{"activation_layer_ex", "activation_layer_ex.cl"},
{"activation_layer_qa8", "activation_layer_qa8.cl"},
{"activation_layer_logistic_qa8", "activation_layer_qa8.cl"},
+ {"arg_op", "arg_operation.cl"},
{"arithmetic_add", "arithmetic_op.cl"},
{"arithmetic_sub", "arithmetic_op.cl"},
{"arithmetic_sub_ex", "arithmetic_op_ex.cl"},
{"space_to_batch_4d_nchw", "space_to_batch.cl"},
{"space_to_batch_4d_nhwc", "space_to_batch.cl"},
{"space_to_depth", "space_to_depth.cl"},
- {"arg_max", "arg_min_max.cl"},
- {"arg_min", "arg_min_max.cl"},
};
const std::map<std::string, std::string> CLKernelLibraryEx::_program_source_map = {
#include "./cl_kernels/activation_layer_ex.clembed"
},
{
- "arg_min_max.cl",
-#include "./cl_kernels/arg_min_max.clembed"
+ "arg_operation.cl",
+#include "./cl_kernels/arg_operation.clembed"
},
{
"arithmetic_op_ex.cl",
+++ /dev/null
-/*
- * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved
- * Copyright (c) 2017 ARM Limited.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "helpers_asymm.h"
-
-#if defined(DATA_TYPE) && defined(DEPTH_OUT)
-/** Perform arg_max
- *
- * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
- * @attention Output tensor depth should be given as a preprocessor argument using -DDEPTH_OUT=size. e.g. -DDEPTH_OUT=16
- *
- * @param[in] input_ptr Pointer to the source image. Supported data types: U8/S8/QS8/QASYMM8/U16/S16/QS16/F16/U32/S32/F32
- * @param[in] input_stride_x Stride of the source image in X dimension (in bytes)
- * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] input_stride_y Stride of the source image in Y dimension (in bytes)
- * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source image
- * @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] input_step_w output_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[out] output_ptr Pointer to the destination image. Supported data types: U32
- * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
- * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
- * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] output_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
- * @param[in] axis Axis through which reduction occurs for max value index
- * @param[in] dim Dimension across the axis to be reduced.
- */
-
-__kernel void arg_max(TENSOR4D_DECLARATION(input),
- TENSOR4D_DECLARATION(output),
- const int axis,
- const int dim)
-{
- Tensor4D in = CONVERT_TO_TENSOR4D_STRUCT(input, 0);
- Tensor4D out = CONVERT_TO_TENSOR4D_STRUCT(output, DEPTH_OUT);
-
- int indices[4] =
- {
- get_global_id(0),
- get_global_id(1),
- get_global_id(2) % DEPTH_OUT,
- get_global_id(2) / DEPTH_OUT,
- };
-
- DATA_TYPE value = *((__global DATA_TYPE *)tensor4D_offset(&in, indices[0], indices[1], indices[2], indices[3]));
- DATA_TYPE tval = value;
- int idx = 0;
- for(int i = 1; i < dim; ++i)
- {
- indices[axis] = i;
- value = max(value, *((__global DATA_TYPE *)tensor4D_offset(&in, indices[0], indices[1], indices[2], indices[3])));
- if(tval!=value)
- {
- idx = indices[axis];
- tval = value;
- }
- }
-
- *((__global DATA_TYPE *)out.ptr) = idx;
-}
-
-
-/** Perform arg_min
- *
- * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
- * @attention Output tensor depth should be given as a preprocessor argument using -DDEPTH_OUT=size. e.g. -DDEPTH_OUT=16
- *
- * @param[in] input_ptr Pointer to the source image. Supported data types: U8/S8/QS8/QASYMM8/U16/S16/QS16/F16/U32/S32/F32
- * @param[in] input_stride_x Stride of the source image in X dimension (in bytes)
- * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] input_stride_y Stride of the source image in Y dimension (in bytes)
- * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source image
- * @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] input_step_w output_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[out] output_ptr Pointer to the destination image. Supported data types: U32
- * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
- * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
- * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] output_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
- * @param[in] axis Axis through which reduction occurs for min value index
- * @param[in] dim Dimension across the axis to be reduced.
- */
-
-__kernel void arg_min(TENSOR4D_DECLARATION(input),
- TENSOR4D_DECLARATION(output),
- const int axis,
- const int dim)
-{
- Tensor4D in = CONVERT_TO_TENSOR4D_STRUCT(input, 0);
- Tensor4D out = CONVERT_TO_TENSOR4D_STRUCT(output, DEPTH_OUT);
-
- int indices[4] =
- {
- get_global_id(0),
- get_global_id(1),
- get_global_id(2) % DEPTH_OUT,
- get_global_id(2) / DEPTH_OUT,
- };
-
- DATA_TYPE value = *((__global DATA_TYPE *)tensor4D_offset(&in, indices[0], indices[1], indices[2], indices[3]));
- DATA_TYPE tval = value;
- int idx = 0;
- for(int i = 1; i < dim; ++i)
- {
- indices[axis] = i;
- value = min(value, *((__global DATA_TYPE *)tensor4D_offset(&in, indices[0], indices[1], indices[2], indices[3])));
- if(tval!=value)
- {
- idx = indices[axis];
- tval = value;
- }
- }
-
- *((__global DATA_TYPE *)out.ptr) = idx;
-}
-#endif // defined(DATA_TYPE) && defined(DEPTH_OUT)
--- /dev/null
+/*
+ * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved
+ * Copyright (c) 2017 ARM Limited.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "helpers.h"
+
+#if defined(DATA_TYPE) && defined(DEPTH_OUT) && defined(OP_CODE)
+/** Perform arg_max/arg_min
+ *
+ * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
+ * @attention Output tensor depth should be given as a preprocessor argument using -DDEPTH_OUT=size. e.g. -DDEPTH_OUT=16
+ * @attention Operation type(code) specifying which operation to perform should be passed as preprocessor argument using
+ * -DOP_CODE = number. e.g. -DOP_CODE=1
+ *
+ * @param[in] input_ptr Pointer to the source image. Supported data types: U8/S8/U16/S16/F16/U32/S32/F32
+ * @param[in] input_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] input_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes)
+ * @param[in] input_step_w output_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[out] output_ptr Pointer to the destination image. Supported data types: U32
+ * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_stride_w Stride of the source tensor in W dimension (in bytes)
+ * @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
+ * @param[in] axis Axis through which reduction occurs for max value index
+ * @param[in] dim Dimension across the axis to be reduced.
+ */
+
+__kernel void arg_op(TENSOR4D_DECLARATION(input),
+ TENSOR4D_DECLARATION(output),
+ const int axis,
+ const int dim)
+{
+ Tensor4D in = CONVERT_TO_TENSOR4D_STRUCT(input, 0);
+ Tensor4D out = CONVERT_TO_TENSOR4D_STRUCT(output, DEPTH_OUT);
+
+ int indices[4] =
+ {
+ get_global_id(0),
+ get_global_id(1),
+ get_global_id(2) % DEPTH_OUT,
+ get_global_id(2) / DEPTH_OUT,
+ };
+
+ DATA_TYPE value = *((__global DATA_TYPE *)tensor4D_offset(&in, indices[0], indices[1], indices[2], indices[3]));
+ DATA_TYPE tval = value;
+ int idx = 0;
+ for(int i = 1; i < dim; ++i)
+ {
+ indices[axis] = i;
+
+ #if OP_CODE == 1 // ArgMax
+ value = max(value, *((__global DATA_TYPE *)
+ tensor4D_offset(&in, indices[0], indices[1], indices[2], indices[3])));
+ #elif OP_CODE == 2 //ArgMin
+ value = min(value, *((__global DATA_TYPE *)
+ tensor4D_offset(&in, indices[0], indices[1], indices[2], indices[3])));
+ #else
+ return;
+
+ #endif
+
+ if(tval!=value)
+ {
+ idx = indices[axis];
+ tval = value;
+ }
+ }
+
+ *((__global uint *)out.ptr) = idx;
+}
+#endif // defined(DATA_TYPE) && defined(DEPTH_OUT) && defined(OP_CODE)
const uint32_t argminmax_axis, ArgOperation op)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S32, DataType::F32,
- DataType::U8, DataType::QASYMM8);
+ DataType::U8);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(input, output);
const TensorShape &shape_in = input->info()->tensor_shape();
const TensorShape &shape_out = output->info()->tensor_shape();
// Construct kernel name for argmax and argmin based on axis
- std::string kernel_name;
+ std::string kernel_name = "arg_op";
+ int op_code = 0;
if (op == ArgOperation::MAX)
{
- kernel_name = "arg_max";
+ op_code = 1;
}
else if (op == ArgOperation::MIN)
{
- kernel_name = "arg_min";
+ op_code = 2;
}
+ else
+ throw std::runtime_error("Operation not supported, yet");
// Set kernel build options
std::set<std::string> build_opts;
build_opts.emplace("-DDATA_TYPE=" + get_cl_type_from_data_type(output_info->data_type()));
build_opts.emplace("-DDEPTH_OUT=" + support::cpp11::to_string(output_info->dimension(2)));
+ build_opts.emplace("-DOP_CODE=" + support::cpp11::to_string(op_code));
// Create kernel
_kernel =