adding resample lib
authorThomas Vander Stichele <thomas@apestaart.org>
Sun, 23 Dec 2001 10:44:28 +0000 (10:44 +0000)
committerThomas Vander Stichele <thomas@apestaart.org>
Sun, 23 Dec 2001 10:44:28 +0000 (10:44 +0000)
Original commit message from CVS:
adding resample lib

gst-libs/gst/resample/Makefile.am [new file with mode: 0644]
gst-libs/gst/resample/README [new file with mode: 0644]
gst-libs/gst/resample/dtos.c [new file with mode: 0644]
gst-libs/gst/resample/functable.c [new file with mode: 0644]
gst-libs/gst/resample/resample.c [new file with mode: 0644]
gst-libs/gst/resample/resample.h [new file with mode: 0644]
gst-libs/gst/resample/test.c [new file with mode: 0644]

diff --git a/gst-libs/gst/resample/Makefile.am b/gst-libs/gst/resample/Makefile.am
new file mode 100644 (file)
index 0000000..4fe4222
--- /dev/null
@@ -0,0 +1,26 @@
+libdir = $(libdir)/gst
+
+lib_LTLIBRARIES = libresample.la
+
+if HAVE_CPU_I386
+ARCHCFLAGS = -march=i486
+else
+if HAVE_CPU_PPC
+ARCHCFLAGS = -Wa,-m7400
+else
+ARCHCFLAGS =
+endif
+endif
+
+libresample_la_SOURCES = dtos.c functable.c resample.c resample.h
+libresample_la_LIBADD = $(GST_LIBS)
+libresample_la_CFLAGS = $(GST_CFLAGS) -ffast-math $(ARCHCFLAGS)
+
+noinst_HEADERS = resample.h
+
+#check_PROGRAMS = test
+#test_SOURCES = test.c
+#test_LDADD = libresample.la
+
+
+
diff --git a/gst-libs/gst/resample/README b/gst-libs/gst/resample/README
new file mode 100644 (file)
index 0000000..f7db110
--- /dev/null
@@ -0,0 +1,62 @@
+
+This is a snapshot of my current work developing an audio
+resampling library.  While working on this library, I started
+writing lots of general purpose functions that should really
+be part of a larger library.  Rather than have a constantly
+changing library, and since the current code is capable, I
+decided to freeze this codebase for use with gstreamer, and
+move active development of the code elsewhere.
+
+The algorithm used is based on Shannon's theorem, which says
+that you can recreate an input signal from equidistant samples
+using a sin(x)/x filter; thus, you can create new samples from
+the regenerated input signal.  Since sin(x)/x is expensive to
+evaluate, an interpolated lookup table is used.  Also, a
+windowing function (1-x^2)^2 is used, which aids the convergence
+of sin(x)/x for lower frequencies at the expense of higher.
+
+There is one tunable parameter, which is the filter length.
+Longer filter lengths are obviously slower, but more accurate.
+There's not much reason to use a filter length longer than 64,
+since other approximations start to dominate.  Filter lengths
+as short as 8 are audially acceptable, but should not be
+considered for serious work.
+
+Performance:  A PowerPC G4 at 400 Mhz can resample 2 audio
+channels at almost 10x speed with a filter length of 64, without
+using Altivec extensions.  (My goal was 10x speed, which I almost
+reached.  Maybe later.)
+
+Limitations: Currently only supports streams in the form of
+interleaved signed 16-bit samples.
+
+The test.c program is a simple regression test.  It creates a
+test input pattern (1 sec at 48 khz) that is a frequency ramp
+from 0 to 24000 hz, and then converts it to 44100 hz using a
+filter length of 64.  It then compares the result to the same
+pattern generated at 44100 hz, and outputs the result to the
+file "out".
+
+A graph of the correct output should have field 2 and field 4
+almost equal (plus/minus 1) up to about sample 40000 (which
+corresponds to 20 khz), and then field 2 should be close to 0
+above that.  Running the test program will print to stdout
+something like the following:
+
+  time 0.112526
+  average error 10k=0.4105 22k=639.34
+
+The average error is RMS error over the range [0-10khz] and
+[0-22khz], and is expressed in sample values, for an input
+amplitude of 16000.  Note that RMS errors below 1.0 can't
+really be compared, but basically this shows that below
+10 khz, the resampler is nearly perfect.  Most of the error
+is concentrated above 20 khz.
+
+If the average error is significantly larger after modifying
+the code, it's probably not good.
+
+
+
+dave...
+
diff --git a/gst-libs/gst/resample/dtos.c b/gst-libs/gst/resample/dtos.c
new file mode 100644 (file)
index 0000000..7762595
--- /dev/null
@@ -0,0 +1,201 @@
+/* Resampling library
+ * Copyright (C) <2001> David A. Schleef <ds@schleef.org>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Library General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Library General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 02111-1307, USA.
+ */
+
+
+#include <string.h>
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+
+//#include <ml.h>
+#include <resample.h>
+
+
+
+#define short_to_double_table
+//#define short_to_double_altivec
+#define short_to_double_unroll
+
+#ifdef short_to_double_table
+static float ints_high[256];
+static float ints_low[256];
+
+void conv_double_short_table(double *dest, short *src, int n)
+{
+       static int init = 0;
+       int i;
+       unsigned int idx;
+       if(!init){
+               for(i=0;i<256;i++){
+                       ints_high[i]=256.0*((i<128)?i:i-256);
+                       ints_low[i]=i;
+               }
+               init = 1;
+       }
+
+       if(n&1){
+               idx = (unsigned short)*src++;
+               *dest++ = ints_high[(idx>>8)] + ints_low[(idx&0xff)];
+               n-=1;
+       }
+       for(i=0;i<n;i+=2){
+               idx = (unsigned short)*src++;
+               *dest++ = ints_high[(idx>>8)] + ints_low[(idx&0xff)];
+               idx = (unsigned short)*src++;
+               *dest++ = ints_high[(idx>>8)] + ints_low[(idx&0xff)];
+       }
+}
+
+#endif
+
+#ifdef short_to_double_unroll
+void conv_double_short_unroll(double *dest, short *src, int n)
+{
+       if(n&1){
+               *dest++ = *src++;
+               n--;
+       }
+       if(n&2){
+               *dest++ = *src++;
+               *dest++ = *src++;
+               n-=2;
+       }
+       while(n>0){
+               *dest++ = *src++;
+               *dest++ = *src++;
+               *dest++ = *src++;
+               *dest++ = *src++;
+               n-=4;
+       }
+}
+#endif
+
+void conv_double_short_ref(double *dest, short *src, int n)
+{
+       int i;
+       for(i=0;i<n;i++){
+               dest[i]=src[i];
+       }
+}
+
+#ifdef HAVE_CPU_PPC
+#if 0
+static union { int i[4]; float f[4]; } av_tmp __attribute__ ((__aligned__ (16)));
+
+void conv_double_short_altivec(double *dest, short *src, int n)
+{
+       int i;
+
+       for(i=0;i<n;i+=4){
+               av_tmp.i[0] = src[0];
+               av_tmp.i[1] = src[1];
+               av_tmp.i[2] = src[2];
+               av_tmp.i[3] = src[3];
+
+               asm(
+               "       lvx 0,0,%0\n"
+               "       vcfsx 1,0,0\n"
+               "       stvx 1,0,%0\n"
+               : : "r" (&av_tmp)
+               );
+
+               dest[0]=av_tmp.f[0];
+               dest[1]=av_tmp.f[1];
+               dest[2]=av_tmp.f[2];
+               dest[3]=av_tmp.f[3];
+               src += 4;
+               dest += 4;
+       }
+}
+#endif
+#endif
+
+
+
+/* double to short */
+
+void conv_short_double_ref(short *dest, double *src, int n)
+{
+       int i;
+       double x;
+
+       for(i=0;i<n;i++){
+               x = *src++;
+               if(x<-32768.0)x=-32768.0;
+               if(x>32767.0)x=32767.0;
+               *dest++ = rint(x);
+       }
+}
+
+#ifdef HAVE_CPU_PPC
+void conv_short_double_ppcasm(short *dest, double *src, int n)
+{
+       int tmp[2];
+       double min = -32768.0;
+       double max = 32767.0;
+       double ftmp0, ftmp1;
+
+       asm __volatile__(
+       "\taddic. %3,%3,-8\n"
+       "\taddic. %6,%6,-2\n"
+       "loop:\n"
+       "\tlfdu %0,8(%3)\n"
+       "\tfsub %1,%0,%4\n"
+       "\tfsel %0,%1,%0,%4\n"
+       "\tfsub %1,%0,%5\n"
+       "\tfsel %0,%1,%5,%0\n"
+       "\tfctiw %1,%0\n"
+       "\taddic. 5,5,-1\n"
+       "\tstfd %1,0(%2)\n"
+       "\tlhz 9,6(%2)\n"
+       "\tsthu 9,2(%6)\n"
+       "\tbne loop\n"
+       : "=&f" (ftmp0), "=&f" (ftmp1)
+       : "b" (tmp), "r" (src), "f" (min), "f" (max), "r" (dest)
+       : "r9", "r5" );
+
+}
+#endif
+
+
+void conv_double_short_dstr(double *dest, short *src, int n, int dstr)
+{
+       int i;
+       void *d = dest;
+       for(i=0;i<n;i++){
+               (*(double *)d)=*src++;
+               d += dstr;
+       }
+}
+
+void conv_short_double_sstr(short *dest, double *src, int n, int sstr)
+{
+       int i;
+       double x;
+       void *s = src;
+
+       for(i=0;i<n;i++){
+               x = *(double *)s;
+               if(x<-32768.0)x=-32768.0;
+               if(x>32767.0)x=32767.0;
+               *dest++ = rint(x);
+               s += sstr;
+       }
+}
+
diff --git a/gst-libs/gst/resample/functable.c b/gst-libs/gst/resample/functable.c
new file mode 100644 (file)
index 0000000..d61efca
--- /dev/null
@@ -0,0 +1,311 @@
+/* Resampling library
+ * Copyright (C) <2001> David A. Schleef <ds@schleef.org>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Library General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Library General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 02111-1307, USA.
+ */
+
+
+#include <string.h>
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+
+#include <resample.h>
+
+
+
+double functable_sinc(void *p,double x)
+{
+       if(x==0)return 1;
+       return sin(x)/x;
+}
+
+double functable_dsinc(void *p,double x)
+{
+       if(x==0)return 0;
+       return cos(x)/x - sin(x)/(x*x);
+}
+
+double functable_window_boxcar(void *p,double x)
+{
+       if(x<-1 || x>1)return 0;
+       return 1;
+}
+
+double functable_window_dboxcar(void *p,double x)
+{
+       return 0;
+}
+
+double functable_window_std(void *p,double x)
+{
+       if(x<-1 || x>1)return 0;
+       return (1-x*x)*(1-x*x);
+}
+
+double functable_window_dstd(void *p,double x)
+{
+       if(x<-1 || x>1)return 0;
+       return -4*x*(1-x*x);
+}
+
+
+
+void functable_init(functable_t *t)
+{
+       int i;
+       double x;
+
+       t->fx = malloc(sizeof(double)*(t->len+1));
+       t->fdx = malloc(sizeof(double)*(t->len+1));
+
+       t->invoffset = 1.0 / t->offset;
+
+       for(i=0;i<t->len+1;i++){
+               x = t->start + t->offset * i;
+               x *= t->scale;
+
+               t->fx[i] = t->func_x(t->priv,x);
+               t->fdx[i] = t->scale * t->func_dx(t->priv,x);
+       }
+       if(t->func2_x){
+               double f1x,f1dx;
+               double f2x,f2dx;
+
+               for(i=0;i<t->len+1;i++){
+                       x = t->start + t->offset * i;
+                       x *= t->scale2;
+
+                       f2x = t->func2_x(t->priv,x);
+                       f2dx = t->scale2 * t->func2_dx(t->priv,x);
+
+                       f1x = t->fx[i];
+                       f1dx = t->fdx[i];
+
+                       t->fx[i] = f1x * f2x;
+                       t->fdx[i] = f1x * f2dx + f1dx * f2x;
+               }
+       }
+}
+
+double functable_eval(functable_t *t,double x)
+{
+       int i;
+       double f0, f1, w0, w1;
+       double x2, x3;
+       double w;
+
+       if(x<t->start || x>(t->start+(t->len+1)*t->offset)){
+               printf("x out of range %g\n",x);
+       }
+       x -= t->start;
+       x /= t->offset;
+       i = floor(x);
+       x -= i;
+
+       x2 = x * x;
+       x3 = x2 * x;
+
+       f1 = 3 * x2 - 2 * x3;
+       f0 = 1 - f1;
+       w0 = (x - 2 * x2 + x3) * t->offset;
+       w1 = (-x2 + x3) * t->offset;
+
+       //printf("i=%d x=%g f0=%g f1=%g w0=%g w1=%g\n",i,x,f0,f1,w0,w1);
+
+       w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
+               t->fdx[i] * w0 + t->fdx[i + 1] * w1;
+
+       //w = t->fx[i] * (1-x) + t->fx[i+1] * x;
+
+       return w;
+}
+
+
+double functable_fir(functable_t *t, double x, int n, double *data, int len)
+{
+       int i,j;
+       double f0, f1, w0, w1;
+       double x2, x3;
+       double w;
+       double sum;
+
+       x -= t->start;
+       x /= t->offset;
+       i = floor(x);
+       x -= i;
+
+       x2 = x * x;
+       x3 = x2 * x;
+
+       f1 = 3 * x2 - 2 * x3;
+       f0 = 1 - f1;
+       w0 = (x - 2 * x2 + x3) * t->offset;
+       w1 = (-x2 + x3) * t->offset;
+
+       sum = 0;
+       for(j=0;j<len;j++){
+               w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
+                       t->fdx[i] * w0 + t->fdx[i + 1] * w1;
+               sum += data[j*2] * w;
+               i += n;
+       }
+
+       return sum;
+}
+
+void functable_fir2(functable_t *t, double *r0, double *r1, double x,
+       int n, double *data, int len)
+{
+       int i,j;
+       double f0, f1, w0, w1;
+       double x2, x3;
+       double w;
+       double sum0, sum1;
+       double floor_x;
+
+       x -= t->start;
+       x *= t->invoffset;
+       floor_x = floor(x);
+       i = floor_x;
+       x -= floor_x;
+
+       x2 = x * x;
+       x3 = x2 * x;
+
+       f1 = 3 * x2 - 2 * x3;
+       f0 = 1 - f1;
+       w0 = (x - 2 * x2 + x3) * t->offset;
+       w1 = (-x2 + x3) * t->offset;
+
+       sum0 = 0;
+       sum1 = 0;
+       for(j=0;j<len;j++){
+               w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
+                       t->fdx[i] * w0 + t->fdx[i + 1] * w1;
+               sum0 += data[j*2] * w;
+               sum1 += data[j*2+1] * w;
+               i += n;
+
+#define unroll2
+#define unroll3
+#define unroll4
+#ifdef unroll2
+               j++;
+
+               w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
+                       t->fdx[i] * w0 + t->fdx[i + 1] * w1;
+               sum0 += data[j*2] * w;
+               sum1 += data[j*2+1] * w;
+               i += n;
+#endif
+#ifdef unroll3
+               j++;
+
+               w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
+                       t->fdx[i] * w0 + t->fdx[i + 1] * w1;
+               sum0 += data[j*2] * w;
+               sum1 += data[j*2+1] * w;
+               i += n;
+#endif
+#ifdef unroll4
+               j++;
+
+               w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
+                       t->fdx[i] * w0 + t->fdx[i + 1] * w1;
+               sum0 += data[j*2] * w;
+               sum1 += data[j*2+1] * w;
+               i += n;
+#endif
+       }
+
+       *r0 = sum0;
+       *r1 = sum1;
+}
+
+
+
+#ifdef unused
+void functable_fir2_altivec(functable_t *t, float *r0, float *r1,
+       double x, int n, float *data, int len)
+{
+       int i,j;
+       double f0, f1, w0, w1;
+       double x2, x3;
+       double w;
+       double sum0, sum1;
+       double floor_x;
+
+       x -= t->start;
+       x *= t->invoffset;
+       floor_x = floor(x);
+       i = floor_x;
+       x -= floor_x;
+
+       x2 = x * x;
+       x3 = x2 * x;
+
+       f1 = 3 * x2 - 2 * x3;
+       f0 = 1 - f1;
+       w0 = (x - 2 * x2 + x3) * t->offset;
+       w1 = (-x2 + x3) * t->offset;
+
+       sum0 = 0;
+       sum1 = 0;
+       for(j=0;j<len;j++){
+               // t->fx, t->fdx needs to be multiplexed by n
+               // we need 5 consecutive floats, which fit into 2 vecs
+               // load v0, t->fx[i]
+               // load v1, t->fx[i+n]
+               // v2 = v0 (not correct)
+               // v3 = (v0>>32) || (v1<<3*32) (not correct)
+               //
+               // load v4, t->dfx[i]
+               // load v5, t->dfx[i+n]
+               // v6 = v4 (not correct)
+               // v7 = (v4>>32) || (v5<<3*32) (not correct)
+               // 
+               // v8 = splat(f0)
+               // v9 = splat(f1)
+               // v10 = splat(w0)
+               // v11 = splat(w1)
+               //
+               // v12 = v2 * v8
+               // v12 += v3 * v9
+               // v12 += v6 * v10
+               // v12 += v7 * v11
+               
+               w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
+                       t->fdx[i] * w0 + t->fdx[i + 1] * w1;
+               
+               // v13 = data[j*2]
+               // v14 = data[j*2+4]
+               // v15 = deinterlace_high(v13,v14)
+               // v16 = deinterlace_low(v13,v14)
+               // (sum0) v17 += multsum(v13,v15)
+               // (sum1) v18 += multsum(v14,v16)
+               
+               sum0 += data[j*2] * w;
+               sum1 += data[j*2+1] * w;
+               i += n;
+
+       }
+
+       *r0 = sum0;
+       *r1 = sum1;
+}
+#endif
+
diff --git a/gst-libs/gst/resample/resample.c b/gst-libs/gst/resample/resample.c
new file mode 100644 (file)
index 0000000..cedb874
--- /dev/null
@@ -0,0 +1,530 @@
+/* Resampling library
+ * Copyright (C) <2001> David A. Schleef <ds@schleef.org>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Library General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Library General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 02111-1307, USA.
+ */
+
+
+#include <string.h>
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+
+#include <resample.h>
+
+inline double sinc(double x)
+{
+       if(x==0)return 1;
+       return sin(x) / x;
+}
+
+inline double window_func(double x)
+{
+       x = 1 - x*x;
+       return x*x;
+}
+
+signed short double_to_s16(double x)
+{
+       if(x<-32768){
+               printf("clipped\n");
+               return -32768;
+       }
+       if(x>32767){
+               printf("clipped\n");
+               return -32767;
+       }
+       return rint(x);
+}
+
+signed short double_to_s16_ppcasm(double x)
+{
+       if(x<-32768){
+               return -32768;
+       }
+       if(x>32767){
+               return -32767;
+       }
+       return rint(x);
+}
+
+static void resample_sinc_ft(resample_t * r);
+
+void resample_init(resample_t * r)
+{
+       r->i_start = 0;
+       if(r->filter_length&1){
+               r->o_start = 0;
+       }else{
+               r->o_start = r->o_inc * 0.5;
+       }
+
+       memset(r->acc, 0, sizeof(r->acc));
+
+       resample_reinit(r);
+}
+
+void resample_reinit(resample_t * r)
+{
+       /* i_inc is the number of samples that the output increments for
+        * each input sample.  o_inc is the opposite. */
+       r->i_inc = (double) r->o_rate / r->i_rate;
+       r->o_inc = (double) r->i_rate / r->o_rate;
+
+       r->halftaps = (r->filter_length - 1.0) * 0.5;
+
+       switch (r->method) {
+       default:
+       case RESAMPLE_NEAREST:
+               r->scale = resample_nearest;
+               break;
+       case RESAMPLE_BILINEAR:
+               r->scale = resample_bilinear;
+               break;
+       case RESAMPLE_SINC_SLOW:
+               r->scale = resample_sinc;
+               break;
+       case RESAMPLE_SINC:
+               r->scale = resample_sinc_ft;
+               break;
+       }
+}
+
+/*
+ * Prepare to be confused.
+ *
+ * We keep a "timebase" that is based on output samples.  The zero
+ * of the timebase cooresponds to the next output sample that will
+ * be written.
+ *
+ * i_start is the "time" that corresponds to the first input sample
+ * in an incoming buffer.  Since the output depends on input samples
+ * ahead in time, i_start will tend to be around halftaps.
+ *
+ * i_start_buf is the time of the first sample in the temporary
+ * buffer.
+ */
+void resample_scale(resample_t * r, void *i_buf, unsigned int i_size)
+{
+       int o_size;
+
+       r->i_buf = i_buf;
+
+       r->i_samples = i_size / 2 / r->channels;
+
+       r->i_start_buf = r->i_start - r->filter_length * r->i_inc;
+
+       /* i_start is the offset (in a given output sample) that is the
+        * beginning of the current input buffer */
+       r->i_end = r->i_start + r->i_inc * r->i_samples;
+
+       r->o_samples = floor(r->i_end - r->halftaps * r->i_inc);
+
+       o_size = r->o_samples * r->channels * 2;
+       r->o_buf = r->get_buffer(r->priv, o_size);
+
+       if(r->verbose){
+               printf("resample_scale: i_buf=%p i_size=%d\n",
+                       i_buf,i_size);
+               printf("resample_scale: i_samples=%d o_samples=%d i_inc=%g o_buf=%p\n",
+                       r->i_samples, r->o_samples, r->i_inc, r->o_buf);
+               printf("resample_scale: i_start=%g i_end=%g o_start=%g\n",
+                       r->i_start, r->i_end, r->o_start);
+       }
+
+       if ((r->filter_length + r->i_samples)*2*2 > r->buffer_len) {
+               int size = (r->filter_length + r->i_samples) * sizeof(double) * 2;
+
+               if(r->verbose){
+                       printf("resample temp buffer size=%d\n",size);
+               }
+               if(r->buffer)free(r->buffer);
+               r->buffer_len = size;
+               r->buffer = malloc(size);
+               memset(r->buffer, 0, size);
+       }
+
+       if(r->channels==2){
+               conv_double_short(
+                       r->buffer + r->filter_length * sizeof(double) * 2,
+                       r->i_buf, r->i_samples * 2);
+       }else{
+               conv_double_short_dstr(
+                       r->buffer + r->filter_length * sizeof(double) * 2,
+                       r->i_buf, r->i_samples, sizeof(double) * 2);
+       }
+
+       r->scale(r);
+
+       memcpy(r->buffer,
+               r->buffer + r->i_samples * sizeof(double) * 2,
+               r->filter_length * sizeof(double) * 2);
+
+       /* updating times */
+       r->i_start += r->i_samples * r->i_inc;
+       r->o_start += r->o_samples * r->o_inc - r->i_samples;
+       
+       /* adjusting timebase zero */
+       r->i_start -= r->o_samples;
+}
+
+void resample_nearest(resample_t * r)
+{
+       signed short *i_ptr, *o_ptr;
+       int i_count = 0;
+       double a;
+       int i;
+
+       i_ptr = (signed short *) r->i_buf;
+       o_ptr = (signed short *) r->o_buf;
+
+       a = r->o_start;
+       i_count = 0;
+#define SCALE_LOOP(COPY,INC) \
+       for (i = 0; i < r->o_samples; i++) {    \
+               COPY;                                                   \
+               a += r->o_inc;                                          \
+               while (a >= 1) {                                \
+                       a -= 1;                                         \
+                       i_ptr+=INC;                                     \
+                       i_count++;                                      \
+               }                                                               \
+               o_ptr+=INC;                                             \
+       }
+
+       switch (r->channels) {
+       case 1:
+               SCALE_LOOP(o_ptr[0] = i_ptr[0], 1);
+               break;
+       case 2:
+               SCALE_LOOP(o_ptr[0] = i_ptr[0];
+                          o_ptr[1] = i_ptr[1], 2);
+               break;
+       default:
+       {
+               int n, n_chan = r->channels;
+
+               SCALE_LOOP(for (n = 0; n < n_chan; n++) o_ptr[n] =
+                          i_ptr[n], n_chan);
+       }
+       }
+       if (i_count != r->i_samples) {
+               printf("handled %d in samples (expected %d)\n", i_count,
+                      r->i_samples);
+       }
+}
+
+void resample_bilinear(resample_t * r)
+{
+       signed short *i_ptr, *o_ptr;
+       int o_count = 0;
+       double b;
+       int i;
+       double acc0, acc1;
+
+       i_ptr = (signed short *) r->i_buf;
+       o_ptr = (signed short *) r->o_buf;
+
+       acc0 = r->acc[0];
+       acc1 = r->acc[1];
+       b = r->i_start;
+       for (i = 0; i < r->i_samples; i++) {
+               b += r->i_inc;
+               //printf("in %d\n",i_ptr[0]);
+               if(b>=2){
+                       printf("not expecting b>=2\n");
+               }
+               if (b >= 1) {
+                       acc0 += (1.0 - (b-r->i_inc)) * i_ptr[0];
+                       acc1 += (1.0 - (b-r->i_inc)) * i_ptr[1];
+
+                       o_ptr[0] = rint(acc0);
+                       //printf("out %d\n",o_ptr[0]);
+                       o_ptr[1] = rint(acc1);
+                       o_ptr += 2;
+                       o_count++;
+
+                       b -= 1.0;
+
+                       acc0 = b * i_ptr[0];
+                       acc1 = b * i_ptr[1];
+               } else {
+                       acc0 += i_ptr[0] * r->i_inc;
+                       acc1 += i_ptr[1] * r->i_inc;
+               }
+               i_ptr += 2;
+       }
+       r->acc[0] = acc0;
+       r->acc[1] = acc1;
+
+       if (o_count != r->o_samples) {
+               printf("handled %d out samples (expected %d)\n", o_count,
+                      r->o_samples);
+       }
+}
+
+void resample_sinc_slow(resample_t * r)
+{
+       signed short *i_ptr, *o_ptr;
+       int i, j;
+       double c0, c1;
+       double a;
+       int start;
+       double center;
+       double weight;
+
+       if (!r->buffer) {
+               int size = r->filter_length * 2 * r->channels;
+
+               printf("resample temp buffer\n");
+               r->buffer = malloc(size);
+               memset(r->buffer, 0, size);
+       }
+
+       i_ptr = (signed short *) r->i_buf;
+       o_ptr = (signed short *) r->o_buf;
+
+       a = r->i_start;
+#define GETBUF(index,chan) (((index)<0) \
+                       ? ((short *)(r->buffer))[((index)+r->filter_length)*2+(chan)] \
+                       : i_ptr[(index)*2+(chan)])
+       {
+               double sinx, cosx, sind, cosd;
+               double x, d;
+               double t;
+
+               for (i = 0; i < r->o_samples; i++) {
+                       start = floor(a) - r->filter_length;
+                       center = a - r->halftaps;
+                       x = M_PI * (start - center) * r->o_inc;
+                       sinx = sin(M_PI * (start - center) * r->o_inc);
+                       cosx = cos(M_PI * (start - center) * r->o_inc);
+                       d = M_PI * r->o_inc;
+                       sind = sin(M_PI * r->o_inc);
+                       cosd = cos(M_PI * r->o_inc);
+                       c0 = 0;
+                       c1 = 0;
+                       for (j = 0; j < r->filter_length; j++) {
+                               weight = (x==0)?1:(sinx/x);
+//printf("j %d sin %g cos %g\n",j,sinx,cosx);
+//printf("j %d sin %g x %g sinc %g\n",j,sinx,x,weight);
+                               c0 += weight * GETBUF((start + j), 0);
+                               c1 += weight * GETBUF((start + j), 1);
+                               t = cosx * cosd - sinx * sind;
+                               sinx = cosx * sind + sinx * cosd;
+                               cosx = t;
+                               x += d;
+                       }
+                       o_ptr[0] = rint(c0);
+                       o_ptr[1] = rint(c1);
+                       o_ptr += 2;
+                       a += r->o_inc;
+               }
+       }
+
+       memcpy(r->buffer,
+              i_ptr + (r->i_samples - r->filter_length) * r->channels,
+              r->filter_length * 2 * r->channels);
+}
+
+void resample_sinc(resample_t * r)
+{
+       double *ptr;
+       signed short *o_ptr;
+       int i, j;
+       double c0, c1;
+       double a;
+       int start;
+       double center;
+       double weight;
+       double x0, x, d;
+       double scale;
+
+       ptr = (double *) r->buffer;
+       o_ptr = (signed short *) r->o_buf;
+
+       /* scale provides a cutoff frequency for the low
+        * pass filter aspects of sinc().  scale=M_PI
+        * will cut off at the input frequency, which is
+        * good for up-sampling, but will cause aliasing
+        * for downsampling.  Downsampling needs to be
+        * cut off at o_rate, thus scale=M_PI*r->i_inc. */
+       /* actually, it needs to be M_PI*r->i_inc*r->i_inc.
+        * Need to research why. */
+       scale = M_PI*r->i_inc;
+       for (i = 0; i < r->o_samples; i++) {
+               a = r->o_start + i * r->o_inc;
+               start = floor(a - r->halftaps);
+//printf("%d: a=%g start=%d end=%d\n",i,a,start,start+r->filter_length-1);
+               center = a;
+               //x = M_PI * (start - center) * r->o_inc;
+               //d = M_PI * r->o_inc;
+               //x = (start - center) * r->o_inc;
+               x0 = (start - center) * r->o_inc;
+               d = r->o_inc;
+               c0 = 0;
+               c1 = 0;
+               for (j = 0; j < r->filter_length; j++) {
+                       x = x0 + d * j;
+                       weight = sinc(x*scale*r->i_inc)*scale/M_PI;
+                       weight *= window_func(x/r->halftaps*r->i_inc);
+                       c0 += weight * ptr[(start + j + r->filter_length)*2 + 0];
+                       c1 += weight * ptr[(start + j + r->filter_length)*2 + 1];
+               }
+               o_ptr[0] = double_to_s16(c0);
+               o_ptr[1] = double_to_s16(c1);
+               o_ptr += 2;
+       }
+}
+
+
+
+
+/*
+ * Resampling audio is best done using a sinc() filter.
+ *
+ *
+ *  out[t] = Sum( in[t'] * sinc((t-t')/delta_t), all t')
+ *
+ * The immediate problem with this algorithm is that it involves a
+ * sum over an infinite number of input samples, both in the past
+ * and future.  Note that even though sinc(x) is bounded by 1/x,
+ * and thus decays to 0 for large x, since sum(x,{x=0,1..,n}) diverges
+ * as log(n), we need to be careful about convergence.  This is
+ * typically done by using a windowing function, which also makes
+ * the sum over a finite number of input samples.
+ *
+ * The next problem is computational:  sinc(), and especially
+ * sinc() multiplied by a non-trivial windowing function is expensive
+ * to calculate, and also difficult to find SIMD optimizations.  Since
+ * the time increment on input and output is different, it is not
+ * possible to use a FIR filter, because the taps would have to be
+ * recalculated for every t.
+ *
+ * To get around the expense of calculating sinc() for every point,
+ * we pre-calculate sinc() at a number of points, and then interpolate
+ * for the values we want in calculations.  The interpolation method
+ * chosen is bi-cubic, which requires both the evalated function and
+ * its derivative at every pre-sampled point.  Also, if the sampled
+ * points are spaced commensurate with the input delta_t, we notice
+ * that the interpolating weights are the same for every input point.
+ * This decreases the number of operations to 4 multiplies and 4 adds
+ * for each tap, regardless of the complexity of the filtering function.
+ * 
+ * At this point, it is possible to rearrange the problem as the sum
+ * of 4 properly weghted FIR filters.  Typical SIMD computation units
+ * are highly optimized for FIR filters, making long filter lengths
+ * reasonable.
+ */
+
+static functable_t *ft;
+
+double out_tmp[10000];
+
+static void resample_sinc_ft(resample_t * r)
+{
+       double *ptr;
+       signed short *o_ptr;
+       int i;
+       //int j;
+       double c0, c1;
+       //double a;
+       double start_f, start_x;
+       int start;
+       double center;
+       //double weight;
+       double x, d;
+       double scale;
+       int n = 4;
+
+       scale = r->i_inc;       // cutoff at 22050
+       //scale = 1.0;          // cutoff at 24000
+       //scale = r->i_inc * 0.5;       // cutoff at 11025
+
+       if(!ft){
+               ft = malloc(sizeof(*ft));
+               memset(ft,0,sizeof(*ft));
+
+               ft->len = (r->filter_length + 2) * n;
+               ft->offset = 1.0 / n;
+               ft->start = - ft->len * 0.5 * ft->offset;
+
+               ft->func_x = functable_sinc;
+               ft->func_dx = functable_dsinc;
+               ft->scale = M_PI * scale;
+
+               ft->func2_x = functable_window_std;
+               ft->func2_dx = functable_window_dstd;
+               ft->scale2 = 1.0 / r->halftaps;
+       
+               functable_init(ft);
+
+               //printf("len=%d offset=%g start=%g\n",ft->len,ft->offset,ft->start);
+       }
+
+       ptr = r->buffer;
+       o_ptr = (signed short *) r->o_buf;
+
+       center = r->o_start;
+       start_x = center - r->halftaps;
+       start_f = floor(start_x);
+       start_x -= start_f;
+       start = start_f;
+       for (i = 0; i < r->o_samples; i++) {
+               //start_f = floor(center - r->halftaps);
+//printf("%d: a=%g start=%d end=%d\n",i,a,start,start+r->filter_length-1);
+               x = start_f - center;
+               d = 1;
+               c0 = 0;
+               c1 = 0;
+//#define slow
+#ifdef slow
+               for (j = 0; j < r->filter_length; j++) {
+                       weight = functable_eval(ft,x)*scale;
+                       //weight = sinc(M_PI * scale * x)*scale*r->i_inc;
+                       //weight *= window_func(x / r->halftaps);
+                       c0 += weight * ptr[(start + j + r->filter_length)*2 + 0];
+                       c1 += weight * ptr[(start + j + r->filter_length)*2 + 1];
+                       x += d;
+               }
+#else
+               functable_fir2(ft,
+                       &c0,&c1,
+                       x, n,
+                       ptr+(start + r->filter_length)*2,
+                       r->filter_length);
+               c0 *= scale;
+               c1 *= scale;
+#endif
+
+               out_tmp[2 * i + 0] = c0;
+               out_tmp[2 * i + 1] = c1;
+               center += r->o_inc;
+               start_x += r->o_inc;
+               while(start_x>=1.0){
+                       start_f++;
+                       start_x -= 1.0;
+                       start++;
+               }
+       }
+
+       if(r->channels==2){
+               conv_short_double(r->o_buf,out_tmp,2 * r->o_samples);
+       }else{
+               conv_short_double_sstr(r->o_buf,out_tmp,r->o_samples,2 * sizeof(double));
+       }
+}
+
diff --git a/gst-libs/gst/resample/resample.h b/gst-libs/gst/resample/resample.h
new file mode 100644 (file)
index 0000000..1cc36ed
--- /dev/null
@@ -0,0 +1,159 @@
+/* Resampling library
+ * Copyright (C) <2001> David Schleef <ds@schleef.org>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Library General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Library General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 02111-1307, USA.
+ */
+
+
+#ifndef __RESAMPLE_H__
+#define __RESAMPLE_H__
+
+#include <config.h>
+
+typedef struct resample_s resample_t;
+
+struct resample_s {
+       /* parameters */
+
+       int method;
+       int channels;
+       int verbose;
+
+       int filter_length;
+
+       double i_rate;
+       double o_rate;
+
+       void *priv;
+
+       void *(*get_buffer)(void *priv, unsigned int size);
+
+       /* internal parameters */
+
+       double halftaps;
+
+       /* filter state */
+
+       void *buffer;
+       int buffer_len;
+
+       double i_start;
+       double o_start;
+
+       double i_start_buf;
+       double i_end_buf;
+
+       double i_inc;
+       double o_inc;
+
+       double i_end;
+       double o_end;
+
+       int i_samples;
+       int o_samples;
+
+       void *i_buf, *o_buf;
+
+       double acc[10];
+
+       /* methods */
+       void (*scale)(resample_t *r);
+
+       double ack;
+};
+
+enum{
+       RESAMPLE_NEAREST = 0,
+       RESAMPLE_BILINEAR,
+       RESAMPLE_SINC_SLOW,
+       RESAMPLE_SINC,
+};
+
+void resample_init(resample_t *r);
+void resample_reinit(resample_t *r);
+
+void resample_scale(resample_t *r, void *i_buf, unsigned int size);
+
+void resample_nearest(resample_t *r);
+void resample_bilinear(resample_t *r);
+void resample_sinc(resample_t *r);
+void resample_sinc_slow(resample_t *r);
+
+
+typedef struct functable_s functable_t;
+struct functable_s {
+       double start;
+       double offset;
+       int len;
+
+       double invoffset;
+
+       double scale;
+       double scale2;
+
+       double (*func_x)(void *,double x);
+       double (*func_dx)(void *,double x);
+
+       double (*func2_x)(void *,double x);
+       double (*func2_dx)(void *,double x);
+
+       double *fx;
+       double *fdx;
+
+       void *priv;
+};
+
+void functable_init(functable_t *t);
+double functable_eval(functable_t *t,double x);
+
+double functable_fir(functable_t *t,double x0,int n,double *data,int len);
+void functable_fir2(functable_t *t,double *r0, double *r1, double x0,
+       int n,double *data,int len);
+
+double functable_sinc(void *p, double x);
+double functable_dsinc(void *p, double x);
+double functable_window_std(void *p, double x);
+double functable_window_dstd(void *p, double x);
+double functable_window_boxcar(void *p, double x);
+double functable_window_dboxcar(void *p, double x);
+
+/* math lib stuff */
+
+void conv_double_short_table(double *dest, short *src, int n);
+void conv_double_short_unroll(double *dest, short *src, int n);
+void conv_double_short_ref(double *dest, short *src, int n);
+#ifdef HAVE_CPU_PPC
+void conv_double_short_altivec(double *dest, short *src, int n);
+#endif
+
+void conv_short_double_ref(short *dest, double *src, int n);
+#ifdef HAVE_CPU_PPC
+void conv_short_double_ppcasm(short *dest, double *src, int n);
+#endif
+
+#ifdef HAVE_CPU_PPC
+#define conv_double_short conv_double_short_table
+#define conv_short_double conv_short_double_ppcasm
+#else
+#define conv_double_short conv_double_short_ref
+#define conv_short_double conv_short_double_ref
+#endif
+
+void conv_double_short_dstr(double *dest, short *src, int n, int dstr);
+void conv_short_double_sstr(short *dest, double *src, int n, int dstr);
+
+#endif /* __RESAMPLE_H__ */
+
diff --git a/gst-libs/gst/resample/test.c b/gst-libs/gst/resample/test.c
new file mode 100644 (file)
index 0000000..44d19a6
--- /dev/null
@@ -0,0 +1,352 @@
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+#include <sys/time.h>
+
+#include <resample.h>
+
+#define AMP 16000
+#define I_RATE 48000
+#define O_RATE 44100
+//#define O_RATE 24000
+
+//#define test_func(x) 1
+//#define test_func(x) sin(2*M_PI*(x)*10)
+//#define test_func(x) sin(2*M_PI*(x)*(x)*1000)
+#define test_func(x) sin(2*M_PI*(x)*(x)*12000)
+
+short i_buf[I_RATE*2*2];
+short o_buf[O_RATE*2*2];
+
+static int i_offset;
+static int o_offset;
+
+FILE *out;
+
+void test_res1(void);
+void test_res2(void);
+void test_res3(void);
+void test_res4(void);
+void test_res5(void);
+void test_res6(void);
+void test_res7(void);
+
+int main(int argc,char *argv[])
+{
+       out = fopen("out","w");
+
+       test_res7();
+
+       return 0;
+}
+
+void *get_buffer(void *priv, unsigned int size)
+{
+       void *ret;
+       ret = ((void *)o_buf) + o_offset;
+       o_offset += size;
+       return ret;
+}
+
+struct timeval start_time;
+void start_timer(void)
+{
+       gettimeofday(&start_time,NULL);
+       //printf("start %ld.%06ld\n",start_time.tv_sec,start_time.tv_usec);
+}
+
+void end_timer(void)
+{
+       struct timeval end_time;
+       double diff;
+
+       gettimeofday(&end_time,NULL);
+       //printf("end %ld.%06ld\n",end_time.tv_sec,end_time.tv_usec);
+       diff = (end_time.tv_sec - start_time.tv_sec) +
+               1e-6*(end_time.tv_usec - start_time.tv_usec);
+
+       printf("time %g\n",diff);
+
+}
+
+void test_res1(void)
+{
+       resample_t *r;
+       int i;
+       double sum10k,sum22k;
+       double f;
+       int n10k,n22k;
+       double x;
+
+       for(i=0;i<I_RATE;i++){
+               i_buf[i*2+0] = rint(AMP * test_func((double)i/I_RATE));
+               //i_buf[i*2+1] = rint(AMP * test_func((double)i/I_RATE));
+               i_buf[i*2+1] = (i<1000)?AMP:0;
+       }
+
+       r = malloc(sizeof(resample_t));
+       memset(r,0,sizeof(resample_t));
+
+       r->i_rate = I_RATE;
+       r->o_rate = O_RATE;
+       //r->method = RESAMPLE_SINC_SLOW;
+       r->method = RESAMPLE_SINC;
+       r->channels = 2;
+       //r->verbose = 1;
+       r->filter_length = 64;
+       r->get_buffer = get_buffer;
+
+       resample_init(r);
+
+       start_timer();
+#define blocked
+#ifdef blocked
+       for(i=0;i+256<I_RATE;i+=256){
+               resample_scale(r,i_buf+i*2,256*2*2);
+       }
+       if(I_RATE-i){
+               resample_scale(r,i_buf+i*2,(I_RATE-i)*2*2);
+       }
+#else
+       resample_scale(r,i_buf,I_RATE*2*2);
+#endif
+       end_timer();
+
+       for(i=0;i<O_RATE;i++){
+               f = AMP*test_func((double)i/O_RATE);
+               //f = rint(AMP*test_func((double)i/O_RATE));
+               fprintf(out,"%d %d %d %g %g\n",i,
+                       o_buf[2*i+0],o_buf[2*i+1],
+                       f,o_buf[2*i+0]-f);
+       }
+
+       sum10k=0;
+       sum22k=0;
+       n10k=0;
+       n22k=0;
+       for(i=0;i<O_RATE;i++){
+               f = AMP*test_func((double)i/O_RATE);
+               //f = rint(AMP*test_func((double)i/O_RATE));
+               x = o_buf[2*i+0]-f;
+               if(((0.5*i)/O_RATE*I_RATE)<10000){
+                       sum10k += x*x;
+                       n10k++;
+               }
+               if(((0.5*i)/O_RATE*I_RATE)<22050){
+                       sum22k += x*x;
+                       n22k++;
+               }
+       }
+       printf("average error 10k=%g 22k=%g\n",
+               sqrt(sum10k/n10k),
+               sqrt(sum22k/n22k));
+}
+
+
+void test_res2(void)
+{
+       functable_t *t;
+       int i;
+       double x;
+       double f1,f2;
+
+       t = malloc(sizeof(*t));
+       memset(t,0,sizeof(*t));
+
+       t->start = -50.0;
+       t->offset = 1;
+       t->len = 100;
+
+       t->func_x = functable_sinc;
+       t->func_dx = functable_dsinc;
+
+       functable_init(t);
+
+       for(i=0;i<1000;i++){
+               x = -50.0 + 0.1 * i;
+               f1 = functable_sinc(NULL,x);
+               f2 = functable_eval(t,x);
+               fprintf(out,"%d %g %g %g\n",i,f1,f2,f1-f2);
+       }
+}
+
+void test_res3(void)
+{
+       functable_t *t;
+       int i;
+       double x;
+       double f1,f2;
+       int n = 1;
+
+       t = malloc(sizeof(*t));
+       memset(t,0,sizeof(*t));
+
+       t->start = -50.0;
+       t->offset = 1.0 / n;
+       t->len = 100 * n;
+
+       t->func_x = functable_sinc;
+       t->func_dx = functable_dsinc;
+
+       t->func2_x = functable_window_std;
+       t->func2_dx = functable_window_dstd;
+
+       t->scale = 1.0;
+       t->scale2 = 1.0 / (M_PI * 16);
+
+       functable_init(t);
+
+       for(i=0;i<1000 * n;i++){
+               x = -50.0 + 0.1/n * i;
+               f1 = functable_sinc(NULL,t->scale * x) *
+                       functable_window_std(NULL,t->scale2 * x);
+               f2 = functable_eval(t,x);
+               fprintf(out,"%d %g %g %g\n",i,f1,f2,f2-f1);
+       }
+}
+
+double sinc_poly(double x)
+{
+#define INV3FAC 1.66666666666666666e-1
+#define INV5FAC 8.33333333333333333e-3
+#define INV7FAC 1.984126984e-4
+#define INV9FAC 2.755731922e-6
+#define INV11FAC 2.505210839e-8
+       double x2 = x * x;
+
+       return 1
+               - x2 * INV3FAC
+               + x2 * x2 * INV5FAC
+               - x2 * x2 * x2 * INV7FAC;
+               //+ x2 * x2 * x2 * x2 * INV9FAC
+               //- x2 * x2 * x2 * x2 * x2 * INV11FAC;
+}
+
+void test_res4(void)
+{
+       int i;
+       double x,f1,f2;
+
+       for(i=1;i<100;i++){
+               x = 0.01 * i;
+               f1 = 1 - sin(x)/x;
+               f2 = 1 - sinc_poly(x);
+       
+               fprintf(out,"%g %.20g %.20g %.20g\n",x,f1,f2,f2-f1);
+       }
+}
+
+
+void test_res5(void)
+{
+       int i;
+       double sum;
+
+       start_timer();
+       sum = 0;
+       for(i=0;i<I_RATE;i++){
+               sum += i_buf[i*2];
+       }
+       end_timer();
+       i_buf[0] = sum;
+}
+
+
+void short_to_double(double *d,short *x) { *d = *x; }
+void short_to_float(float *f,short *x) { *f = *x; }
+void float_to_double(double *f,float *x) { *f = *x; }
+void double_to_short(short *f,double *x) { *f = *x; }
+
+double res6_tmp[1000];
+
+void test_res6(void)
+{
+       int i;
+
+       for(i=0;i<I_RATE;i++){
+               i_buf[i] = rint(AMP * test_func((double)i/I_RATE));
+       }
+
+       conv_double_short_ref(res6_tmp,i_buf,1000);
+       for(i=0;i<1000;i++){
+               res6_tmp[i] *= 3.0;
+       }
+       conv_short_double_ppcasm(o_buf,res6_tmp,1000);
+
+       for(i=0;i<1000;i++){
+               fprintf(out,"%d %d %g %d\n",i,i_buf[i],res6_tmp[i],o_buf[i]);
+       }
+}
+
+void test_res7(void)
+{
+       resample_t *r;
+       int i;
+       double sum10k,sum22k;
+       double f;
+       int n10k,n22k;
+       double x;
+
+       for(i=0;i<I_RATE;i++){
+               i_buf[i] = rint(AMP * test_func((double)i/I_RATE));
+       }
+
+       r = malloc(sizeof(resample_t));
+       memset(r,0,sizeof(resample_t));
+
+       r->i_rate = I_RATE;
+       r->o_rate = O_RATE;
+       //r->method = RESAMPLE_SINC_SLOW;
+       r->method = RESAMPLE_SINC;
+       r->channels = 1;
+       //r->verbose = 1;
+       r->filter_length = 64;
+       r->get_buffer = get_buffer;
+
+       resample_init(r);
+
+       start_timer();
+#define blocked
+#ifdef blocked
+       for(i=0;i+256<I_RATE;i+=256){
+               resample_scale(r,i_buf+i,256*2);
+       }
+       if(I_RATE-i){
+               resample_scale(r,i_buf+i,(I_RATE-i)*2);
+       }
+#else
+       resample_scale(r,i_buf,I_RATE*2);
+#endif
+       end_timer();
+
+       for(i=0;i<O_RATE;i++){
+               f = AMP*test_func((double)i/O_RATE);
+               //f = rint(AMP*test_func((double)i/O_RATE));
+               fprintf(out,"%d %d %d %g %g\n",i,
+                       o_buf[i],0,
+                       f,o_buf[i]-f);
+       }
+
+       sum10k=0;
+       sum22k=0;
+       n10k=0;
+       n22k=0;
+       for(i=0;i<O_RATE;i++){
+               f = AMP*test_func((double)i/O_RATE);
+               //f = rint(AMP*test_func((double)i/O_RATE));
+               x = o_buf[i]-f;
+               if(((0.5*i)/O_RATE*I_RATE)<10000){
+                       sum10k += x*x;
+                       n10k++;
+               }
+               if(((0.5*i)/O_RATE*I_RATE)<22050){
+                       sum22k += x*x;
+                       n22k++;
+               }
+       }
+       printf("average error 10k=%g 22k=%g\n",
+               sqrt(sum10k/n10k),
+               sqrt(sum22k/n22k));
+}
+