*>
*> \param[out] WORK
*> \verbatim
-*> WORK is COMPLEX array, dimension
-*> (NMAX*max(3,NSMAX))
+*> WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
-*> RWORK is REAL array, dimension
-*> (max(NMAX,2*NSMAX))
+*> RWORK is REAL array, dimension (max(NMAX,2*NSMAX))
*> \endverbatim
*>
*> \param[out] IWORK
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
+ COMPLEX CZERO
+ PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
INTEGER NTYPES
PARAMETER ( NTYPES = 10 )
INTEGER NTESTS
$ CALL CERRHE( PATH, NOUT )
INFOT = 0
*
+* Set the minimum block size for which the block routine should
+* be used, which will be later returned by ILAENV
+*
+ CALL XLAENV( 2, 2 )
+*
* Do for each value of N in NVAL
*
DO 180 IN = 1, NN
$ NIMAT = 1
*
IZERO = 0
+*
+* Do for each value of matrix type IMAT
+*
DO 170 IMAT = 1, NIMAT
*
* Do the tests only if DOTYPE( IMAT ) is true.
DO 160 IUPLO = 1, 2
UPLO = UPLOS( IUPLO )
*
-* Set up parameters with CLATB4 and generate a test matrix
-* with CLATMS.
+* Begin generate test matrix A.
+*
+*
+* Set up parameters with CLATB4 for the matrix generator
+* based on the type of matrix to be generated.
*
CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
$ CNDNUM, DIST )
+*
+* Generate a matrix with CLATMS.
*
SRNAMT = 'CLATMS'
CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
$ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
$ INFO )
*
-* Check error code from CLATMS.
+* Check error code from CLATMS and handle error.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'CLATMS', INFO, 0, UPLO, N, N, -1,
$ -1, -1, IMAT, NFAIL, NERRS, NOUT )
+*
+* Skip all tests for this generated matrix
+*
GO TO 160
END IF
*
-* For types 3-6, zero one or more rows and columns of
-* the matrix to test that INFO is returned correctly.
+* For matrix types 3-6, zero one or more rows and
+* columns of the matrix to test that INFO is returned
+* correctly.
*
IF( ZEROT ) THEN
IF( IMAT.EQ.3 ) THEN
IF( IUPLO.EQ.1 ) THEN
IOFF = ( IZERO-1 )*LDA
DO 20 I = 1, IZERO - 1
- A( IOFF+I ) = ZERO
+ A( IOFF+I ) = CZERO
20 CONTINUE
IOFF = IOFF + IZERO
DO 30 I = IZERO, N
- A( IOFF ) = ZERO
+ A( IOFF ) = CZERO
IOFF = IOFF + LDA
30 CONTINUE
ELSE
IOFF = IZERO
DO 40 I = 1, IZERO - 1
- A( IOFF ) = ZERO
+ A( IOFF ) = CZERO
IOFF = IOFF + LDA
40 CONTINUE
IOFF = IOFF - IZERO
DO 50 I = IZERO, N
- A( IOFF+I ) = ZERO
+ A( IOFF+I ) = CZERO
50 CONTINUE
END IF
ELSE
- IOFF = 0
IF( IUPLO.EQ.1 ) THEN
*
* Set the first IZERO rows and columns to zero.
*
+ IOFF = 0
DO 70 J = 1, N
I2 = MIN( J, IZERO )
DO 60 I = 1, I2
- A( IOFF+I ) = ZERO
+ A( IOFF+I ) = CZERO
60 CONTINUE
IOFF = IOFF + LDA
70 CONTINUE
*
* Set the last IZERO rows and columns to zero.
*
+ IOFF = 0
DO 90 J = 1, N
I1 = MAX( J, IZERO )
DO 80 I = I1, N
- A( IOFF+I ) = ZERO
+ A( IOFF+I ) = CZERO
80 CONTINUE
IOFF = IOFF + LDA
90 CONTINUE
*
CALL CLAIPD( N, A, LDA+1, 0 )
*
+* End generate test matrix A.
+*
+*
* Do for each value of NB in NBVAL
*
DO 150 INB = 1, NNB
+*
+* Set the optimal blocksize, which will be later
+* returned by ILAENV.
+*
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
*
-* Compute the L*D*L' or U*D*U' factorization of the
-* matrix.
+* Copy the test matrix A into matrix AFAC which
+* will be factorized in place. This is needed to
+* preserve the test matrix A for subsequent tests.
*
CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
+*
+* Compute the L*D*L**T or U*D*U**T factorization of the
+* matrix. IWORK stores details of the interchanges and
+* the block structure of D. AINV is a work array for
+* block factorization, LWORK is the length of AINV.
+*
LWORK = MAX( 2, NB )*LDA
SRNAMT = 'CHETRF'
CALL CHETRF( UPLO, N, AFAC, LDA, IWORK, AINV, LWORK,
END IF
END IF
*
-* Check error code from CHETRF.
+* Check error code from CHETRF and handle error.
*
IF( INFO.NE.K )
$ CALL ALAERH( PATH, 'CHETRF', INFO, K, UPLO, N, N,
$ -1, -1, NB, IMAT, NFAIL, NERRS, NOUT )
+*
+* Set the condition estimate flag if the INFO is not 0.
+*
IF( INFO.NE.0 ) THEN
TRFCON = .TRUE.
ELSE
NT = 1
*
*+ TEST 2
-* Form the inverse and compute the residual.
+* Form the inverse and compute the residual,
+* if the factorization was competed without INFO > 0
+* (i.e. there is no zero rows and columns).
+* Do it only for the first block size.
*
IF( INB.EQ.1 .AND. .NOT.TRFCON ) THEN
CALL CLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
CALL CHETRI2( UPLO, N, AINV, LDA, IWORK, WORK,
$ LWORK, INFO )
*
-* Check error code from CHETRI.
+* Check error code from CHETRI2 and handle error.
*
IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'CHETRI', INFO, -1, UPLO, N,
+ $ CALL ALAERH( PATH, 'CHETRI2', INFO, -1, UPLO, N,
$ N, -1, -1, -1, IMAT, NFAIL, NERRS,
$ NOUT )
+*
+* Compute the residual for a symmetric matrix times
+* its inverse.
*
CALL CPOT03( UPLO, N, A, LDA, AINV, LDA, WORK, LDA,
$ RWORK, RCONDC, RESULT( 2 ) )
RCONDC = ZERO
GO TO 140
END IF
+*
+* Do for each value of NRHS in NSVAL.
*
DO 130 IRHS = 1, NNS
NRHS = NSVAL( IRHS )
*
-*+ TEST 3
+*+ TEST 3 (Using TRS)
* Solve and compute residual for A * X = B.
+*
+* Choose a set of NRHS random solution vectors
+* stored in XACT and set up the right hand side B
*
SRNAMT = 'CLARHS'
CALL CLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
CALL CHETRS( UPLO, N, NRHS, AFAC, LDA, IWORK, X,
$ LDA, INFO )
*
-* Check error code from CHETRS.
+* Check error code from CHETRS and handle error.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'CHETRS', INFO, 0, UPLO, N,
$ NERRS, NOUT )
*
CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
+*
+* Compute the residual for the solution
+*
CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
$ LDA, RWORK, RESULT( 3 ) )
*
-*+ TEST 4
+*+ TEST 4 (Using TRS2)
* Solve and compute residual for A * X = B.
+*
+* Choose a set of NRHS random solution vectors
+* stored in XACT and set up the right hand side B
*
SRNAMT = 'CLARHS'
CALL CLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
CALL CHETRS2( UPLO, N, NRHS, AFAC, LDA, IWORK, X,
$ LDA, WORK, INFO )
*
-* Check error code from CHETRS2.
+* Check error code from CHETRS2 and handle error.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'CHETRS2', INFO, 0, UPLO, N,
$ NERRS, NOUT )
*
CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
+*
+* Compute the residual for the solution
+*
CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
$ LDA, RWORK, RESULT( 4 ) )
*
$ RWORK( NRHS+1 ), WORK,
$ RWORK( 2*NRHS+1 ), INFO )
*
-* Check error code from CHERFS.
+* Check error code from CHERFS and handle error.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'CHERFS', INFO, 0, UPLO, N,
NFAIL = NFAIL + 1
END IF
120 CONTINUE
- NRUN = NRUN + 5
+ NRUN = NRUN + 6
+*
+* End do for each value of NRHS in NSVAL.
+*
130 CONTINUE
*
*+ TEST 9
CALL CHECON( UPLO, N, AFAC, LDA, IWORK, ANORM, RCOND,
$ WORK, INFO )
*
-* Check error code from CHECON.
+* Check error code from CHECON and handle error.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'CHECON', INFO, 0, UPLO, N, N,
$ -1, -1, -1, IMAT, NFAIL, NERRS, NOUT )
+*
+* Compute the test ratio to compare values of RCOND
*
RESULT( 9 ) = SGET06( RCOND, RCONDC )
*
*>
*> \param[out] WORK
*> \verbatim
-*> WORK is COMPLEX array, dimension
-*> (NMAX*max(3,NSMAX))
+*> WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
-*> RWORK is REAL array, dimension
-*> (max(NMAX,2*NSMAX))
+*> RWORK is REAL array, dimension (max(NMAX,2*NSMAX)
*> \endverbatim
*>
*> \param[out] IWORK
REAL EIGHT, SEVTEN
PARAMETER ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 )
COMPLEX CZERO
- PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
+ PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
INTEGER NTYPES
PARAMETER ( NTYPES = 10 )
INTEGER NTESTS
50 CONTINUE
END IF
ELSE
- IOFF = 0
IF( IUPLO.EQ.1 ) THEN
*
* Set the first IZERO rows and columns to zero.
*
+ IOFF = 0
DO 70 J = 1, N
I2 = MIN( J, IZERO )
DO 60 I = 1, I2
*
* Set the last IZERO rows and columns to zero.
*
+ IOFF = 0
DO 90 J = 1, N
I1 = MAX( J, IZERO )
DO 80 I = I1, N
*
* End generate the test matrix A.
*
+*
* Do for each value of NB in NBVAL
*
DO 240 INB = 1, NNB
NFAIL = NFAIL + 1
END IF
200 CONTINUE
- NRUN = NRUN + NT
+ NRUN = NRUN + 2
*
* Skip the other tests if this is not the first block
* size.
RCONDC = ZERO
GO TO 230
END IF
+*
+* Do for each value of NRHS in NSVAL.
*
DO 220 IRHS = 1, NNS
NRHS = NSVAL( IRHS )
210 CONTINUE
NRUN = NRUN + 2
*
-* End loop over NRHS values
+* End do for each value of NRHS in NSVAL.
*
220 CONTINUE
*
$ UPLO, N, N, -1, -1, -1, IMAT,
$ NFAIL, NERRS, NOUT )
*
-* Compute the test ratio to compare to values of RCOND
+* Compute the test ratio to compare values of RCOND
*
RESULT( 7 ) = SGET06( RCOND, RCONDC )
*
*>
*> \param[out] WORK
*> \verbatim
-*> WORK is COMPLEX*16 array, dimension
-*> (NMAX*max(3,NSMAX))
+*> WORK is COMPLEX*16 array, dimension (NMAX*max(3,NSMAX))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
-*> RWORK is DOUBLE PRECISION array, dimension
-*> (max(NMAX,2*NSMAX))
+*> RWORK is DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX))
*> \endverbatim
*>
*> \param[out] IWORK
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
+ COMPLEX*16 CZERO
+ PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
INTEGER NTYPES
PARAMETER ( NTYPES = 10 )
INTEGER NTESTS
$ CALL ZERRHE( PATH, NOUT )
INFOT = 0
*
+* Set the minimum block size for which the block routine should
+* be used, which will be later returned by ILAENV
+*
+ CALL XLAENV( 2, 2 )
+*
* Do for each value of N in NVAL
*
DO 180 IN = 1, NN
DO 160 IUPLO = 1, 2
UPLO = UPLOS( IUPLO )
*
-* Set up parameters with ZLATB4 and generate a test matrix
-* with ZLATMS.
+* Set up parameters with ZLATB4 for the matrix generator
+* based on the type of matrix to be generated.
*
CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
$ CNDNUM, DIST )
+*
+* Generate a matrix with ZLATMS.
*
SRNAMT = 'ZLATMS'
CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
$ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
$ INFO )
*
-* Check error code from ZLATMS.
+* Check error code from ZLATMS and handle error.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N, N, -1,
$ -1, -1, IMAT, NFAIL, NERRS, NOUT )
+*
+* Skip all tests for this generated matrix
+*
GO TO 160
END IF
*
IF( IUPLO.EQ.1 ) THEN
IOFF = ( IZERO-1 )*LDA
DO 20 I = 1, IZERO - 1
- A( IOFF+I ) = ZERO
+ A( IOFF+I ) = CZERO
20 CONTINUE
IOFF = IOFF + IZERO
DO 30 I = IZERO, N
- A( IOFF ) = ZERO
+ A( IOFF ) = CZERO
IOFF = IOFF + LDA
30 CONTINUE
ELSE
IOFF = IZERO
DO 40 I = 1, IZERO - 1
- A( IOFF ) = ZERO
+ A( IOFF ) = CZERO
IOFF = IOFF + LDA
40 CONTINUE
IOFF = IOFF - IZERO
DO 50 I = IZERO, N
- A( IOFF+I ) = ZERO
+ A( IOFF+I ) = CZERO
50 CONTINUE
END IF
ELSE
- IOFF = 0
IF( IUPLO.EQ.1 ) THEN
*
* Set the first IZERO rows and columns to zero.
*
+ IOFF = 0
DO 70 J = 1, N
I2 = MIN( J, IZERO )
DO 60 I = 1, I2
- A( IOFF+I ) = ZERO
+ A( IOFF+I ) = CZERO
60 CONTINUE
IOFF = IOFF + LDA
70 CONTINUE
*
* Set the last IZERO rows and columns to zero.
*
+ IOFF = 0
DO 90 J = 1, N
I1 = MAX( J, IZERO )
DO 80 I = I1, N
- A( IOFF+I ) = ZERO
+ A( IOFF+I ) = CZERO
80 CONTINUE
IOFF = IOFF + LDA
90 CONTINUE
IZERO = 0
END IF
*
+* End generate test matrix A.
+*
+*
* Set the imaginary part of the diagonals.
*
CALL ZLAIPD( N, A, LDA+1, 0 )
* Do for each value of NB in NBVAL
*
DO 150 INB = 1, NNB
+*
+* Set the optimal blocksize, which will be later
+* returned by ILAENV.
+*
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
*
-* Compute the L*D*L' or U*D*U' factorization of the
-* matrix.
+* Copy the test matrix A into matrix AFAC which
+* will be factorized in place. This is needed to
+* preserve the test matrix A for subsequent tests.
*
CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
+*
+* Compute the L*D*L**T or U*D*U**T factorization of the
+* matrix. IWORK stores details of the interchanges and
+* the block structure of D. AINV is a work array for
+* block factorization, LWORK is the length of AINV.
+*
LWORK = MAX( 2, NB )*LDA
SRNAMT = 'ZHETRF'
CALL ZHETRF( UPLO, N, AFAC, LDA, IWORK, AINV, LWORK,
END IF
END IF
*
-* Check error code from ZHETRF.
+* Check error code from ZHETRF and handle error.
*
IF( INFO.NE.K )
$ CALL ALAERH( PATH, 'ZHETRF', INFO, K, UPLO, N, N,
$ -1, -1, NB, IMAT, NFAIL, NERRS, NOUT )
+*
+* Set the condition estimate flag if the INFO is not 0.
+*
IF( INFO.NE.0 ) THEN
TRFCON = .TRUE.
ELSE
CALL ZHETRI2( UPLO, N, AINV, LDA, IWORK, WORK,
$ LWORK, INFO )
*
-* Check error code from ZHETRI.
+* Check error code from ZHETRI and handle error.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZHETRI', INFO, -1, UPLO, N,
$ N, -1, -1, -1, IMAT, NFAIL, NERRS,
$ NOUT )
+*
+* Compute the residual for a symmetric matrix times
+* its inverse.
*
CALL ZPOT03( UPLO, N, A, LDA, AINV, LDA, WORK, LDA,
$ RWORK, RCONDC, RESULT( 2 ) )
RCONDC = ZERO
GO TO 140
END IF
+*
+* Do for each value of NRHS in NSVAL.
*
DO 130 IRHS = 1, NNS
NRHS = NSVAL( IRHS )
*
-*+ TEST 3
+*+ TEST 3 (Using TRS)
* Solve and compute residual for A * X = B.
+*
+* Choose a set of NRHS random solution vectors
+* stored in XACT and set up the right hand side B
*
SRNAMT = 'ZLARHS'
CALL ZLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
CALL ZHETRS( UPLO, N, NRHS, AFAC, LDA, IWORK, X,
$ LDA, INFO )
*
-* Check error code from ZHETRS.
+* Check error code from ZHETRS and handle error.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZHETRS', INFO, 0, UPLO, N,
$ NERRS, NOUT )
*
CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
+*
+* Compute the residual for the solution
+*
CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
$ LDA, RWORK, RESULT( 3 ) )
*
-*+ TEST 4
+*+ TEST 4 (Using TRS2)
* Solve and compute residual for A * X = B.
+*
+* Choose a set of NRHS random solution vectors
+* stored in XACT and set up the right hand side B
*
SRNAMT = 'ZLARHS'
CALL ZLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
CALL ZHETRS2( UPLO, N, NRHS, AFAC, LDA, IWORK, X,
$ LDA, WORK, INFO )
*
-* Check error code from ZSYTRS2.
+* Check error code from ZHETRS2 and handle error.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZHETRS2', INFO, 0, UPLO, N,
$ NERRS, NOUT )
*
CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
+*
+* Compute the residual for the solution
+*
CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
$ LDA, RWORK, RESULT( 4 ) )
*
$ RWORK( NRHS+1 ), WORK,
$ RWORK( 2*NRHS+1 ), INFO )
*
-* Check error code from ZHERFS.
+* Check error code from ZHERFS.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZHERFS', INFO, 0, UPLO, N,
NFAIL = NFAIL + 1
END IF
120 CONTINUE
- NRUN = NRUN + 5
+ NRUN = NRUN + 6
+*
+* End do for each value of NRHS in NSVAL.
+*
130 CONTINUE
*
*+ TEST 9
CALL ZHECON( UPLO, N, AFAC, LDA, IWORK, ANORM, RCOND,
$ WORK, INFO )
*
-* Check error code from ZHECON.
+* Check error code from ZHECON and handle error.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZHECON', INFO, 0, UPLO, N, N,
*>
*> \param[out] WORK
*> \verbatim
-*> WORK is COMPLEX*16 array, dimension
-*> (NMAX*max(3,NSMAX))
+*> WORK is COMPLEX*16 array, dimension (NMAX*max(3,NSMAX))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
-*> RWORK is DOUBLE PRECISION array, dimension
-*> (max(NMAX,2*NSMAX))
+*> RWORK is DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX))
*> \endverbatim
*>
*> \param[out] IWORK
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
DOUBLE PRECISION ONEHALF
- PARAMETER ( ONEHALF = 0.5E+0 )
+ PARAMETER ( ONEHALF = 0.5D+0 )
DOUBLE PRECISION EIGHT, SEVTEN
- PARAMETER ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 )
+ PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
COMPLEX CZERO
- PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
+ PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
INTEGER NTYPES
PARAMETER ( NTYPES = 10 )
INTEGER NTESTS
50 CONTINUE
END IF
ELSE
- IOFF = 0
IF( IUPLO.EQ.1 ) THEN
*
* Set the first IZERO rows and columns to zero.
*
+ IOFF = 0
DO 70 J = 1, N
I2 = MIN( J, IZERO )
DO 60 I = 1, I2
*
* Set the last IZERO rows and columns to zero.
*
+ IOFF = 0
DO 90 J = 1, N
I1 = MAX( J, IZERO )
DO 80 I = I1, N
NFAIL = NFAIL + 1
END IF
200 CONTINUE
- NRUN = NRUN + NT
+ NRUN = NRUN + 2
*
* Skip the other tests if this is not the first block
* size.
RCONDC = ZERO
GO TO 230
END IF
+*
+* Do for each value of NRHS in NSVAL.
*
DO 220 IRHS = 1, NNS
NRHS = NSVAL( IRHS )
*
-* Begin loop over NRHS values
-*
-*
*+ TEST 5 ( Using TRS_ROOK)
* Solve and compute residual for A * X = B.
*
210 CONTINUE
NRUN = NRUN + 2
*
-* End loop over NRHS values
+* End do for each value of NRHS in NSVAL.
*
220 CONTINUE
*