Since commit
31ade30692dc9680bfc95700d794818fa3f754ac, timekeeping_init()
checks for presence of persistent clock by attempting to read a non-zero
time value. This is an issue on platforms where persistent_clock (instead
is implemented as a free-running counter (instead of an RTC) starting
from zero on each boot and running during suspend. Examples are some ARM
platforms (e.g. PandaBoard).
An attempt to read such a clock during timekeeping_init() may return zero
value and falsely declare persistent clock as missing. Additionally, in
the above case suspend times may be accounted twice (once from
timekeeping_resume() and once from rtc_resume()), resulting in a gradual
drift of system time.
This patch does a run-time correction of the issue by doing the same check
during timekeeping_suspend().
A better long-term solution would have to return error when trying to read
non-existing clock and zero when trying to read an uninitialized clock, but
that would require changing all persistent_clock implementations.
This patch addresses the immediate breakage, for now.
Cc: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Feng Tang <feng.tang@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Zoran Markovic <zoran.markovic@linaro.org>
[jstultz: Tweaked commit message and subject]
Signed-off-by: John Stultz <john.stultz@linaro.org>
read_persistent_clock(&timekeeping_suspend_time);
+ /*
+ * On some systems the persistent_clock can not be detected at
+ * timekeeping_init by its return value, so if we see a valid
+ * value returned, update the persistent_clock_exists flag.
+ */
+ if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
+ persistent_clock_exist = true;
+
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&timekeeper_seq);
timekeeping_forward_now(tk);