Currently, drm_file.master pointers should be protected by
drm_device.master_mutex when being dereferenced. This is because
drm_file.master is not invariant for the lifetime of drm_file. If
drm_file is not the creator of master, then drm_file.is_master is
false, and a call to drm_setmaster_ioctl will invoke
drm_new_set_master, which then allocates a new master for drm_file and
puts the old master.
Thus, without holding drm_device.master_mutex, the old value of
drm_file.master could be freed while it is being used by another
concurrent process.
However, it is not always possible to lock drm_device.master_mutex to
dereference drm_file.master. Through the fbdev emulation code, this
might occur in a deep nest of other locks. But drm_device.master_mutex
is also the outermost lock in the nesting hierarchy, so this leads to
potential deadlocks.
To address this, we introduce a new spin lock at the bottom of the
lock hierarchy that only serializes drm_file.master. With this change,
the value of drm_file.master changes only when both
drm_device.master_mutex and drm_file.master_lookup_lock are
held. Hence, any process holding either of those locks can ensure that
the value of drm_file.master will not change concurrently.
Since no lock depends on the new drm_file.master_lookup_lock, when
drm_file.master is dereferenced, but drm_device.master_mutex cannot be
held, we can safely protect the master pointer with
drm_file.master_lookup_lock.
Reported-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Desmond Cheong Zhi Xi <desmondcheongzx@gmail.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/20210712043508.11584-5-desmondcheongzx@gmail.com
static int drm_new_set_master(struct drm_device *dev, struct drm_file *fpriv)
{
struct drm_master *old_master;
+ struct drm_master *new_master;
lockdep_assert_held_once(&dev->master_mutex);
WARN_ON(fpriv->is_master);
old_master = fpriv->master;
- fpriv->master = drm_master_create(dev);
- if (!fpriv->master) {
- fpriv->master = old_master;
+ new_master = drm_master_create(dev);
+ if (!new_master)
return -ENOMEM;
- }
+ spin_lock(&fpriv->master_lookup_lock);
+ fpriv->master = new_master;
+ spin_unlock(&fpriv->master_lookup_lock);
fpriv->is_master = 1;
fpriv->authenticated = 1;
* any master object for render clients
*/
mutex_lock(&dev->master_mutex);
- if (!dev->master)
+ if (!dev->master) {
ret = drm_new_set_master(dev, file_priv);
- else
+ } else {
+ spin_lock(&file_priv->master_lookup_lock);
file_priv->master = drm_master_get(dev->master);
+ spin_unlock(&file_priv->master_lookup_lock);
+ }
mutex_unlock(&dev->master_mutex);
return ret;
init_waitqueue_head(&file->event_wait);
file->event_space = 4096; /* set aside 4k for event buffer */
+ spin_lock_init(&file->master_lookup_lock);
mutex_init(&file->event_read_lock);
if (drm_core_check_feature(dev, DRIVER_GEM))
/**
* @master:
*
- * Master this node is currently associated with. Only relevant if
- * drm_is_primary_client() returns true. Note that this only
- * matches &drm_device.master if the master is the currently active one.
+ * Master this node is currently associated with. Protected by struct
+ * &drm_device.master_mutex, and serialized by @master_lookup_lock.
+ *
+ * Only relevant if drm_is_primary_client() returns true. Note that
+ * this only matches &drm_device.master if the master is the currently
+ * active one.
*
* See also @authentication and @is_master and the :ref:`section on
* primary nodes and authentication <drm_primary_node>`.
*/
struct drm_master *master;
+ /** @master_lock: Serializes @master. */
+ spinlock_t master_lookup_lock;
+
/** @pid: Process that opened this file. */
struct pid *pid;