return rc->worst_quality; // Highest value allowed
target_norm_bits_per_mb =
- section_target_bandwitdh < (1 << 20)
- ? (section_target_bandwitdh << BPER_MB_NORMBITS) / num_mbs
- : (section_target_bandwitdh / num_mbs) << BPER_MB_NORMBITS;
+ ((uint64_t)section_target_bandwitdh << BPER_MB_NORMBITS) / num_mbs;
// Try and pick a max Q that will be high enough to encode the
// content at the given rate.
double correction_factor) {
const int bpm = (int)(vp9_rc_bits_per_mb(frame_kind, q, correction_factor));
- // Attempt to retain reasonable accuracy without overflow. The cutoff is
- // chosen such that the maximum product of Bpm and MBs fits 31 bits. The
- // largest Bpm takes 20 bits.
- return (mbs > (1 << 11)) ? (bpm >> BPER_MB_NORMBITS) * mbs
- : (bpm * mbs) >> BPER_MB_NORMBITS;
+ return ((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS;
}
int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
// Calculate required scaling factor based on target frame size and size of
// frame produced using previous Q.
- if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS))
- // Case where we would overflow int
- target_bits_per_mb = (target_bits_per_frame / cm->MBs) << BPER_MB_NORMBITS;
- else
- target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs;
+ target_bits_per_mb =
+ ((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs;
i = active_best_quality;