[mlir][OpDSL] Fix OpDSL tests after https://reviews.llvm.org/D114680.
authorgysit <gysit@google.com>
Tue, 30 Nov 2021 08:49:22 +0000 (08:49 +0000)
committergysit <gysit@google.com>
Tue, 30 Nov 2021 08:57:28 +0000 (08:57 +0000)
Update the shapes of the convolution / pooling tests that where detected after enabling verification during printing (https://reviews.llvm.org/D114680). Also split the emit_structured_generic.py file that previously contained all tests into multiple separate files to simplify debugging.

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D114731

mlir/test/python/dialects/linalg/opdsl/emit_convolution.py [new file with mode: 0644]
mlir/test/python/dialects/linalg/opdsl/emit_matmul.py [new file with mode: 0644]
mlir/test/python/dialects/linalg/opdsl/emit_misc.py [new file with mode: 0644]
mlir/test/python/dialects/linalg/opdsl/emit_pooling.py [new file with mode: 0644]
mlir/test/python/dialects/linalg/opdsl/emit_structured_generic.py [deleted file]

diff --git a/mlir/test/python/dialects/linalg/opdsl/emit_convolution.py b/mlir/test/python/dialects/linalg/opdsl/emit_convolution.py
new file mode 100644 (file)
index 0000000..44b3c77
--- /dev/null
@@ -0,0 +1,58 @@
+# RUN: %PYTHON %s | FileCheck %s
+
+from mlir.ir import *
+from mlir.dialects import builtin
+from mlir.dialects import linalg
+from mlir.dialects import std
+
+from mlir.dialects.linalg.opdsl.lang import *
+
+T1 = TV.T1
+T2 = TV.T2
+
+
+@linalg_structured_op
+def conv_poly(
+    I=TensorDef(T1, S.N, S.IH, S.IW, S.C),
+    K=TensorDef(T2, S.KH, S.KW, S.C),
+    O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True),
+    strides=AttributeDef(S.SH, S.SW),
+    dilations=AttributeDef(S.DH, S.DW)):
+  domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
+  O[D.n, D.oh, D.ow, D.c] += cast(
+      U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
+           D.c]) * cast(U, K[D.kh, D.kw, D.c])
+
+
+with Context() as ctx, Location.unknown():
+  module = Module.create()
+  f32 = F32Type.get()
+  i32 = IntegerType.get_signless(32)
+  with InsertionPoint(module.body):
+
+    # Convolution indexing maps.
+    # CHECK: #[[$CONV_MAP_I:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1 * 2 + d3, d2 * 4 + d4 * 2, d5)>
+    # CHECK: #[[$CONV_MAP_K:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3, d4, d5)>
+    # CHECK: #[[$CONV_MAP_O:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d5)>
+
+    # CHECK-LABEL: @test_f32i32_conv
+    # CHECK: linalg.generic
+    # CHECK-SAME: indexing_maps = [#[[$CONV_MAP_I]], #[[$CONV_MAP_K]], #[[$CONV_MAP_O]]]
+    # CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
+    # CHECK:      ^{{.*}}(%[[IN:.+]]: f32, %[[FILTER:.+]]: f32, %[[OUT:.+]]: i32)
+    # CHECK-NEXT:   %[[IN_CAST:.+]] = arith.fptosi %[[IN:.+]] : f32 to i32
+    # CHECK-NEXT:   %[[FILTER_CAST:.+]] = arith.fptosi %[[FILTER:.+]] : f32 to i32
+    # CHECK-NEXT:   %[[PROD:.+]] = arith.muli %[[IN_CAST]], %[[FILTER_CAST]] : i32
+    # CHECK-NEXT:   %[[SUM:.+]] = arith.addi %[[OUT]], %[[PROD]] : i32
+    # CHECK-NEXT:   linalg.yield %[[SUM]] : i32
+    # CHECK-NEXT: -> tensor<1x2x4x1xi32>
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((1, 4, 16, 1), f32),
+        RankedTensorType.get((2, 2, 1), f32),
+        RankedTensorType.get((1, 2, 4, 1), i32))
+    def test_f32i32_conv(input, filter, init_result):
+      return conv_poly(
+          input, filter, outs=[init_result], strides=[2, 4], dilations=[1, 2])
+
+
+print(module)
diff --git a/mlir/test/python/dialects/linalg/opdsl/emit_matmul.py b/mlir/test/python/dialects/linalg/opdsl/emit_matmul.py
new file mode 100644 (file)
index 0000000..978cddc
--- /dev/null
@@ -0,0 +1,176 @@
+# RUN: %PYTHON %s | FileCheck %s
+
+from mlir.ir import *
+from mlir.dialects import builtin
+from mlir.dialects import linalg
+from mlir.dialects import std
+
+from mlir.dialects.linalg.opdsl.lang import *
+
+T1 = TV.T1
+T2 = TV.T2
+
+
+@linalg_structured_op
+def matmul_mono(
+    A=TensorDef(T, S.M, S.K),
+    B=TensorDef(T, S.K, S.N),
+    C=TensorDef(T, S.M, S.N, output=True)):
+  domain(D.m, D.n, D.k)
+  C[D.m, D.n] += A[D.m, D.k] * B[D.k, D.n]
+
+
+@linalg_structured_op
+def matmul_poly(
+    A=TensorDef(T1, S.M, S.K),
+    B=TensorDef(T2, S.K, S.N),
+    C=TensorDef(U, S.M, S.N, output=True)):
+  domain(D.m, D.n, D.k)
+  C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
+
+
+@linalg_structured_op
+def matmul_unsigned_poly(
+    A=TensorDef(T1, S.M, S.K),
+    B=TensorDef(T2, S.K, S.N),
+    C=TensorDef(U, S.M, S.N, output=True)):
+  domain(D.m, D.n, D.k)
+  C[D.m, D.n] += cast_unsigned(U, A[D.m, D.k]) * cast_unsigned(U, B[D.k, D.n])
+
+
+with Context() as ctx, Location.unknown():
+  module = Module.create()
+  f16 = F16Type.get()
+  f32 = F32Type.get()
+  f64 = F64Type.get()
+  i8 = IntegerType.get_signless(8)
+  i16 = IntegerType.get_signless(16)
+  i32 = IntegerType.get_signless(32)
+  with InsertionPoint(module.body):
+
+    # Multiplication indexing maps. We verify only the indexing maps of the
+    # first multiplication and then do additional tests on casting and body
+    # generation behavior.
+    # CHECK: #[[$MUL_MAP_A:.+]] = affine_map<(d0, d1, d2) -> (d0, d2)>
+    # CHECK: #[[$MUL_MAP_B:.+]] = affine_map<(d0, d1, d2) -> (d2, d1)>
+    # CHECK: #[[$MUL_MAP_C:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+
+    # CHECK-LABEL: func @test_matmul_mono
+    # CHECK-SAME:  %[[A:.+]]: tensor<4x16xf32>
+    # CHECK-SAME:  %[[B:.+]]: tensor<16x8xf32>
+    # CHECK: %[[INITC:.+]] = linalg.init_tensor [4, 8] : tensor<4x8xf32>
+    # CHECK: linalg.generic
+    # CHECK-SAME: indexing_maps = [#[[$MUL_MAP_A]], #[[$MUL_MAP_B]], #[[$MUL_MAP_C]]]
+    # CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"]
+    # CHECK-SAME: ins(%[[A]], %[[B]]
+    # CHECK-SAME: outs(%[[INITC]]
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8), f32))
+    def test_matmul_mono(lhs, rhs):
+      init_result = linalg.InitTensorOp([4, 8], f32)
+      return matmul_mono(lhs, rhs, outs=[init_result.result])
+
+    # CHECK-LABEL: @test_i8i8i32_matmul
+    # CHECK:      ^{{.*}}(%[[A_ARG:.+]]: i8, %[[B_ARG:.+]]: i8, %[[C_ARG:.+]]: i32)
+    # CHECK-NEXT:   %[[A_CAST:.+]] = arith.extsi %[[A_ARG]] : i8 to i32
+    # CHECK-NEXT:   %[[B_CAST:.+]] = arith.extsi %[[B_ARG]] : i8 to i32
+    # CHECK-NEXT:   %[[MUL:.+]] = arith.muli %[[A_CAST]], %[[B_CAST]] : i32
+    # CHECK-NEXT:   %[[ADD:.+]] = arith.addi %[[C_ARG]], %[[MUL]] : i32
+    # CHECK-NEXT:   linalg.yield %[[ADD]] : i32
+    # CHECK-NEXT: -> tensor<4x8xi32>
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((4, 16), i8), RankedTensorType.get((16, 8), i8),
+        RankedTensorType.get((4, 8), i32))
+    def test_i8i8i32_matmul(lhs, rhs, init_result):
+      return matmul_poly(lhs, rhs, outs=[init_result])
+
+    # CHECK-LABEL: @test_i8i8i32_matmul_unsigned
+    # CHECK:   = arith.extui
+    # CHECK:   = arith.extui
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((4, 16), i8), RankedTensorType.get((16, 8), i8),
+        RankedTensorType.get((4, 8), i32))
+    def test_i8i8i32_matmul_unsigned(lhs, rhs, init_result):
+      return matmul_unsigned_poly(lhs, rhs, outs=[init_result])
+
+    # CHECK-LABEL: @test_i8i16i32_matmul
+    # CHECK:      ^{{.*}}(%[[A_ARG:.+]]: i8, %[[B_ARG:.+]]: i16, %[[C_ARG:.+]]: i32)
+    # CHECK-NEXT:   %[[A_CAST:.+]] = arith.extsi %[[A_ARG]] : i8 to i32
+    # CHECK-NEXT:   %[[B_CAST:.+]] = arith.extsi %[[B_ARG]] : i16 to i32
+    # CHECK-NEXT:   %[[MUL:.+]] = arith.muli %[[A_CAST]], %[[B_CAST]] : i32
+    # CHECK-NEXT:   %[[ADD:.+]] = arith.addi %[[C_ARG]], %[[MUL]] : i32
+    # CHECK-NEXT:   linalg.yield %[[ADD]] : i32
+    # CHECK-NEXT: -> tensor<4x8xi32>
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((4, 16), i8), RankedTensorType.get((16, 8), i16),
+        RankedTensorType.get((4, 8), i32))
+    def test_i8i16i32_matmul(lhs, rhs, init_result):
+      return matmul_poly(lhs, rhs, outs=[init_result])
+
+    # CHECK-LABEL: @test_i32i32i16_matmul
+    # CHECK:      ^{{.*}}(%[[A_ARG:.+]]: i32, %[[B_ARG:.+]]: i32, %[[C_ARG:.+]]: i16)
+    # CHECK-NEXT:   %[[A_CAST:.+]] = arith.trunci %[[A_ARG]] : i32 to i16
+    # CHECK-NEXT:   %[[B_CAST:.+]] = arith.trunci %[[B_ARG]] : i32 to i16
+    # CHECK-NEXT:   %[[MUL:.+]] = arith.muli %[[A_CAST]], %[[B_CAST]] : i16
+    # CHECK-NEXT:   %[[ADD:.+]] = arith.addi %[[C_ARG]], %[[MUL]] : i16
+    # CHECK-NEXT:   linalg.yield %[[ADD]] : i16
+    # CHECK-NEXT: -> tensor<4x8xi16>
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((4, 16), i32), RankedTensorType.get((16, 8), i32),
+        RankedTensorType.get((4, 8), i16))
+    def test_i32i32i16_matmul(lhs, rhs, init_result):
+      return matmul_poly(lhs, rhs, outs=[init_result])
+
+    # CHECK-LABEL: @test_i8i8f32_matmul
+    # CHECK:      ^{{.*}}(%[[A_ARG:.+]]: i8, %[[B_ARG:.+]]: i8, %[[C_ARG:.+]]: f32)
+    # CHECK-NEXT:   %[[A_CAST:.+]] = arith.sitofp %[[A_ARG]] : i8 to f32
+    # CHECK-NEXT:   %[[B_CAST:.+]] = arith.sitofp %[[B_ARG]] : i8 to f32
+    # CHECK-NEXT:   %[[MUL:.+]] = arith.mulf %[[A_CAST]], %[[B_CAST]] : f32
+    # CHECK-NEXT:   %[[ADD:.+]] = arith.addf %[[C_ARG]], %[[MUL]] : f32
+    # CHECK-NEXT:   linalg.yield %[[ADD]] : f32
+    # CHECK-NEXT: -> tensor<4x8xf32>
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((4, 16), i8), RankedTensorType.get((16, 8), i8),
+        RankedTensorType.get((4, 8), f32))
+    def test_i8i8f32_matmul(lhs, rhs, init_result):
+      return matmul_poly(lhs, rhs, outs=[init_result])
+
+    # CHECK-LABEL: @test_i8i8f32_matmul_unsigned
+    # CHECK:   = arith.uitofp
+    # CHECK:   = arith.uitofp
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((4, 16), i8), RankedTensorType.get((16, 8), i8),
+        RankedTensorType.get((4, 8), f32))
+    def test_i8i8f32_matmul_unsigned(lhs, rhs, init_result):
+      return matmul_unsigned_poly(lhs, rhs, outs=[init_result])
+
+    # CHECK-LABEL: @test_f16f16f32_matmul
+    # CHECK:      ^{{.*}}(%[[A_ARG:.+]]: f16, %[[B_ARG:.+]]: f16, %[[C_ARG:.+]]: f32)
+    # CHECK-NEXT:   %[[A_CAST:.+]] = arith.extf %[[A_ARG]] : f16 to f32
+    # CHECK-NEXT:   %[[B_CAST:.+]] = arith.extf %[[B_ARG]] : f16 to f32
+    # CHECK-NEXT:   %[[MUL:.+]] = arith.mulf %[[A_CAST]], %[[B_CAST]] : f32
+    # CHECK-NEXT:   %[[ADD:.+]] = arith.addf %[[C_ARG]], %[[MUL]] : f32
+    # CHECK-NEXT:   linalg.yield %[[ADD]] : f32
+    # CHECK-NEXT: -> tensor<4x8xf32>
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((4, 16), f16), RankedTensorType.get((16, 8), f16),
+        RankedTensorType.get((4, 8), f32))
+    def test_f16f16f32_matmul(lhs, rhs, init_result):
+      return matmul_poly(lhs, rhs, outs=[init_result])
+
+    # CHECK-LABEL: @test_f64f64f32_matmul
+    # CHECK:      ^{{.*}}(%[[A_ARG:.+]]: f64, %[[B_ARG:.+]]: f64, %[[C_ARG:.+]]: f32)
+    # CHECK-NEXT:   %[[A_CAST:.+]] = arith.truncf %[[A_ARG]] : f64 to f32
+    # CHECK-NEXT:   %[[B_CAST:.+]] = arith.truncf %[[B_ARG]] : f64 to f32
+    # CHECK-NEXT:   %[[MUL:.+]] = arith.mulf %[[A_CAST]], %[[B_CAST]] : f32
+    # CHECK-NEXT:   %[[ADD:.+]] = arith.addf %[[C_ARG]], %[[MUL]] : f32
+    # CHECK-NEXT:   linalg.yield %[[ADD]] : f32
+    # CHECK-NEXT: -> tensor<4x8xf32>
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((4, 16), f64), RankedTensorType.get((16, 8), f64),
+        RankedTensorType.get((4, 8), f32))
+    def test_f64f64f32_matmul(lhs, rhs, init_result):
+      return matmul_poly(lhs, rhs, outs=[init_result])
+
+
+print(module)
diff --git a/mlir/test/python/dialects/linalg/opdsl/emit_misc.py b/mlir/test/python/dialects/linalg/opdsl/emit_misc.py
new file mode 100644 (file)
index 0000000..69d44a6
--- /dev/null
@@ -0,0 +1,93 @@
+# RUN: %PYTHON %s | FileCheck %s
+
+from mlir.ir import *
+from mlir.dialects import builtin
+from mlir.dialects import linalg
+from mlir.dialects import std
+
+from mlir.dialects.linalg.opdsl.lang import *
+
+# This tests miscellaneous features of the emitter that are not tested by the
+# matmul, convolution, or, pooling tests. The features include:
+# - constant defined in the body
+# - fix/predefined types
+# - exponential functions
+# - custom op names.
+
+@linalg_structured_op
+def fill_rng_poly(
+    min=ScalarDef(F64),
+    max=ScalarDef(F64),
+    seed=ScalarDef(I32),
+    O=TensorDef(T, S.M, S.N, output=True)):
+  multiplier = cast(I32, const(1103515245))
+  increment = cast(I32, const(12345))
+  rand1 = (cast(I32, index(D.m)) + seed) * multiplier + increment
+  rand2 = (cast(I32, index(D.n)) + rand1) * multiplier + increment
+  inv_range = cast(F64, const(2.3283064e-10))
+  offset = cast(F64, const(2147483647))
+  scaling = (max - min) * inv_range
+  O[D.m, D.n] = cast(T, (offset + cast(F64, rand2)) * scaling + min)
+
+
+@linalg_structured_op
+def soft_plus_poly(
+    I=TensorDef(T, S.M, S.N), O=TensorDef(U, S.M, S.N, output=True)):
+  O[D.m, D.n] = \
+      PrimFn.log(cast(U, const(1.0)) + cast(U, PrimFn.exp(I[D.m, D.n])))
+
+
+@linalg_structured_op(op_name="custom_op_name")
+def non_default_op_name(I=TensorDef(T, S.N), O=TensorDef(T, S.N, output=True)):
+  O[D.n] = I[D.n]
+
+
+with Context() as ctx, Location.unknown():
+  module = Module.create()
+  f32 = F32Type.get()
+  f64 = F64Type.get()
+  i32 = IntegerType.get_signless(32)
+  with InsertionPoint(module.body):
+
+    # CHECK-LABEL: @test_i32_fill_rng
+    # CHECK:      ^{{.*}}(%[[MIN:.+]]: f64, %[[MAX:.+]]: f64, %[[SEED:.+]]: i32, %{{.*}}
+    # CHECK-DAG:    %[[IDX0:.+]] = linalg.index 0 : index
+    # CHECK-DAG:    %[[IDX0_CAST:.+]] = arith.index_cast %[[IDX0]] : index to i32
+    # CHECK-DAG:    %[[RND0:.+]] = arith.addi %[[IDX0_CAST]], %[[SEED]] : i32
+    # CHECK-DAG:    %[[CST0:.+]] = arith.constant 1103515245 : i64
+    # CHECK-DAG:    %[[CST0_CAST:.+]] = arith.trunci %[[CST0]] : i64 to i32
+    # Skip the remaining random number computation and match the scaling logic.
+    # CHECK-DAG:    %[[DIFF:.+]] = arith.subf %[[MAX]], %[[MIN]] : f64
+    # CHECK-DAG:    %[[CST3:.+]] = arith.constant 2.3283063999999999E-10 : f64
+    # CHECK-DAG:    %[[FACT:.+]] = arith.mulf %[[DIFF]], %[[CST3]] : f64
+    # CHECK-DAG:    %[[RND4:.+]] = arith.mulf %{{.+}}, %[[FACT]] : f64
+    # CHECK-DAG:    %[[RND5:.+]] = arith.addf %[[RND4]], %[[MIN]] : f64
+    # CHECK-DAG:    %{{.*}} = arith.fptosi %[[RND5]] : f64 to i32
+    @builtin.FuncOp.from_py_func(f64, f64, i32,
+                                 RankedTensorType.get((4, 16), i32))
+    def test_i32_fill_rng(min, max, seed, init_result):
+      return fill_rng_poly(min, max, seed, outs=[init_result])
+
+    # CHECK-LABEL: @test_f32_soft_plus
+    # CHECK:      ^{{.*}}(%[[IN:.+]]: f32, %[[OUT:.+]]: f32)
+    # CHECK-NEXT:   %[[C1:.+]] = arith.constant 1.000000e+00 : f64
+    # CHECK-NEXT:   %[[C1_CAST:.+]] = arith.truncf %[[C1]] : f64 to f32
+    # CHECK-NEXT:   %[[EXP:.+]] = math.exp %[[IN]] : f32
+    # CHECK-NEXT:   %[[SUM:.+]] = arith.addf %[[C1_CAST]], %[[EXP]] : f32
+    # CHECK-NEXT:   %[[LOG:.+]] = math.log %[[SUM]] : f32
+    # CHECK-NEXT:   linalg.yield %[[LOG]] : f32
+    # CHECK-NEXT: -> tensor<4x16xf32>
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((4, 16), f32), RankedTensorType.get((4, 16), f32))
+    def test_f32_soft_plus(input, init_result):
+      return soft_plus_poly(input, outs=[init_result])
+
+    # Just check that we don't assert out on name mismatch.
+    # CHECK-LABEL: @test_non_default_op_name
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((42,), f32), RankedTensorType.get((42,), f32))
+    def test_non_default_op_name(input, init_result):
+      return non_default_op_name(input, outs=[init_result])
+
+
+print(module)
diff --git a/mlir/test/python/dialects/linalg/opdsl/emit_pooling.py b/mlir/test/python/dialects/linalg/opdsl/emit_pooling.py
new file mode 100644 (file)
index 0000000..2bc8be3
--- /dev/null
@@ -0,0 +1,154 @@
+# RUN: %PYTHON %s | FileCheck %s
+
+from mlir.ir import *
+from mlir.dialects import builtin
+from mlir.dialects import linalg
+from mlir.dialects import std
+
+from mlir.dialects.linalg.opdsl.lang import *
+
+T1 = TV.T1
+T2 = TV.T2
+
+
+@linalg_structured_op
+def pooling_max_poly(
+    I=TensorDef(T1, S.N, S.H, S.W, S.C),
+    K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]),
+    O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True),
+    strides=AttributeDef(S.SH, S.SW),
+    dilations=AttributeDef(S.DH, S.DW)):
+  domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
+  O[D.n, D.oh, D.ow, D.c] = ReduceFn.max(D.kh, D.kw)(
+      cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
+                D.c]))
+
+
+@linalg_structured_op
+def pooling_max_unsigned_poly(
+    I=TensorDef(T1, S.N, S.H, S.W, S.C),
+    K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]),
+    O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True),
+    strides=AttributeDef(S.SH, S.SW),
+    dilations=AttributeDef(S.DH, S.DW)):
+  domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
+  O[D.n, D.oh, D.ow, D.c] = ReduceFn.max_unsigned(D.kh, D.kw)(
+      cast_unsigned(
+          U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c]))
+
+
+@linalg_structured_op
+def pooling_min_poly(
+    I=TensorDef(T1, S.N, S.H, S.W, S.C),
+    K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]),
+    O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True),
+    strides=AttributeDef(S.SH, S.SW),
+    dilations=AttributeDef(S.DH, S.DW)):
+  domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
+  O[D.n, D.oh, D.ow, D.c] = ReduceFn.min(D.kh, D.kw)(
+      cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
+                D.c]))
+
+
+@linalg_structured_op
+def pooling_min_unsigned_poly(
+    I=TensorDef(T1, S.N, S.H, S.W, S.C),
+    K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]),
+    O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True),
+    strides=AttributeDef(S.SH, S.SW),
+    dilations=AttributeDef(S.DH, S.DW)):
+  domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
+  O[D.n, D.oh, D.ow, D.c] = ReduceFn.min_unsigned(D.kh, D.kw)(
+      cast_unsigned(
+          U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c]))
+
+
+with Context() as ctx, Location.unknown():
+  module = Module.create()
+  f32 = F32Type.get()
+  i32 = IntegerType.get_signless(32)
+  with InsertionPoint(module.body):
+
+    # Pooling indexing maps.
+    # CHECK: #[[$POOL_MAP_I:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1 * 2 + d3, d2 * 4 + d4 * 2, d5)>
+    # CHECK: #[[$POOL_MAP_K:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3, d4)>
+    # CHECK: #[[$POOL_MAP_O:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d5)>
+
+    # CHECK-LABEL: @test_f32i32_max_pooling
+    # CHECK: linalg.generic
+    # CHECK-SAME: indexing_maps = [#[[$POOL_MAP_I]], #[[$POOL_MAP_K]], #[[$POOL_MAP_O]]]
+    # CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
+    # CHECK:      ^{{.*}}(%[[IN:.+]]: f32, %[[SHAPE:.+]]: f32, %[[OUT:.+]]: i32)
+    # CHECK-NEXT:   %[[IN_CAST:.+]] = arith.fptosi %[[IN:.+]] : f32 to i32
+    # CHECK-NEXT:   %[[MAX:.+]] = arith.maxsi %[[OUT]], %[[IN_CAST:.+]] : i32
+    # CHECK-NEXT:   linalg.yield %[[MAX]] : i32
+    # CHECK-NEXT: -> tensor<1x2x4x1xi32>
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((1, 4, 16, 1), f32),
+        RankedTensorType.get((2, 2), f32),
+        RankedTensorType.get((1, 2, 4, 1), i32))
+    def test_f32i32_max_pooling(input, shape, init_result):
+      return pooling_max_poly(
+          input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
+
+    # CHECK-LABEL: @test_f32i32_max_unsigned_pooling
+    # CHECK:   = arith.fptoui
+    # CHECK:   = arith.maxui
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((1, 4, 16, 1), f32),
+        RankedTensorType.get((2, 2), f32),
+        RankedTensorType.get((1, 2, 4, 1), i32))
+    def test_f32i32_max_unsigned_pooling(input, shape, init_result):
+      return pooling_max_unsigned_poly(
+          input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
+
+    # CHECK-LABEL: @test_f32f32_max_pooling
+    # CHECK: linalg.generic
+    # CHECK-SAME: indexing_maps = [#[[$POOL_MAP_I]], #[[$POOL_MAP_K]], #[[$POOL_MAP_O]]]
+    # CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
+    # CHECK:      ^{{.*}}(%[[IN:.+]]: f32, %[[SHAPE:.+]]: f32, %[[OUT:.+]]: f32)
+    # CHECK-NEXT:   %[[MAX:.+]] = arith.maxf %[[OUT]], %[[IN:.+]] : f32
+    # CHECK-NEXT:   linalg.yield %[[MAX]] : f32
+    # CHECK-NEXT: -> tensor<1x2x4x1xf32>
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((1, 4, 16, 1), f32),
+        RankedTensorType.get((2, 2), f32),
+        RankedTensorType.get((1, 2, 4, 1), f32))
+    def test_f32f32_max_pooling(input, shape, init_result):
+      return pooling_max_poly(
+          input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
+
+    # CHECK-LABEL: @test_f32i32_min_pooling
+    # CHECK:   = arith.fptosi
+    # CHECK:   = arith.minsi
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((1, 4, 16, 1), f32),
+        RankedTensorType.get((2, 2), f32),
+        RankedTensorType.get((1, 2, 4, 1), i32))
+    def test_f32i32_min_pooling(input, shape, init_result):
+      return pooling_min_poly(
+          input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
+
+    # CHECK-LABEL: @test_f32i32_min_unsigned_pooling
+    # CHECK:   = arith.fptoui
+    # CHECK:   = arith.minui
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((1, 4, 16, 1), f32),
+        RankedTensorType.get((2, 2), f32),
+        RankedTensorType.get((1, 2, 4, 1), i32))
+    def test_f32i32_min_unsigned_pooling(input, shape, init_result):
+      return pooling_min_unsigned_poly(
+          input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
+
+    # CHECK-LABEL: @test_f32f32_min_pooling
+    # CHECK:   = arith.minf
+    @builtin.FuncOp.from_py_func(
+        RankedTensorType.get((1, 4, 16, 1), f32),
+        RankedTensorType.get((2, 2), f32),
+        RankedTensorType.get((1, 2, 4, 1), f32))
+    def test_f32f32_min_pooling(input, shape, init_result):
+      return pooling_min_poly(
+          input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
+
+
+print(module)
diff --git a/mlir/test/python/dialects/linalg/opdsl/emit_structured_generic.py b/mlir/test/python/dialects/linalg/opdsl/emit_structured_generic.py
deleted file mode 100644 (file)
index 115c227..0000000
+++ /dev/null
@@ -1,411 +0,0 @@
-# RUN: %PYTHON %s | FileCheck %s
-
-from mlir.ir import *
-from mlir.dialects import builtin
-from mlir.dialects import linalg
-from mlir.dialects import std
-
-from mlir.dialects.linalg.opdsl.lang import *
-
-T1 = TV.T1
-T2 = TV.T2
-
-
-@linalg_structured_op
-def matmul_mono(
-    A=TensorDef(T, S.M, S.K),
-    B=TensorDef(T, S.K, S.N),
-    C=TensorDef(T, S.M, S.N, output=True)):
-  domain(D.m, D.n, D.k)
-  C[D.m, D.n] += A[D.m, D.k] * B[D.k, D.n]
-
-
-@linalg_structured_op
-def matmul_poly(
-    A=TensorDef(T1, S.M, S.K),
-    B=TensorDef(T2, S.K, S.N),
-    C=TensorDef(U, S.M, S.N, output=True)):
-  domain(D.m, D.n, D.k)
-  C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
-
-
-@linalg_structured_op
-def matmul_unsigned_poly(
-    A=TensorDef(T1, S.M, S.K),
-    B=TensorDef(T2, S.K, S.N),
-    C=TensorDef(U, S.M, S.N, output=True)):
-  domain(D.m, D.n, D.k)
-  C[D.m, D.n] += cast_unsigned(U, A[D.m, D.k]) * cast_unsigned(U, B[D.k, D.n])
-
-
-@linalg_structured_op
-def conv_poly(
-    I=TensorDef(T1, S.N, S.IH, S.IW, S.C),
-    K=TensorDef(T2, S.KH, S.KW, S.C),
-    O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True),
-    strides=AttributeDef(S.SH, S.SW),
-    dilations=AttributeDef(S.DH, S.DW)):
-  domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
-  O[D.n, D.oh, D.ow, D.c] += cast(
-      U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
-           D.c]) * cast(U, K[D.kh, D.kw, D.c])
-
-
-@linalg_structured_op
-def pooling_max_poly(
-    I=TensorDef(T1, S.N, S.H, S.W, S.C),
-    K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]),
-    O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True),
-    strides=AttributeDef(S.SH, S.SW),
-    dilations=AttributeDef(S.DH, S.DW)):
-  domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
-  O[D.n, D.oh, D.ow, D.c] = ReduceFn.max(D.kh, D.kw)(
-      cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
-                D.c]))
-
-
-@linalg_structured_op
-def pooling_max_unsigned_poly(
-    I=TensorDef(T1, S.N, S.H, S.W, S.C),
-    K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]),
-    O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True),
-    strides=AttributeDef(S.SH, S.SW),
-    dilations=AttributeDef(S.DH, S.DW)):
-  domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
-  O[D.n, D.oh, D.ow, D.c] = ReduceFn.max_unsigned(D.kh, D.kw)(
-      cast_unsigned(
-          U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c]))
-
-
-@linalg_structured_op
-def pooling_min_poly(
-    I=TensorDef(T1, S.N, S.H, S.W, S.C),
-    K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]),
-    O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True),
-    strides=AttributeDef(S.SH, S.SW),
-    dilations=AttributeDef(S.DH, S.DW)):
-  domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
-  O[D.n, D.oh, D.ow, D.c] = ReduceFn.min(D.kh, D.kw)(
-      cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
-                D.c]))
-
-
-@linalg_structured_op
-def pooling_min_unsigned_poly(
-    I=TensorDef(T1, S.N, S.H, S.W, S.C),
-    K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]),
-    O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True),
-    strides=AttributeDef(S.SH, S.SW),
-    dilations=AttributeDef(S.DH, S.DW)):
-  domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
-  O[D.n, D.oh, D.ow, D.c] = ReduceFn.min_unsigned(D.kh, D.kw)(
-      cast_unsigned(
-          U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c]))
-
-
-@linalg_structured_op
-def fill_rng_poly(
-    min=ScalarDef(F64),
-    max=ScalarDef(F64),
-    seed=ScalarDef(I32),
-    O=TensorDef(T, S.M, S.N, output=True)):
-  multiplier = cast(I32, const(1103515245))
-  increment = cast(I32, const(12345))
-  rand1 = (cast(I32, index(D.m)) + seed) * multiplier + increment
-  rand2 = (cast(I32, index(D.n)) + rand1) * multiplier + increment
-  inv_range = cast(F64, const(2.3283064e-10))
-  offset = cast(F64, const(2147483647))
-  scaling = (max - min) * inv_range
-  O[D.m, D.n] = cast(T, (offset + cast(F64, rand2)) * scaling + min)
-
-
-@linalg_structured_op
-def soft_plus_poly(
-    I=TensorDef(T, S.M, S.N), O=TensorDef(U, S.M, S.N, output=True)):
-  O[D.m, D.n] = \
-      PrimFn.log(cast(U, const(1.0)) + cast(U, PrimFn.exp(I[D.m, D.n])))
-
-
-@linalg_structured_op(op_name="custom_op_name")
-def non_default_op_name(I=TensorDef(T, S.N), O=TensorDef(T, S.N, output=True)):
-  O[D.n] = I[D.n]
-
-
-with Context() as ctx, Location.unknown():
-  module = Module.create()
-  f16 = F16Type.get()
-  f32 = F32Type.get()
-  f64 = F64Type.get()
-  i8 = IntegerType.get_signless(8)
-  i16 = IntegerType.get_signless(16)
-  i32 = IntegerType.get_signless(32)
-  with InsertionPoint(module.body):
-
-    # Multiplication indexing maps. We verify only the indexing maps of the
-    # first multiplication and then do additional tests on casting and body
-    # generation behavior.
-    # CHECK: #[[$MUL_MAP_A:.+]] = affine_map<(d0, d1, d2) -> (d0, d2)>
-    # CHECK: #[[$MUL_MAP_B:.+]] = affine_map<(d0, d1, d2) -> (d2, d1)>
-    # CHECK: #[[$MUL_MAP_C:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
-
-    # Convolution indexing maps.
-    # CHECK: #[[$CONV_MAP_I:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1 * 2 + d3, d2 * 4 + d4 * 2, d5)>
-    # CHECK: #[[$CONV_MAP_K:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3, d4, d5)>
-    # CHECK: #[[$CONV_MAP_O:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d5)>
-
-    # Pooling indexing maps.
-    # CHECK: #[[$POOL_MAP_K:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3, d4)>
-
-    # CHECK-LABEL: func @test_matmul_mono
-    # CHECK-SAME:  %[[A:.+]]: tensor<4x16xf32>
-    # CHECK-SAME: %[[B:.+]]: tensor<16x8xf32>
-
-    # CHECK: %[[INITC:.+]] = linalg.init_tensor [4, 8] : tensor<4x8xf32>
-    # CHECK: linalg.generic
-    # CHECK-SAME: indexing_maps = [#[[$MUL_MAP_A]], #[[$MUL_MAP_B]], #[[$MUL_MAP_C]]]
-    # CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"]
-    # CHECK-SAME: ins(%[[A]], %[[B]]
-    # CHECK-SAME: outs(%[[INITC]]
-
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8), f32))
-    def test_matmul_mono(lhs, rhs):
-      init_result = linalg.InitTensorOp([4, 8], f32)
-      return matmul_mono(lhs, rhs, outs=[init_result.result])
-
-    # CHECK-LABEL: @test_i8i8i32_matmul
-    # CHECK:      ^{{.*}}(%[[A_ARG:.+]]: i8, %[[B_ARG:.+]]: i8, %[[C_ARG:.+]]: i32)
-    # CHECK-NEXT:   %[[A_CAST:.+]] = arith.extsi %[[A_ARG]] : i8 to i32
-    # CHECK-NEXT:   %[[B_CAST:.+]] = arith.extsi %[[B_ARG]] : i8 to i32
-    # CHECK-NEXT:   %[[MUL:.+]] = arith.muli %[[A_CAST]], %[[B_CAST]] : i32
-    # CHECK-NEXT:   %[[ADD:.+]] = arith.addi %[[C_ARG]], %[[MUL]] : i32
-    # CHECK-NEXT:   linalg.yield %[[ADD]] : i32
-    # CHECK-NEXT: -> tensor<4x8xi32>
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((4, 16), i8), RankedTensorType.get((16, 8), i8),
-        RankedTensorType.get((4, 8), i32))
-    def test_i8i8i32_matmul(lhs, rhs, init_result):
-      return matmul_poly(lhs, rhs, outs=[init_result])
-
-    # CHECK-LABEL: @test_i8i8i32_matmul_unsigned
-    # CHECK:   = arith.extui
-    # CHECK:   = arith.extui
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((4, 16), i8), RankedTensorType.get((16, 8), i8),
-        RankedTensorType.get((4, 8), i32))
-    def test_i8i8i32_matmul_unsigned(lhs, rhs, init_result):
-      return matmul_unsigned_poly(lhs, rhs, outs=[init_result])
-
-    # CHECK-LABEL: @test_i8i16i32_matmul
-    # CHECK:      ^{{.*}}(%[[A_ARG:.+]]: i8, %[[B_ARG:.+]]: i16, %[[C_ARG:.+]]: i32)
-    # CHECK-NEXT:   %[[A_CAST:.+]] = arith.extsi %[[A_ARG]] : i8 to i32
-    # CHECK-NEXT:   %[[B_CAST:.+]] = arith.extsi %[[B_ARG]] : i16 to i32
-    # CHECK-NEXT:   %[[MUL:.+]] = arith.muli %[[A_CAST]], %[[B_CAST]] : i32
-    # CHECK-NEXT:   %[[ADD:.+]] = arith.addi %[[C_ARG]], %[[MUL]] : i32
-    # CHECK-NEXT:   linalg.yield %[[ADD]] : i32
-    # CHECK-NEXT: -> tensor<4x8xi32>
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((4, 16), i8), RankedTensorType.get((16, 8), i16),
-        RankedTensorType.get((4, 8), i32))
-    def test_i8i16i32_matmul(lhs, rhs, init_result):
-      return matmul_poly(lhs, rhs, outs=[init_result])
-
-    # CHECK-LABEL: @test_i32i32i16_matmul
-    # CHECK:      ^{{.*}}(%[[A_ARG:.+]]: i32, %[[B_ARG:.+]]: i32, %[[C_ARG:.+]]: i16)
-    # CHECK-NEXT:   %[[A_CAST:.+]] = arith.trunci %[[A_ARG]] : i32 to i16
-    # CHECK-NEXT:   %[[B_CAST:.+]] = arith.trunci %[[B_ARG]] : i32 to i16
-    # CHECK-NEXT:   %[[MUL:.+]] = arith.muli %[[A_CAST]], %[[B_CAST]] : i16
-    # CHECK-NEXT:   %[[ADD:.+]] = arith.addi %[[C_ARG]], %[[MUL]] : i16
-    # CHECK-NEXT:   linalg.yield %[[ADD]] : i16
-    # CHECK-NEXT: -> tensor<4x8xi16>
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((4, 16), i32), RankedTensorType.get((16, 8), i32),
-        RankedTensorType.get((4, 8), i16))
-    def test_i32i32i16_matmul(lhs, rhs, init_result):
-      return matmul_poly(lhs, rhs, outs=[init_result])
-
-    # CHECK-LABEL: @test_i8i8f32_matmul
-    # CHECK:      ^{{.*}}(%[[A_ARG:.+]]: i8, %[[B_ARG:.+]]: i8, %[[C_ARG:.+]]: f32)
-    # CHECK-NEXT:   %[[A_CAST:.+]] = arith.sitofp %[[A_ARG]] : i8 to f32
-    # CHECK-NEXT:   %[[B_CAST:.+]] = arith.sitofp %[[B_ARG]] : i8 to f32
-    # CHECK-NEXT:   %[[MUL:.+]] = arith.mulf %[[A_CAST]], %[[B_CAST]] : f32
-    # CHECK-NEXT:   %[[ADD:.+]] = arith.addf %[[C_ARG]], %[[MUL]] : f32
-    # CHECK-NEXT:   linalg.yield %[[ADD]] : f32
-    # CHECK-NEXT: -> tensor<4x8xf32>
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((4, 16), i8), RankedTensorType.get((16, 8), i8),
-        RankedTensorType.get((4, 8), f32))
-    def test_i8i8f32_matmul(lhs, rhs, init_result):
-      return matmul_poly(lhs, rhs, outs=[init_result])
-
-    # CHECK-LABEL: @test_i8i8f32_matmul_unsigned
-    # CHECK:   = arith.uitofp
-    # CHECK:   = arith.uitofp
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((4, 16), i8), RankedTensorType.get((16, 8), i8),
-        RankedTensorType.get((4, 8), f32))
-    def test_i8i8f32_matmul_unsigned(lhs, rhs, init_result):
-      return matmul_unsigned_poly(lhs, rhs, outs=[init_result])
-
-    # CHECK-LABEL: @test_f16f16f32_matmul
-    # CHECK:      ^{{.*}}(%[[A_ARG:.+]]: f16, %[[B_ARG:.+]]: f16, %[[C_ARG:.+]]: f32)
-    # CHECK-NEXT:   %[[A_CAST:.+]] = arith.extf %[[A_ARG]] : f16 to f32
-    # CHECK-NEXT:   %[[B_CAST:.+]] = arith.extf %[[B_ARG]] : f16 to f32
-    # CHECK-NEXT:   %[[MUL:.+]] = arith.mulf %[[A_CAST]], %[[B_CAST]] : f32
-    # CHECK-NEXT:   %[[ADD:.+]] = arith.addf %[[C_ARG]], %[[MUL]] : f32
-    # CHECK-NEXT:   linalg.yield %[[ADD]] : f32
-    # CHECK-NEXT: -> tensor<4x8xf32>
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((4, 16), f16), RankedTensorType.get((16, 8), f16),
-        RankedTensorType.get((4, 8), f32))
-    def test_f16f16f32_matmul(lhs, rhs, init_result):
-      return matmul_poly(lhs, rhs, outs=[init_result])
-
-    # CHECK-LABEL: @test_f64f64f32_matmul
-    # CHECK:      ^{{.*}}(%[[A_ARG:.+]]: f64, %[[B_ARG:.+]]: f64, %[[C_ARG:.+]]: f32)
-    # CHECK-NEXT:   %[[A_CAST:.+]] = arith.truncf %[[A_ARG]] : f64 to f32
-    # CHECK-NEXT:   %[[B_CAST:.+]] = arith.truncf %[[B_ARG]] : f64 to f32
-    # CHECK-NEXT:   %[[MUL:.+]] = arith.mulf %[[A_CAST]], %[[B_CAST]] : f32
-    # CHECK-NEXT:   %[[ADD:.+]] = arith.addf %[[C_ARG]], %[[MUL]] : f32
-    # CHECK-NEXT:   linalg.yield %[[ADD]] : f32
-    # CHECK-NEXT: -> tensor<4x8xf32>
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((4, 16), f64), RankedTensorType.get((16, 8), f64),
-        RankedTensorType.get((4, 8), f32))
-    def test_f64f64f32_matmul(lhs, rhs, init_result):
-      return matmul_poly(lhs, rhs, outs=[init_result])
-
-    # CHECK-LABEL: @test_f32i32_conv
-    # CHECK: linalg.generic
-    # CHECK-SAME: indexing_maps = [#[[$CONV_MAP_I]], #[[$CONV_MAP_K]], #[[$CONV_MAP_O]]]
-    # CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
-    # CHECK:      ^{{.*}}(%[[IN:.+]]: f32, %[[FILTER:.+]]: f32, %[[OUT:.+]]: i32)
-    # CHECK-NEXT:   %[[IN_CAST:.+]] = arith.fptosi %[[IN:.+]] : f32 to i32
-    # CHECK-NEXT:   %[[FILTER_CAST:.+]] = arith.fptosi %[[FILTER:.+]] : f32 to i32
-    # CHECK-NEXT:   %[[PROD:.+]] = arith.muli %[[IN_CAST]], %[[FILTER_CAST]] : i32
-    # CHECK-NEXT:   %[[SUM:.+]] = arith.addi %[[OUT]], %[[PROD]] : i32
-    # CHECK-NEXT:   linalg.yield %[[SUM]] : i32
-    # CHECK-NEXT: -> tensor<2x4xi32>
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((4, 16), f32), RankedTensorType.get((2, 2, 1),
-                                                                 f32),
-        RankedTensorType.get((2, 4), i32))
-    def test_f32i32_conv(input, filter, init_result):
-      return conv_poly(
-          input, filter, outs=[init_result], strides=[2, 4], dilations=[1, 2])
-
-    # CHECK-LABEL: @test_f32i32_max_pooling
-    # CHECK: linalg.generic
-    # CHECK-SAME: indexing_maps = [#[[$CONV_MAP_I]], #[[$POOL_MAP_K]], #[[$CONV_MAP_O]]]
-    # CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
-    # CHECK:      ^{{.*}}(%[[IN:.+]]: f32, %[[SHAPE:.+]]: f32, %[[OUT:.+]]: i32)
-    # CHECK-NEXT:   %[[IN_CAST:.+]] = arith.fptosi %[[IN:.+]] : f32 to i32
-    # CHECK-NEXT:   %[[MAX:.+]] = arith.maxsi %[[OUT]], %[[IN_CAST:.+]] : i32
-    # CHECK-NEXT:   linalg.yield %[[MAX]] : i32
-    # CHECK-NEXT: -> tensor<2x4xi32>
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((4, 16), f32), RankedTensorType.get((2, 2), f32),
-        RankedTensorType.get((2, 4), i32))
-    def test_f32i32_max_pooling(input, shape, init_result):
-      return pooling_max_poly(
-          input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
-
-    # CHECK-LABEL: @test_f32i32_max_unsigned_pooling
-    # CHECK:   = arith.fptoui
-    # CHECK:   = arith.maxui
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((4, 16), f32), RankedTensorType.get((2, 2), f32),
-        RankedTensorType.get((2, 4), i32))
-    def test_f32i32_max_unsigned_pooling(input, shape, init_result):
-      return pooling_max_unsigned_poly(
-          input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
-
-    # CHECK-LABEL: @test_f32f32_max_pooling
-    # CHECK: linalg.generic
-    # CHECK-SAME: indexing_maps = [#[[$CONV_MAP_I]], #[[$POOL_MAP_K]], #[[$CONV_MAP_O]]]
-    # CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
-    # CHECK:      ^{{.*}}(%[[IN:.+]]: f32, %[[SHAPE:.+]]: f32, %[[OUT:.+]]: f32)
-    # CHECK-NEXT:   %[[MAX:.+]] = arith.maxf %[[OUT]], %[[IN:.+]] : f32
-    # CHECK-NEXT:   linalg.yield %[[MAX]] : f32
-    # CHECK-NEXT: -> tensor<2x4xf32>
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((4, 16), f32), RankedTensorType.get((2, 2), f32),
-        RankedTensorType.get((2, 4), f32))
-    def test_f32f32_max_pooling(input, shape, init_result):
-      return pooling_max_poly(
-          input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
-
-    # CHECK-LABEL: @test_f32i32_min_pooling
-    # CHECK:   = arith.fptosi
-    # CHECK:   = arith.minsi
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((4, 16), f32), RankedTensorType.get((2, 2), f32),
-        RankedTensorType.get((2, 4), i32))
-    def test_f32i32_min_pooling(input, shape, init_result):
-      return pooling_min_poly(
-          input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
-
-    # CHECK-LABEL: @test_f32i32_min_unsigned_pooling
-    # CHECK:   = arith.fptoui
-    # CHECK:   = arith.minui
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((4, 16), f32), RankedTensorType.get((2, 2), f32),
-        RankedTensorType.get((2, 4), i32))
-    def test_f32i32_min_unsigned_pooling(input, shape, init_result):
-      return pooling_min_unsigned_poly(
-          input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
-
-    # CHECK-LABEL: @test_f32f32_min_pooling
-    # CHECK:   = arith.minf
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((4, 16), f32), RankedTensorType.get((2, 2), f32),
-        RankedTensorType.get((2, 4), f32))
-    def test_f32f32_min_pooling(input, shape, init_result):
-      return pooling_min_poly(
-          input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
-
-    # CHECK-LABEL: @test_i32_fill_rng
-    # CHECK:      ^{{.*}}(%[[MIN:.+]]: f64, %[[MAX:.+]]: f64, %[[SEED:.+]]: i32, %{{.*}}
-    # CHECK-DAG:    %[[IDX0:.+]] = linalg.index 0 : index
-    # CHECK-DAG:    %[[IDX0_CAST:.+]] = arith.index_cast %[[IDX0]] : index to i32
-    # CHECK-DAG:    %[[RND0:.+]] = arith.addi %[[IDX0_CAST]], %[[SEED]] : i32
-    # CHECK-DAG:    %[[CST0:.+]] = arith.constant 1103515245 : i64
-    # CHECK-DAG:    %[[CST0_CAST:.+]] = arith.trunci %[[CST0]] : i64 to i32
-    # Skip the remaining random number computation and match the scaling logic.
-    # CHECK-DAG:    %[[DIFF:.+]] = arith.subf %[[MAX]], %[[MIN]] : f64
-    # CHECK-DAG:    %[[CST3:.+]] = arith.constant 2.3283063999999999E-10 : f64
-    # CHECK-DAG:    %[[FACT:.+]] = arith.mulf %[[DIFF]], %[[CST3]] : f64
-    # CHECK-DAG:    %[[RND4:.+]] = arith.mulf %{{.+}}, %[[FACT]] : f64
-    # CHECK-DAG:    %[[RND5:.+]] = arith.addf %[[RND4]], %[[MIN]] : f64
-    # CHECK-DAG:    %{{.*}} = arith.fptosi %[[RND5]] : f64 to i32
-    @builtin.FuncOp.from_py_func(f64, f64, i32,
-                                 RankedTensorType.get((4, 16), i32))
-    def test_i32_fill_rng(min, max, seed, init_result):
-      return fill_rng_poly(min, max, seed, outs=[init_result])
-
-    # CHECK-LABEL: @test_f32_soft_plus
-    # CHECK:      ^{{.*}}(%[[IN:.+]]: f32, %[[OUT:.+]]: f32)
-    # CHECK-NEXT:   %[[C1:.+]] = arith.constant 1.000000e+00 : f64
-    # CHECK-NEXT:   %[[C1_CAST:.+]] = arith.truncf %[[C1]] : f64 to f32
-    # CHECK-NEXT:   %[[EXP:.+]] = math.exp %[[IN]] : f32
-    # CHECK-NEXT:   %[[SUM:.+]] = arith.addf %[[C1_CAST]], %[[EXP]] : f32
-    # CHECK-NEXT:   %[[LOG:.+]] = math.log %[[SUM]] : f32
-    # CHECK-NEXT:   linalg.yield %[[LOG]] : f32
-    # CHECK-NEXT: -> tensor<4x16xf32>
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((4, 16), f32), RankedTensorType.get((4, 16), f32))
-    def test_f32_soft_plus(input, init_result):
-      return soft_plus_poly(input, outs=[init_result])
-
-    # Just check that we don't assert out on name mismatch.
-    # CHECK-LABEL: @test_non_default_op_name
-    @builtin.FuncOp.from_py_func(
-        RankedTensorType.get((42,), f32), RankedTensorType.get((42,), f32))
-    def test_non_default_op_name(input, init_result):
-      return non_default_op_name(input, outs=[init_result])
-
-
-# TODO: Fix me! Conv and pooling ops above do not verify, which was uncovered
-# when switching to more robust module verification. For now, reverting to the
-# old behavior which does not verify on module print.
-print(module.operation.get_asm(assume_verified=True))