#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/rwsem.h>
-#include <linux/percpu-rwsem.h>
#include <linux/string.h>
#include <linux/sort.h>
#include <linux/kmod.h>
*/
static DEFINE_SPINLOCK(release_agent_path_lock);
-struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
-
#define cgroup_assert_mutex_or_rcu_locked() \
RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
!lockdep_is_held(&cgroup_mutex), \
return cset;
}
+void cgroup_threadgroup_change_begin(struct task_struct *tsk)
+{
+ down_read(&tsk->signal->group_rwsem);
+}
+
+void cgroup_threadgroup_change_end(struct task_struct *tsk)
+{
+ up_read(&tsk->signal->group_rwsem);
+}
+
+/**
+ * threadgroup_lock - lock threadgroup
+ * @tsk: member task of the threadgroup to lock
+ *
+ * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
+ * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
+ * change ->group_leader/pid. This is useful for cases where the threadgroup
+ * needs to stay stable across blockable operations.
+ *
+ * fork and exit explicitly call threadgroup_change_{begin|end}() for
+ * synchronization. While held, no new task will be added to threadgroup
+ * and no existing live task will have its PF_EXITING set.
+ *
+ * de_thread() does threadgroup_change_{begin|end}() when a non-leader
+ * sub-thread becomes a new leader.
+ */
+static void threadgroup_lock(struct task_struct *tsk)
+{
+ down_write(&tsk->signal->group_rwsem);
+}
+
+/**
+ * threadgroup_unlock - unlock threadgroup
+ * @tsk: member task of the threadgroup to unlock
+ *
+ * Reverse threadgroup_lock().
+ */
+static inline void threadgroup_unlock(struct task_struct *tsk)
+{
+ up_write(&tsk->signal->group_rwsem);
+}
+
static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
{
struct cgroup *root_cgrp = kf_root->kn->priv;
lockdep_assert_held(&css_set_rwsem);
/*
- * We are synchronized through cgroup_threadgroup_rwsem against
- * PF_EXITING setting such that we can't race against cgroup_exit()
- * changing the css_set to init_css_set and dropping the old one.
+ * We are synchronized through threadgroup_lock() against PF_EXITING
+ * setting such that we can't race against cgroup_exit() changing the
+ * css_set to init_css_set and dropping the old one.
*/
WARN_ON_ONCE(tsk->flags & PF_EXITING);
old_cset = task_css_set(tsk);
* @src_cset and add it to @preloaded_csets, which should later be cleaned
* up by cgroup_migrate_finish().
*
- * This function may be called without holding cgroup_threadgroup_rwsem
- * even if the target is a process. Threads may be created and destroyed
- * but as long as cgroup_mutex is not dropped, no new css_set can be put
- * into play and the preloaded css_sets are guaranteed to cover all
- * migrations.
+ * This function may be called without holding threadgroup_lock even if the
+ * target is a process. Threads may be created and destroyed but as long
+ * as cgroup_mutex is not dropped, no new css_set can be put into play and
+ * the preloaded css_sets are guaranteed to cover all migrations.
*/
static void cgroup_migrate_add_src(struct css_set *src_cset,
struct cgroup *dst_cgrp,
* @threadgroup: whether @leader points to the whole process or a single task
*
* Migrate a process or task denoted by @leader to @cgrp. If migrating a
- * process, the caller must be holding cgroup_threadgroup_rwsem. The
+ * process, the caller must be holding threadgroup_lock of @leader. The
* caller is also responsible for invoking cgroup_migrate_add_src() and
* cgroup_migrate_prepare_dst() on the targets before invoking this
* function and following up with cgroup_migrate_finish().
* @leader: the task or the leader of the threadgroup to be attached
* @threadgroup: attach the whole threadgroup?
*
- * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
+ * Call holding cgroup_mutex and threadgroup_lock of @leader.
*/
static int cgroup_attach_task(struct cgroup *dst_cgrp,
struct task_struct *leader, bool threadgroup)
get_task_struct(tsk);
rcu_read_unlock();
- percpu_down_write(&cgroup_threadgroup_rwsem);
+ threadgroup_lock(tsk);
if (threadgroup) {
if (!thread_group_leader(tsk)) {
/*
* try again; this is
* "double-double-toil-and-trouble-check locking".
*/
- percpu_up_write(&cgroup_threadgroup_rwsem);
+ threadgroup_unlock(tsk);
put_task_struct(tsk);
goto retry_find_task;
}
if (!ret)
ret = cgroup_attach_task(cgrp, tsk, threadgroup);
- percpu_up_write(&cgroup_threadgroup_rwsem);
+ threadgroup_unlock(tsk);
put_task_struct(tsk);
out_unlock_cgroup:
goto out_finish;
last_task = task;
- percpu_down_write(&cgroup_threadgroup_rwsem);
+ threadgroup_lock(task);
/* raced against de_thread() from another thread? */
if (!thread_group_leader(task)) {
- percpu_up_write(&cgroup_threadgroup_rwsem);
+ threadgroup_unlock(task);
put_task_struct(task);
continue;
}
ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
- percpu_up_write(&cgroup_threadgroup_rwsem);
+ threadgroup_unlock(task);
put_task_struct(task);
if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
unsigned long key;
int ssid, err;
- BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));