u1_step + x + u1_offset_x] = u1NewVal;
+ u2[(y + u2_offset_y) * u2_step + x + u2_offset_x] = u2NewVal;
+
+ if(calc_error)
+ {
+ float n1 = (u1OldVal - u1NewVal) * (u1OldVal - u1NewVal);
+ float n2 = (u2OldVal - u2NewVal) * (u2OldVal - u2NewVal);
+ error[y * I1wx_step + x] = n1 + n2;
+ }
+ }
+}
*/
#include "precomp.hpp"
+#include "opencl_kernels.hpp"
+
#include <limits>
+#include <iomanip>
+#include <iostream>
+#include "opencv2/core/opencl/ocl_defs.hpp"
+
+
using namespace cv;
private:
void procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2);
- std::vector<Mat_<float> > I0s;
- std::vector<Mat_<float> > I1s;
- std::vector<Mat_<float> > u1s;
- std::vector<Mat_<float> > u2s;
+ bool procOneScale_ocl(const UMat& I0, const UMat& I1, UMat& u1, UMat& u2);
+
+ bool calc_ocl(InputArray I0, InputArray I1, InputOutputArray flow);
+ struct dataMat
+ {
+ std::vector<Mat_<float> > I0s;
+ std::vector<Mat_<float> > I1s;
+ std::vector<Mat_<float> > u1s;
+ std::vector<Mat_<float> > u2s;
+
+ Mat_<float> I1x_buf;
+ Mat_<float> I1y_buf;
+
+ Mat_<float> flowMap1_buf;
+ Mat_<float> flowMap2_buf;
+
+ Mat_<float> I1w_buf;
+ Mat_<float> I1wx_buf;
+ Mat_<float> I1wy_buf;
- Mat_<float> I1x_buf;
- Mat_<float> I1y_buf;
+ Mat_<float> grad_buf;
+ Mat_<float> rho_c_buf;
- Mat_<float> flowMap1_buf;
- Mat_<float> flowMap2_buf;
+ Mat_<float> v1_buf;
+ Mat_<float> v2_buf;
- Mat_<float> I1w_buf;
- Mat_<float> I1wx_buf;
- Mat_<float> I1wy_buf;
+ Mat_<float> p11_buf;
+ Mat_<float> p12_buf;
+ Mat_<float> p21_buf;
+ Mat_<float> p22_buf;
- Mat_<float> grad_buf;
- Mat_<float> rho_c_buf;
+ Mat_<float> div_p1_buf;
+ Mat_<float> div_p2_buf;
- Mat_<float> v1_buf;
- Mat_<float> v2_buf;
+ Mat_<float> u1x_buf;
+ Mat_<float> u1y_buf;
+ Mat_<float> u2x_buf;
+ Mat_<float> u2y_buf;
+ } dm;
+ struct dataUMat
+ {
+ std::vector<UMat> I0s;
+ std::vector<UMat> I1s;
+ std::vector<UMat> u1s;
+ std::vector<UMat> u2s;
+
+ UMat I1x_buf;
+ UMat I1y_buf;
- Mat_<float> p11_buf;
- Mat_<float> p12_buf;
- Mat_<float> p21_buf;
- Mat_<float> p22_buf;
+ UMat I1w_buf;
+ UMat I1wx_buf;
+ UMat I1wy_buf;
- Mat_<float> div_p1_buf;
- Mat_<float> div_p2_buf;
+ UMat grad_buf;
+ UMat rho_c_buf;
- Mat_<float> u1x_buf;
- Mat_<float> u1y_buf;
- Mat_<float> u2x_buf;
- Mat_<float> u2y_buf;
+ UMat p11_buf;
+ UMat p12_buf;
+ UMat p21_buf;
+ UMat p22_buf;
+
+ UMat diff_buf;
+ UMat norm_buf;
+ } dum;
};
+namespace cv_ocl_tvl1flow
+{
+ bool centeredGradient(const UMat &src, UMat &dx, UMat &dy);
+
+ bool warpBackward(const UMat &I0, const UMat &I1, UMat &I1x, UMat &I1y,
+ UMat &u1, UMat &u2, UMat &I1w, UMat &I1wx, UMat &I1wy,
+ UMat &grad, UMat &rho);
+
+ bool estimateU(UMat &I1wx, UMat &I1wy, UMat &grad,
+ UMat &rho_c, UMat &p11, UMat &p12,
+ UMat &p21, UMat &p22, UMat &u1,
+ UMat &u2, UMat &error, float l_t, float theta, char calc_error);
+
+ bool estimateDualVariables(UMat &u1, UMat &u2,
+ UMat &p11, UMat &p12, UMat &p21, UMat &p22, float taut);
+}
+
+bool cv_ocl_tvl1flow::centeredGradient(const UMat &src, UMat &dx, UMat &dy)
+{
+#ifdef ANDROID
+ size_t localsize[2] = { 32, 4 };
+#else
+ size_t localsize[2] = { 32, 8 };
+#endif
+ size_t globalsize[2] = { src.cols, src.rows };
+
+ ocl::Kernel kernel;
+ if (!kernel.create("centeredGradientKernel", cv::ocl::video::optical_flow_tvl1_oclsrc, ""))
+ return false;
+
+ int idxArg = 0;
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(src));//src mat
+ idxArg = kernel.set(idxArg, (int)(src.cols));//src mat col
+ idxArg = kernel.set(idxArg, (int)(src.rows));//src mat rows
+ idxArg = kernel.set(idxArg, (int)(src.step / src.elemSize()));//src mat step
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dx));//res mat dx
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dy));//res mat dy
+ idxArg = kernel.set(idxArg, (int)(dx.step/dx.elemSize()));//res mat step
+ return kernel.run(2, globalsize, localsize, false);
+
+}
+
+bool cv_ocl_tvl1flow::warpBackward(const UMat &I0, const UMat &I1, UMat &I1x, UMat &I1y,
+ UMat &u1, UMat &u2, UMat &I1w, UMat &I1wx, UMat &I1wy,
+ UMat &grad, UMat &rho)
+{
+#ifdef ANDROID
+ size_t localsize[2] = { 32, 4 };
+#else
+ size_t localsize[2] = { 32, 8 };
+#endif
+ size_t globalsize[2] = { I0.cols, I0.rows };
+
+ ocl::Kernel kernel;
+ if (!kernel.create("warpBackwardKernel", cv::ocl::video::optical_flow_tvl1_oclsrc, ""))
+ return false;
+
+ int idxArg = 0;
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(I0));//I0 mat
+ int I0_step = (int)(I0.step / I0.elemSize());
+ idxArg = kernel.set(idxArg, I0_step);//I0_step
+ idxArg = kernel.set(idxArg, (int)(I0.cols));//I0_col
+ idxArg = kernel.set(idxArg, (int)(I0.rows));//I0_row
+ ocl::Image2D imageI1(I1);
+ ocl::Image2D imageI1x(I1x);
+ ocl::Image2D imageI1y(I1y);
+ idxArg = kernel.set(idxArg, imageI1);//image2d_t tex_I1
+ idxArg = kernel.set(idxArg, imageI1x);//image2d_t tex_I1x
+ idxArg = kernel.set(idxArg, imageI1y);//image2d_t tex_I1y
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(u1));//const float* u1
+ idxArg = kernel.set(idxArg, (int)(u1.step / u1.elemSize()));//int u1_step
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(u2));//const float* u2
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(I1w));///float* I1w
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(I1wx));//float* I1wx
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(I1wy));//float* I1wy
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(grad));//float* grad
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(rho));//float* rho
+ idxArg = kernel.set(idxArg, (int)(I1w.step / I1w.elemSize()));//I1w_step
+ idxArg = kernel.set(idxArg, (int)(u2.step / u2.elemSize()));//u2_step
+ int u1_offset_x = (int)((u1.offset) % (u1.step));
+ u1_offset_x = (int)(u1_offset_x / u1.elemSize());
+ idxArg = kernel.set(idxArg, (int)u1_offset_x );//u1_offset_x
+ idxArg = kernel.set(idxArg, (int)(u1.offset/u1.step));//u1_offset_y
+ int u2_offset_x = (int)((u2.offset) % (u2.step));
+ u2_offset_x = (int) (u2_offset_x / u2.elemSize());
+ idxArg = kernel.set(idxArg, (int)u2_offset_x);//u2_offset_x
+ idxArg = kernel.set(idxArg, (int)(u2.offset / u2.step));//u2_offset_y
+
+ return kernel.run(2, globalsize, localsize, false);
+
+}
+
+bool cv_ocl_tvl1flow::estimateU(UMat &I1wx, UMat &I1wy, UMat &grad,
+ UMat &rho_c, UMat &p11, UMat &p12,
+ UMat &p21, UMat &p22, UMat &u1,
+ UMat &u2, UMat &error, float l_t, float theta, char calc_error)
+{
+#ifdef ANDROID
+ size_t localsize[2] = { 32, 4 };
+#else
+ size_t localsize[2] = { 32, 8 };
+#endif
+ size_t globalsize[2] = { I1wx.cols, I1wx.rows };
+
+ ocl::Kernel kernel;
+ if (!kernel.create("estimateUKernel", cv::ocl::video::optical_flow_tvl1_oclsrc, ""))
+ return false;
+
+ int idxArg = 0;
+
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(I1wx)); //const float* I1wx
+ idxArg = kernel.set(idxArg, (int)(I1wx.cols)); //int I1wx_col
+ idxArg = kernel.set(idxArg, (int)(I1wx.rows)); //int I1wx_row
+ idxArg = kernel.set(idxArg, (int)(I1wx.step/I1wx.elemSize())); //int I1wx_step
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(I1wy)); //const float* I1wy
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(grad)); //const float* grad
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(rho_c)); //const float* rho_c
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(p11)); //const float* p11
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(p12)); //const float* p12
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(p21)); //const float* p21
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(p22)); //const float* p22
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(u1)); //float* u1
+ idxArg = kernel.set(idxArg, (int)(u1.step / u1.elemSize())); //int u1_step
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(u2)); //float* u2
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(error)); //float* error
+ idxArg = kernel.set(idxArg, (float)l_t); //float l_t
+ idxArg = kernel.set(idxArg, (float)theta); //float theta
+ idxArg = kernel.set(idxArg, (int)(u2.step / u2.elemSize()));//int u2_step
+ int u1_offset_x = (int)(u1.offset % u1.step);
+ u1_offset_x = (int) (u1_offset_x / u1.elemSize());
+ idxArg = kernel.set(idxArg, (int)u1_offset_x); //int u1_offset_x
+ idxArg = kernel.set(idxArg, (int)(u1.offset/u1.step)); //int u1_offset_y
+ int u2_offset_x = (int)(u2.offset % u2.step);
+ u2_offset_x = (int)(u2_offset_x / u2.elemSize());
+ idxArg = kernel.set(idxArg, (int)u2_offset_x ); //int u2_offset_x
+ idxArg = kernel.set(idxArg, (int)(u2.offset / u2.step)); //int u2_offset_y
+ idxArg = kernel.set(idxArg, (char)calc_error); //char calc_error
+
+ return kernel.run(2, globalsize, localsize, false);
+}
+
+bool cv_ocl_tvl1flow::estimateDualVariables(UMat &u1, UMat &u2,
+ UMat &p11, UMat &p12, UMat &p21, UMat &p22, float taut)
+{
+#ifdef ANDROID
+ size_t localsize[2] = { 32, 4 };
+#else
+ size_t localsize[2] = { 32, 8 };
+#endif
+ size_t globalsize[2] = { u1.cols, u1.rows };
+
+ ocl::Kernel kernel;
+ if (!kernel.create("estimateDualVariablesKernel", cv::ocl::video::optical_flow_tvl1_oclsrc, ""))
+ return false;
+
+ int idxArg = 0;
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(u1));// const float* u1
+ idxArg = kernel.set(idxArg, (int)(u1.cols)); //int u1_col
+ idxArg = kernel.set(idxArg, (int)(u1.rows)); //int u1_row
+ idxArg = kernel.set(idxArg, (int)(u1.step/u1.elemSize())); //int u1_step
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(u2)); // const float* u2
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(p11)); // float* p11
+ idxArg = kernel.set(idxArg, (int)(p11.step/p11.elemSize())); //int p11_step
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(p12)); // float* p12
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(p21)); // float* p21
+ idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(p22)); // float* p22
+ idxArg = kernel.set(idxArg, (float)(taut)); //float taut
+ idxArg = kernel.set(idxArg, (int)(u2.step/u2.elemSize())); //int u2_step
+ int u1_offset_x = (int)(u1.offset % u1.step);
+ u1_offset_x = (int)(u1_offset_x / u1.elemSize());
+ idxArg = kernel.set(idxArg, u1_offset_x); //int u1_offset_x
+ idxArg = kernel.set(idxArg, (int)(u1.offset / u1.step)); //int u1_offset_y
+ int u2_offset_x = (int)(u2.offset % u2.step);
+ u2_offset_x = (int)(u2_offset_x / u2.elemSize());
+ idxArg = kernel.set(idxArg, u2_offset_x); //int u2_offset_x
+ idxArg = kernel.set(idxArg, (int)(u2.offset / u2.step)); //int u2_offset_y
+
+ return kernel.run(2, globalsize, localsize, false);
+
+}
+
+
OpticalFlowDual_TVL1::OpticalFlowDual_TVL1()
{
tau = 0.25;
void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray _flow)
{
+ CV_OCL_RUN(_flow.isUMat(), calc_ocl(_I0, _I1, _flow))
+
Mat I0 = _I0.getMat();
Mat I1 = _I1.getMat();
CV_Assert( nscales > 0 );
// allocate memory for the pyramid structure
- I0s.resize(nscales);
- I1s.resize(nscales);
- u1s.resize(nscales);
- u2s.resize(nscales);
+ dm.I0s.resize(nscales);
+ dm.I1s.resize(nscales);
+ dm.u1s.resize(nscales);
+ dm.u2s.resize(nscales);
- I0.convertTo(I0s[0], I0s[0].depth(), I0.depth() == CV_8U ? 1.0 : 255.0);
- I1.convertTo(I1s[0], I1s[0].depth(), I1.depth() == CV_8U ? 1.0 : 255.0);
+ I0.convertTo(dm.I0s[0], dm.I0s[0].depth(), I0.depth() == CV_8U ? 1.0 : 255.0);
+ I1.convertTo(dm.I1s[0], dm.I1s[0].depth(), I1.depth() == CV_8U ? 1.0 : 255.0);
- u1s[0].create(I0.size());
- u2s[0].create(I0.size());
+ dm.u1s[0].create(I0.size());
+ dm.u2s[0].create(I0.size());
if (useInitialFlow)
{
- Mat_<float> mv[] = {u1s[0], u2s[0]};
+ Mat_<float> mv[] = { dm.u1s[0], dm.u2s[0] };
split(_flow.getMat(), mv);
}
- I1x_buf.create(I0.size());
- I1y_buf.create(I0.size());
+ dm.I1x_buf.create(I0.size());
+ dm.I1y_buf.create(I0.size());
- flowMap1_buf.create(I0.size());
- flowMap2_buf.create(I0.size());
+ dm.flowMap1_buf.create(I0.size());
+ dm.flowMap2_buf.create(I0.size());
- I1w_buf.create(I0.size());
- I1wx_buf.create(I0.size());
- I1wy_buf.create(I0.size());
+ dm.I1w_buf.create(I0.size());
+ dm.I1wx_buf.create(I0.size());
+ dm.I1wy_buf.create(I0.size());
- grad_buf.create(I0.size());
- rho_c_buf.create(I0.size());
+ dm.grad_buf.create(I0.size());
+ dm.rho_c_buf.create(I0.size());
- v1_buf.create(I0.size());
- v2_buf.create(I0.size());
+ dm.v1_buf.create(I0.size());
+ dm.v2_buf.create(I0.size());
- p11_buf.create(I0.size());
- p12_buf.create(I0.size());
- p21_buf.create(I0.size());
- p22_buf.create(I0.size());
+ dm.p11_buf.create(I0.size());
+ dm.p12_buf.create(I0.size());
+ dm.p21_buf.create(I0.size());
+ dm.p22_buf.create(I0.size());
- div_p1_buf.create(I0.size());
- div_p2_buf.create(I0.size());
+ dm.div_p1_buf.create(I0.size());
+ dm.div_p2_buf.create(I0.size());
- u1x_buf.create(I0.size());
- u1y_buf.create(I0.size());
- u2x_buf.create(I0.size());
- u2y_buf.create(I0.size());
+ dm.u1x_buf.create(I0.size());
+ dm.u1y_buf.create(I0.size());
+ dm.u2x_buf.create(I0.size());
+ dm.u2y_buf.create(I0.size());
// create the scales
for (int s = 1; s < nscales; ++s)
{
- resize(I0s[s-1], I0s[s], Size(), scaleStep, scaleStep);
- resize(I1s[s-1], I1s[s], Size(), scaleStep, scaleStep);
+ resize(dm.I0s[s - 1], dm.I0s[s], Size(), scaleStep, scaleStep);
+ resize(dm.I1s[s - 1], dm.I1s[s], Size(), scaleStep, scaleStep);
- if (I0s[s].cols < 16 || I0s[s].rows < 16)
+ if (dm.I0s[s].cols < 16 || dm.I0s[s].rows < 16)
{
nscales = s;
break;
if (useInitialFlow)
{
- resize(u1s[s-1], u1s[s], Size(), scaleStep, scaleStep);
- resize(u2s[s-1], u2s[s], Size(), scaleStep, scaleStep);
+ resize(dm.u1s[s - 1], dm.u1s[s], Size(), scaleStep, scaleStep);
+ resize(dm.u2s[s - 1], dm.u2s[s], Size(), scaleStep, scaleStep);
- multiply(u1s[s], Scalar::all(scaleStep), u1s[s]);
- multiply(u2s[s], Scalar::all(scaleStep), u2s[s]);
+ multiply(dm.u1s[s], Scalar::all(scaleStep), dm.u1s[s]);
+ multiply(dm.u2s[s], Scalar::all(scaleStep), dm.u2s[s]);
}
else
{
- u1s[s].create(I0s[s].size());
- u2s[s].create(I0s[s].size());
+ dm.u1s[s].create(dm.I0s[s].size());
+ dm.u2s[s].create(dm.I0s[s].size());
}
}
if (!useInitialFlow)
{
- u1s[nscales-1].setTo(Scalar::all(0));
- u2s[nscales-1].setTo(Scalar::all(0));
+ dm.u1s[nscales - 1].setTo(Scalar::all(0));
+ dm.u2s[nscales - 1].setTo(Scalar::all(0));
}
// pyramidal structure for computing the optical flow
for (int s = nscales - 1; s >= 0; --s)
{
// compute the optical flow at the current scale
- procOneScale(I0s[s], I1s[s], u1s[s], u2s[s]);
+ procOneScale(dm.I0s[s], dm.I1s[s], dm.u1s[s], dm.u2s[s]);
// if this was the last scale, finish now
if (s == 0)
// otherwise, upsample the optical flow
// zoom the optical flow for the next finer scale
- resize(u1s[s], u1s[s - 1], I0s[s - 1].size());
- resize(u2s[s], u2s[s - 1], I0s[s - 1].size());
+ resize(dm.u1s[s], dm.u1s[s - 1], dm.I0s[s - 1].size());
+ resize(dm.u2s[s], dm.u2s[s - 1], dm.I0s[s - 1].size());
// scale the optical flow with the appropriate zoom factor
- multiply(u1s[s - 1], Scalar::all(1/scaleStep), u1s[s - 1]);
- multiply(u2s[s - 1], Scalar::all(1/scaleStep), u2s[s - 1]);
+ multiply(dm.u1s[s - 1], Scalar::all(1 / scaleStep), dm.u1s[s - 1]);
+ multiply(dm.u2s[s - 1], Scalar::all(1 / scaleStep), dm.u2s[s - 1]);
}
- Mat uxy[] = {u1s[0], u2s[0]};
+ Mat uxy[] = { dm.u1s[0], dm.u2s[0] };
merge(uxy, 2, _flow);
}
+bool OpticalFlowDual_TVL1::calc_ocl(InputArray _I0, InputArray _I1, InputOutputArray _flow)
+{
+ UMat I0 = _I0.getUMat();
+ UMat I1 = _I1.getUMat();
+
+ CV_Assert(I0.type() == CV_8UC1 || I0.type() == CV_32FC1);
+ CV_Assert(I0.size() == I1.size());
+ CV_Assert(I0.type() == I1.type());
+ CV_Assert(!useInitialFlow || (_flow.size() == I0.size() && _flow.type() == CV_32FC2));
+ CV_Assert(nscales > 0);
+
+ // allocate memory for the pyramid structure
+ dum.I0s.resize(nscales);
+ dum.I1s.resize(nscales);
+ dum.u1s.resize(nscales);
+ dum.u2s.resize(nscales);
+ //I0s_step == I1s_step
+ double alpha = I0.depth() == CV_8U ? 1.0 : 255.0;
+
+ I0.convertTo(dum.I0s[0], CV_32F, alpha);
+ I1.convertTo(dum.I1s[0], CV_32F, I1.depth() == CV_8U ? 1.0 : 255.0);
+
+ dum.u1s[0].create(I0.size(), CV_32FC1);
+ dum.u2s[0].create(I0.size(), CV_32FC1);
+
+ if (useInitialFlow)
+ {
+ std::vector<UMat> umv;
+ umv.push_back(dum.u1s[0]);
+ umv.push_back(dum.u2s[0]);
+ cv::split(_flow,umv);
+ }
+
+ dum.I1x_buf.create(I0.size(), CV_32FC1);
+ dum.I1y_buf.create(I0.size(), CV_32FC1);
+
+ dum.I1w_buf.create(I0.size(), CV_32FC1);
+ dum.I1wx_buf.create(I0.size(), CV_32FC1);
+ dum.I1wy_buf.create(I0.size(), CV_32FC1);
+
+ dum.grad_buf.create(I0.size(), CV_32FC1);
+ dum.rho_c_buf.create(I0.size(), CV_32FC1);
+
+ dum.p11_buf.create(I0.size(), CV_32FC1);
+ dum.p12_buf.create(I0.size(), CV_32FC1);
+ dum.p21_buf.create(I0.size(), CV_32FC1);
+ dum.p22_buf.create(I0.size(), CV_32FC1);
+
+ dum.diff_buf.create(I0.size(), CV_32FC1);
+
+ // create the scales
+ for (int s = 1; s < nscales; ++s)
+ {
+ resize(dum.I0s[s - 1], dum.I0s[s], Size(), scaleStep, scaleStep);
+ resize(dum.I1s[s - 1], dum.I1s[s], Size(), scaleStep, scaleStep);
+
+ if (dum.I0s[s].cols < 16 || dum.I0s[s].rows < 16)
+ {
+ nscales = s;
+ break;
+ }
+
+ if (useInitialFlow)
+ {
+ resize(dum.u1s[s - 1], dum.u1s[s], Size(), scaleStep, scaleStep);
+ resize(dum.u2s[s - 1], dum.u2s[s], Size(), scaleStep, scaleStep);
+
+ //scale by scale factor
+ multiply(dum.u1s[s], Scalar::all(scaleStep), dum.u1s[s]);
+ multiply(dum.u2s[s], Scalar::all(scaleStep), dum.u2s[s]);
+ }
+ }
+
+ // pyramidal structure for computing the optical flow
+ for (int s = nscales - 1; s >= 0; --s)
+ {
+ // compute the optical flow at the current scale
+ if (!OpticalFlowDual_TVL1::procOneScale_ocl(dum.I0s[s], dum.I1s[s], dum.u1s[s], dum.u2s[s]))
+ return false;
+
+ // if this was the last scale, finish now
+ if (s == 0)
+ break;
+
+ // zoom the optical flow for the next finer scale
+ resize(dum.u1s[s], dum.u1s[s - 1], dum.I0s[s - 1].size());
+ resize(dum.u2s[s], dum.u2s[s - 1], dum.I0s[s - 1].size());
+
+ // scale the optical flow with the appropriate zoom factor
+ multiply(dum.u1s[s - 1], Scalar::all(1 / scaleStep), dum.u1s[s - 1]);
+ multiply(dum.u2s[s - 1], Scalar::all(1 / scaleStep), dum.u2s[s - 1]);
+ }
+
+ std::vector<UMat> uxy;
+ uxy.push_back(dum.u1s[0]);
+ uxy.push_back(dum.u2s[0]);
+ merge(uxy, _flow);
+ return true;
+}
+
////////////////////////////////////////////////////////////
// buildFlowMap
parallel_for_(Range(0, u1x.rows), body);
}
+bool OpticalFlowDual_TVL1::procOneScale_ocl(const UMat& I0, const UMat& I1, UMat& u1, UMat& u2)
+{
+ using namespace cv_ocl_tvl1flow;
+
+ const double scaledEpsilon = epsilon * epsilon * I0.size().area();
+
+ CV_DbgAssert(I1.size() == I0.size());
+ CV_DbgAssert(I1.type() == I0.type());
+ CV_DbgAssert(u1.empty() || u1.size() == I0.size());
+ CV_DbgAssert(u2.size() == u1.size());
+
+ if (u1.empty())
+ {
+ u1.create(I0.size(), CV_32FC1);
+ u1.setTo(Scalar::all(0));
+
+ u2.create(I0.size(), CV_32FC1);
+ u2.setTo(Scalar::all(0));
+ }
+
+ UMat I1x = dum.I1x_buf(Rect(0, 0, I0.cols, I0.rows));
+ UMat I1y = dum.I1y_buf(Rect(0, 0, I0.cols, I0.rows));
+
+ if (!centeredGradient(I1, I1x, I1y))
+ return false;
+
+ UMat I1w = dum.I1w_buf(Rect(0, 0, I0.cols, I0.rows));
+ UMat I1wx = dum.I1wx_buf(Rect(0, 0, I0.cols, I0.rows));
+ UMat I1wy = dum.I1wy_buf(Rect(0, 0, I0.cols, I0.rows));
+
+ UMat grad = dum.grad_buf(Rect(0, 0, I0.cols, I0.rows));
+ UMat rho_c = dum.rho_c_buf(Rect(0, 0, I0.cols, I0.rows));
+
+ UMat p11 = dum.p11_buf(Rect(0, 0, I0.cols, I0.rows));
+ UMat p12 = dum.p12_buf(Rect(0, 0, I0.cols, I0.rows));
+ UMat p21 = dum.p21_buf(Rect(0, 0, I0.cols, I0.rows));
+ UMat p22 = dum.p22_buf(Rect(0, 0, I0.cols, I0.rows));
+ p11.setTo(Scalar::all(0));
+ p12.setTo(Scalar::all(0));
+ p21.setTo(Scalar::all(0));
+ p22.setTo(Scalar::all(0));
+
+ UMat diff = dum.diff_buf(Rect(0, 0, I0.cols, I0.rows));
+
+ const float l_t = static_cast<float>(lambda * theta);
+ const float taut = static_cast<float>(tau / theta);
+ int n;
+
+ for (int warpings = 0; warpings < warps; ++warpings)
+ {
+ if (!warpBackward(I0, I1, I1x, I1y, u1, u2, I1w, I1wx, I1wy, grad, rho_c))
+ return false;
+
+ double error = std::numeric_limits<double>::max();
+ double prev_error = 0;
+
+ for (int n_outer = 0; error > scaledEpsilon && n_outer < outerIterations; ++n_outer)
+ {
+ if (medianFiltering > 1) {
+ cv::medianBlur(u1, u1, medianFiltering);
+ cv::medianBlur(u2, u2, medianFiltering);
+ }
+ for (int n_inner = 0; error > scaledEpsilon && n_inner < innerIterations; ++n_inner)
+ {
+ // some tweaks to make sum operation less frequently
+ n = n_inner + n_outer*innerIterations;
+ char calc_error = (n & 0x1) && (prev_error < scaledEpsilon);
+ if (!estimateU(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22,
+ u1, u2, diff, l_t, static_cast<float>(theta), calc_error))
+ return false;
+ if (calc_error)
+ {
+ error = cv::sum(diff)[0];
+ prev_error = error;
+ }
+ else
+ {
+ error = std::numeric_limits<double>::max();
+ prev_error -= scaledEpsilon;
+ }
+ if (!estimateDualVariables(u1, u2, p11, p12, p21, p22, taut))
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2)
{
const float scaledEpsilon = static_cast<float>(epsilon * epsilon * I0.size().area());
CV_DbgAssert( u1.size() == I0.size() );
CV_DbgAssert( u2.size() == u1.size() );
- Mat_<float> I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> I1x = dm.I1x_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> I1y = dm.I1y_buf(Rect(0, 0, I0.cols, I0.rows));
centeredGradient(I1, I1x, I1y);
- Mat_<float> flowMap1 = flowMap1_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> flowMap2 = flowMap2_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> flowMap1 = dm.flowMap1_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> flowMap2 = dm.flowMap2_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> I1w = dm.I1w_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> I1wx = dm.I1wx_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> I1wy = dm.I1wy_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> grad = grad_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> grad = dm.grad_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> rho_c = dm.rho_c_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> v1 = v1_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> v2 = v2_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> v1 = dm.v1_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> v2 = dm.v2_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> p11 = dm.p11_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> p12 = dm.p12_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> p21 = dm.p21_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> p22 = dm.p22_buf(Rect(0, 0, I0.cols, I0.rows));
p11.setTo(Scalar::all(0));
p12.setTo(Scalar::all(0));
p21.setTo(Scalar::all(0));
p22.setTo(Scalar::all(0));
- Mat_<float> div_p1 = div_p1_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> div_p2 = div_p2_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> div_p1 = dm.div_p1_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> div_p2 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> u1x = u1x_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> u1y = u1y_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> u2x = u2x_buf(Rect(0, 0, I0.cols, I0.rows));
- Mat_<float> u2y = u2y_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> u1x = dm.u1x_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> u1y = dm.u1y_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> u2x = dm.u2x_buf(Rect(0, 0, I0.cols, I0.rows));
+ Mat_<float> u2y = dm.u2y_buf(Rect(0, 0, I0.cols, I0.rows));
const float l_t = static_cast<float>(lambda * theta);
const float taut = static_cast<float>(tau / theta);
void OpticalFlowDual_TVL1::collectGarbage()
{
- I0s.clear();
- I1s.clear();
- u1s.clear();
- u2s.clear();
+ //dataMat structure dm
+ dm.I0s.clear();
+ dm.I1s.clear();
+ dm.u1s.clear();
+ dm.u2s.clear();
- I1x_buf.release();
- I1y_buf.release();
+ dm.I1x_buf.release();
+ dm.I1y_buf.release();
- flowMap1_buf.release();
- flowMap2_buf.release();
+ dm.flowMap1_buf.release();
+ dm.flowMap2_buf.release();
- I1w_buf.release();
- I1wx_buf.release();
- I1wy_buf.release();
+ dm.I1w_buf.release();
+ dm.I1wx_buf.release();
+ dm.I1wy_buf.release();
- grad_buf.release();
- rho_c_buf.release();
+ dm.grad_buf.release();
+ dm.rho_c_buf.release();
- v1_buf.release();
- v2_buf.release();
+ dm.v1_buf.release();
+ dm.v2_buf.release();
- p11_buf.release();
- p12_buf.release();
- p21_buf.release();
- p22_buf.release();
+ dm.p11_buf.release();
+ dm.p12_buf.release();
+ dm.p21_buf.release();
+ dm.p22_buf.release();
- div_p1_buf.release();
- div_p2_buf.release();
+ dm.div_p1_buf.release();
+ dm.div_p2_buf.release();
- u1x_buf.release();
- u1y_buf.release();
- u2x_buf.release();
- u2y_buf.release();
+ dm.u1x_buf.release();
+ dm.u1y_buf.release();
+ dm.u2x_buf.release();
+ dm.u2y_buf.release();
+
+ //dataUMat structure dum
+ dum.I0s.clear();
+ dum.I1s.clear();
+ dum.u1s.clear();
+ dum.u2s.clear();
+
+ dum.I1x_buf.release();
+ dum.I1y_buf.release();
+
+ dum.I1w_buf.release();
+ dum.I1wx_buf.release();
+ dum.I1wy_buf.release();
+
+ dum.grad_buf.release();
+ dum.rho_c_buf.release();
+
+ dum.p11_buf.release();
+ dum.p12_buf.release();
+ dum.p21_buf.release();
+ dum.p22_buf.release();
+
+ dum.diff_buf.release();
+ dum.norm_buf.release();
}
+
CV_INIT_ALGORITHM(OpticalFlowDual_TVL1, "DenseOpticalFlow.DualTVL1",
obj.info()->addParam(obj, "tau", obj.tau, false, 0, 0,
"Time step of the numerical scheme");