}
break;
}
+ case Instruction::UDiv: {
+ // UDiv doesn't demand low bits that are zero in the divisor.
+ const APInt *SA;
+ if (match(I->getOperand(1), m_APInt(SA))) {
+ // If the shift is exact, then it does demand the low bits.
+ if (cast<UDivOperator>(I)->isExact())
+ break;
+
+ // FIXME: Take the demanded mask of the result into account.
+ APInt DemandedMaskIn =
+ APInt::getHighBitsSet(BitWidth, BitWidth - SA->countTrailingZeros());
+ if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
+ return I;
+ }
+ break;
+ }
case Instruction::SRem:
if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
// X % -1 demands all the bits because we don't want to introduce
store i1 %C9, i1* undef
ret i177 %B1
}
+
+define i32 @udiv_demanded(i32 %a) {
+; CHECK-LABEL: @udiv_demanded(
+; CHECK-NEXT: [[U:%.*]] = udiv i32 [[A:%.*]], 12
+; CHECK-NEXT: ret i32 [[U]]
+;
+ %o = or i32 %a, 3
+ %u = udiv i32 %o, 12
+ ret i32 %u
+}
+
+define i32 @udiv_exact_demanded(i32 %a) {
+; CHECK-LABEL: @udiv_exact_demanded(
+; CHECK-NEXT: [[O:%.*]] = and i32 [[A:%.*]], -3
+; CHECK-NEXT: [[U:%.*]] = udiv exact i32 [[O]], 12
+; CHECK-NEXT: ret i32 [[U]]
+;
+ %o = and i32 %a, -3
+ %u = udiv exact i32 %o, 12
+ ret i32 %u
+}