scsi: firmware: qcom_scm: Add support for programming inline crypto keys
authorEric Biggers <ebiggers@google.com>
Fri, 10 Jul 2020 07:20:08 +0000 (00:20 -0700)
committerMartin K. Petersen <martin.petersen@oracle.com>
Sat, 25 Jul 2020 02:09:54 +0000 (22:09 -0400)
Add support for the Inline Crypto Engine (ICE) key programming interface
that's needed for the ufs-qcom driver to use inline encryption on
Snapdragon SoCs.  This interface consists of two SCM calls: one to program
a key into a keyslot, and one to invalidate a keyslot.

Although the UFS specification defines a standard way to do this, on these
SoCs the Linux kernel isn't permitted to access the needed crypto
configuration registers directly; these SCM calls must be used instead.

Link: https://lore.kernel.org/r/20200710072013.177481-2-ebiggers@kernel.org
Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
drivers/firmware/qcom_scm.c
drivers/firmware/qcom_scm.h
include/linux/qcom_scm.h

index 0e7233a20f34b69be4d873557964028b63087235..1a8eb1b42b1eb5a8d7c2cb687f01a169f6bb3e55 100644 (file)
@@ -923,6 +923,107 @@ int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
 }
 EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
 
+/**
+ * qcom_scm_ice_available() - Is the ICE key programming interface available?
+ *
+ * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
+ *        qcom_scm_ice_set_key() are available.
+ */
+bool qcom_scm_ice_available(void)
+{
+       return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
+                                           QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
+               __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
+                                            QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
+}
+EXPORT_SYMBOL(qcom_scm_ice_available);
+
+/**
+ * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
+ * @index: the keyslot to invalidate
+ *
+ * The UFSHCI standard defines a standard way to do this, but it doesn't work on
+ * these SoCs; only this SCM call does.
+ *
+ * Return: 0 on success; -errno on failure.
+ */
+int qcom_scm_ice_invalidate_key(u32 index)
+{
+       struct qcom_scm_desc desc = {
+               .svc = QCOM_SCM_SVC_ES,
+               .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
+               .arginfo = QCOM_SCM_ARGS(1),
+               .args[0] = index,
+               .owner = ARM_SMCCC_OWNER_SIP,
+       };
+
+       return qcom_scm_call(__scm->dev, &desc, NULL);
+}
+EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
+
+/**
+ * qcom_scm_ice_set_key() - Set an inline encryption key
+ * @index: the keyslot into which to set the key
+ * @key: the key to program
+ * @key_size: the size of the key in bytes
+ * @cipher: the encryption algorithm the key is for
+ * @data_unit_size: the encryption data unit size, i.e. the size of each
+ *                 individual plaintext and ciphertext.  Given in 512-byte
+ *                 units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
+ *
+ * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
+ * can then be used to encrypt/decrypt UFS I/O requests inline.
+ *
+ * The UFSHCI standard defines a standard way to do this, but it doesn't work on
+ * these SoCs; only this SCM call does.
+ *
+ * Return: 0 on success; -errno on failure.
+ */
+int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
+                        enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
+{
+       struct qcom_scm_desc desc = {
+               .svc = QCOM_SCM_SVC_ES,
+               .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
+               .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
+                                        QCOM_SCM_VAL, QCOM_SCM_VAL,
+                                        QCOM_SCM_VAL),
+               .args[0] = index,
+               .args[2] = key_size,
+               .args[3] = cipher,
+               .args[4] = data_unit_size,
+               .owner = ARM_SMCCC_OWNER_SIP,
+       };
+       void *keybuf;
+       dma_addr_t key_phys;
+       int ret;
+
+       /*
+        * 'key' may point to vmalloc()'ed memory, but we need to pass a
+        * physical address that's been properly flushed.  The sanctioned way to
+        * do this is by using the DMA API.  But as is best practice for crypto
+        * keys, we also must wipe the key after use.  This makes kmemdup() +
+        * dma_map_single() not clearly correct, since the DMA API can use
+        * bounce buffers.  Instead, just use dma_alloc_coherent().  Programming
+        * keys is normally rare and thus not performance-critical.
+        */
+
+       keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
+                                   GFP_KERNEL);
+       if (!keybuf)
+               return -ENOMEM;
+       memcpy(keybuf, key, key_size);
+       desc.args[1] = key_phys;
+
+       ret = qcom_scm_call(__scm->dev, &desc, NULL);
+
+       memzero_explicit(keybuf, key_size);
+
+       dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
+       return ret;
+}
+EXPORT_SYMBOL(qcom_scm_ice_set_key);
+
 /**
  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
  *
index d9ed670da222c8f9b910bb8ed43e7d0cbfadeacf..38ea614d29fea28a47d4ebcd5b6746c188f3bba1 100644 (file)
@@ -103,6 +103,10 @@ extern int scm_legacy_call(struct device *dev, const struct qcom_scm_desc *desc,
 #define QCOM_SCM_OCMEM_LOCK_CMD                0x01
 #define QCOM_SCM_OCMEM_UNLOCK_CMD      0x02
 
+#define QCOM_SCM_SVC_ES                        0x10    /* Enterprise Security */
+#define QCOM_SCM_ES_INVALIDATE_ICE_KEY 0x03
+#define QCOM_SCM_ES_CONFIG_SET_ICE_KEY 0x04
+
 #define QCOM_SCM_SVC_HDCP              0x11
 #define QCOM_SCM_HDCP_INVOKE           0x01
 
index 3d6a246977615350d732d2ff1e89be80aced1dca..2e1193a3fb5f064bca42c9cf44f6b0ef74e01bc9 100644 (file)
@@ -44,6 +44,13 @@ enum qcom_scm_sec_dev_id {
        QCOM_SCM_ICE_DEV_ID     = 20,
 };
 
+enum qcom_scm_ice_cipher {
+       QCOM_SCM_ICE_CIPHER_AES_128_XTS = 0,
+       QCOM_SCM_ICE_CIPHER_AES_128_CBC = 1,
+       QCOM_SCM_ICE_CIPHER_AES_256_XTS = 3,
+       QCOM_SCM_ICE_CIPHER_AES_256_CBC = 4,
+};
+
 #define QCOM_SCM_VMID_HLOS       0x3
 #define QCOM_SCM_VMID_MSS_MSA    0xF
 #define QCOM_SCM_VMID_WLAN       0x18
@@ -88,6 +95,12 @@ extern int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset,
 extern int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset,
                                 u32 size);
 
+extern bool qcom_scm_ice_available(void);
+extern int qcom_scm_ice_invalidate_key(u32 index);
+extern int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
+                               enum qcom_scm_ice_cipher cipher,
+                               u32 data_unit_size);
+
 extern bool qcom_scm_hdcp_available(void);
 extern int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt,
                             u32 *resp);
@@ -138,6 +151,12 @@ static inline int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset,
 static inline int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id,
                u32 offset, u32 size) { return -ENODEV; }
 
+static inline bool qcom_scm_ice_available(void) { return false; }
+static inline int qcom_scm_ice_invalidate_key(u32 index) { return -ENODEV; }
+static inline int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
+                                      enum qcom_scm_ice_cipher cipher,
+                                      u32 data_unit_size) { return -ENODEV; }
+
 static inline bool qcom_scm_hdcp_available(void) { return false; }
 static inline int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt,
                u32 *resp) { return -ENODEV; }