float predict( InputArray samples, OutputArray results, int flags ) const CV_OVERRIDE
{
CV_TRACE_FUNCTION();
- CV_Assert( samples.cols() == getVarCount() && samples.type() == CV_32F );
+ CV_CheckEQ(samples.cols(), getVarCount(), "");
return impl.predict(samples, results, flags);
}
/*int cat_var_count = (int)fn["cat_var_count"];
int ord_var_count = (int)fn["ord_var_count"];*/
+ if (varAll <= 0)
+ CV_Error(Error::StsParseError, "The field \"var_all\" of DTree classifier is missing or non-positive");
+
FileNode tparams_node = fn["training_params"];
TreeParams params0 = TreeParams();