#include "llvm/Transforms/IPO/Attributor.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/CallGraph.h"
-#include "llvm/Analysis/CallGraphSCCPass.h"
-#include "llvm/Analysis/CaptureTracking.h"
-#include "llvm/Analysis/EHPersonalities.h"
-#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LazyValueInfo.h"
-#include "llvm/Analysis/Loads.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MustExecute.h"
-#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/Argument.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/CFG.h"
#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstIterator.h"
-#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/IPO/ArgumentPromotion.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#define DEBUG_TYPE "attributor"
+STATISTIC(NumFnDeleted,
+ "Number of function deleted");
STATISTIC(NumFnWithExactDefinition,
"Number of functions with exact definitions");
STATISTIC(NumFnWithoutExactDefinition,
STATISTIC(NumAttributesFixedDueToRequiredDependences,
"Number of abstract attributes fixed due to required dependences");
-// Some helper macros to deal with statistics tracking.
-//
-// Usage:
-// For simple IR attribute tracking overload trackStatistics in the abstract
-// attribute and choose the right STATS_DECLTRACK_********* macro,
-// e.g.,:
-// void trackStatistics() const override {
-// STATS_DECLTRACK_ARG_ATTR(returned)
-// }
-// If there is a single "increment" side one can use the macro
-// STATS_DECLTRACK with a custom message. If there are multiple increment
-// sides, STATS_DECL and STATS_TRACK can also be used separatly.
-//
-#define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME) \
- ("Number of " #TYPE " marked '" #NAME "'")
-#define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
-#define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
-#define STATS_DECL(NAME, TYPE, MSG) \
- STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
-#define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
-#define STATS_DECLTRACK(NAME, TYPE, MSG) \
- { \
- STATS_DECL(NAME, TYPE, MSG) \
- STATS_TRACK(NAME, TYPE) \
- }
-#define STATS_DECLTRACK_ARG_ATTR(NAME) \
- STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
-#define STATS_DECLTRACK_CSARG_ATTR(NAME) \
- STATS_DECLTRACK(NAME, CSArguments, \
- BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
-#define STATS_DECLTRACK_FN_ATTR(NAME) \
- STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
-#define STATS_DECLTRACK_CS_ATTR(NAME) \
- STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
-#define STATS_DECLTRACK_FNRET_ATTR(NAME) \
- STATS_DECLTRACK(NAME, FunctionReturn, \
- BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
-#define STATS_DECLTRACK_CSRET_ATTR(NAME) \
- STATS_DECLTRACK(NAME, CSReturn, \
- BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
-#define STATS_DECLTRACK_FLOATING_ATTR(NAME) \
- STATS_DECLTRACK(NAME, Floating, \
- ("Number of floating values known to be '" #NAME "'"))
-
-// Specialization of the operator<< for abstract attributes subclasses. This
-// disambiguates situations where multiple operators are applicable.
-namespace llvm {
-#define PIPE_OPERATOR(CLASS) \
- raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) { \
- return OS << static_cast<const AbstractAttribute &>(AA); \
- }
-
-PIPE_OPERATOR(AAIsDead)
-PIPE_OPERATOR(AANoUnwind)
-PIPE_OPERATOR(AANoSync)
-PIPE_OPERATOR(AANoRecurse)
-PIPE_OPERATOR(AAWillReturn)
-PIPE_OPERATOR(AANoReturn)
-PIPE_OPERATOR(AAReturnedValues)
-PIPE_OPERATOR(AANonNull)
-PIPE_OPERATOR(AANoAlias)
-PIPE_OPERATOR(AADereferenceable)
-PIPE_OPERATOR(AAAlign)
-PIPE_OPERATOR(AANoCapture)
-PIPE_OPERATOR(AAValueSimplify)
-PIPE_OPERATOR(AANoFree)
-PIPE_OPERATOR(AAHeapToStack)
-PIPE_OPERATOR(AAReachability)
-PIPE_OPERATOR(AAMemoryBehavior)
-PIPE_OPERATOR(AAMemoryLocation)
-PIPE_OPERATOR(AAValueConstantRange)
-PIPE_OPERATOR(AAPrivatizablePtr)
-
-#undef PIPE_OPERATOR
-} // namespace llvm
-
// TODO: Determine a good default value.
//
// In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
"attributor-annotate-decl-cs", cl::Hidden,
cl::desc("Annotate call sites of function declarations."), cl::init(false));
-static cl::opt<bool> ManifestInternal(
- "attributor-manifest-internal", cl::Hidden,
- cl::desc("Manifest Attributor internal string attributes."),
- cl::init(false));
-
static cl::opt<unsigned> DepRecInterval(
"attributor-dependence-recompute-interval", cl::Hidden,
cl::desc("Number of iterations until dependences are recomputed."),
static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
cl::init(true), cl::Hidden);
-static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
- cl::Hidden);
-
static cl::opt<bool>
AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
cl::desc("Allow the Attributor to create shallow "
}
///}
+/// Return true if \p New is equal or worse than \p Old.
+static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
+ if (!Old.isIntAttribute())
+ return true;
+
+ return Old.getValueAsInt() >= New.getValueAsInt();
+}
+
+/// Return true if the information provided by \p Attr was added to the
+/// attribute list \p Attrs. This is only the case if it was not already present
+/// in \p Attrs at the position describe by \p PK and \p AttrIdx.
+static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
+ AttributeList &Attrs, int AttrIdx) {
+
+ if (Attr.isEnumAttribute()) {
+ Attribute::AttrKind Kind = Attr.getKindAsEnum();
+ if (Attrs.hasAttribute(AttrIdx, Kind))
+ if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
+ return false;
+ Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
+ return true;
+ }
+ if (Attr.isStringAttribute()) {
+ StringRef Kind = Attr.getKindAsString();
+ if (Attrs.hasAttribute(AttrIdx, Kind))
+ if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
+ return false;
+ Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
+ return true;
+ }
+ if (Attr.isIntAttribute()) {
+ Attribute::AttrKind Kind = Attr.getKindAsEnum();
+ if (Attrs.hasAttribute(AttrIdx, Kind))
+ if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
+ return false;
+ Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind);
+ Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
+ return true;
+ }
+
+ llvm_unreachable("Expected enum or string attribute!");
+}
+
+
Argument *IRPosition::getAssociatedArgument() const {
if (getPositionKind() == IRP_ARGUMENT)
return cast<Argument>(&getAnchorValue());
return nullptr;
}
-static Optional<Constant *> getAssumedConstant(Attributor &A, const Value &V,
- const AbstractAttribute &AA,
- bool &UsedAssumedInformation) {
- const auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>(
- AA, IRPosition::value(V), /* TrackDependence */ false);
- Optional<Value *> SimplifiedV = ValueSimplifyAA.getAssumedSimplifiedValue(A);
- bool IsKnown = ValueSimplifyAA.isKnown();
- UsedAssumedInformation |= !IsKnown;
- if (!SimplifiedV.hasValue()) {
- A.recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
- return llvm::None;
- }
- if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
- A.recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
- return llvm::None;
- }
- Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
- if (CI && CI->getType() != V.getType()) {
- // TODO: Check for a save conversion.
- return nullptr;
- }
- if (CI)
- A.recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
- return CI;
-}
-
-static Optional<ConstantInt *>
-getAssumedConstantInt(Attributor &A, const Value &V,
- const AbstractAttribute &AA,
- bool &UsedAssumedInformation) {
- Optional<Constant *> C = getAssumedConstant(A, V, AA, UsedAssumedInformation);
- if (C.hasValue())
- return dyn_cast_or_null<ConstantInt>(C.getValue());
- return llvm::None;
-}
-
-/// Get pointer operand of memory accessing instruction. If \p I is
-/// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
-/// is set to false and the instruction is volatile, return nullptr.
-static const Value *getPointerOperand(const Instruction *I,
- bool AllowVolatile) {
- if (auto *LI = dyn_cast<LoadInst>(I)) {
- if (!AllowVolatile && LI->isVolatile())
- return nullptr;
- return LI->getPointerOperand();
- }
-
- if (auto *SI = dyn_cast<StoreInst>(I)) {
- if (!AllowVolatile && SI->isVolatile())
- return nullptr;
- return SI->getPointerOperand();
- }
-
- if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
- if (!AllowVolatile && CXI->isVolatile())
- return nullptr;
- return CXI->getPointerOperand();
- }
-
- if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
- if (!AllowVolatile && RMWI->isVolatile())
- return nullptr;
- return RMWI->getPointerOperand();
- }
-
- return nullptr;
-}
-
-/// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
-/// advanced by \p Offset bytes. To aid later analysis the method tries to build
-/// getelement pointer instructions that traverse the natural type of \p Ptr if
-/// possible. If that fails, the remaining offset is adjusted byte-wise, hence
-/// through a cast to i8*.
-///
-/// TODO: This could probably live somewhere more prominantly if it doesn't
-/// already exist.
-static Value *constructPointer(Type *ResTy, Value *Ptr, int64_t Offset,
- IRBuilder<NoFolder> &IRB, const DataLayout &DL) {
- assert(Offset >= 0 && "Negative offset not supported yet!");
- LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
- << "-bytes as " << *ResTy << "\n");
-
- // The initial type we are trying to traverse to get nice GEPs.
- Type *Ty = Ptr->getType();
-
- SmallVector<Value *, 4> Indices;
- std::string GEPName = Ptr->getName().str();
- while (Offset) {
- uint64_t Idx, Rem;
-
- if (auto *STy = dyn_cast<StructType>(Ty)) {
- const StructLayout *SL = DL.getStructLayout(STy);
- if (int64_t(SL->getSizeInBytes()) < Offset)
- break;
- Idx = SL->getElementContainingOffset(Offset);
- assert(Idx < STy->getNumElements() && "Offset calculation error!");
- Rem = Offset - SL->getElementOffset(Idx);
- Ty = STy->getElementType(Idx);
- } else if (auto *PTy = dyn_cast<PointerType>(Ty)) {
- Ty = PTy->getElementType();
- if (!Ty->isSized())
- break;
- uint64_t ElementSize = DL.getTypeAllocSize(Ty);
- assert(ElementSize && "Expected type with size!");
- Idx = Offset / ElementSize;
- Rem = Offset % ElementSize;
- } else {
- // Non-aggregate type, we cast and make byte-wise progress now.
- break;
- }
-
- LLVM_DEBUG(errs() << "Ty: " << *Ty << " Offset: " << Offset
- << " Idx: " << Idx << " Rem: " << Rem << "\n");
-
- GEPName += "." + std::to_string(Idx);
- Indices.push_back(ConstantInt::get(IRB.getInt32Ty(), Idx));
- Offset = Rem;
- }
-
- // Create a GEP if we collected indices above.
- if (Indices.size())
- Ptr = IRB.CreateGEP(Ptr, Indices, GEPName);
-
- // If an offset is left we use byte-wise adjustment.
- if (Offset) {
- Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
- Ptr = IRB.CreateGEP(Ptr, IRB.getInt32(Offset),
- GEPName + ".b" + Twine(Offset));
- }
-
- // Ensure the result has the requested type.
- Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast");
-
- LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
- return Ptr;
-}
-
-/// Recursively visit all values that might become \p IRP at some point. This
-/// will be done by looking through cast instructions, selects, phis, and calls
-/// with the "returned" attribute. Once we cannot look through the value any
-/// further, the callback \p VisitValueCB is invoked and passed the current
-/// value, the \p State, and a flag to indicate if we stripped anything.
-/// Stripped means that we unpacked the value associated with \p IRP at least
-/// once. Note that the value used for the callback may still be the value
-/// associated with \p IRP (due to PHIs). To limit how much effort is invested,
-/// we will never visit more values than specified by \p MaxValues.
-template <typename AAType, typename StateTy>
-static bool genericValueTraversal(
- Attributor &A, IRPosition IRP, const AAType &QueryingAA, StateTy &State,
- function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
- VisitValueCB,
- const Instruction *CtxI, int MaxValues = 16,
- function_ref<Value *(Value *)> StripCB = nullptr) {
-
- const AAIsDead *LivenessAA = nullptr;
- if (IRP.getAnchorScope())
- LivenessAA = &A.getAAFor<AAIsDead>(
- QueryingAA, IRPosition::function(*IRP.getAnchorScope()),
- /* TrackDependence */ false);
- bool AnyDead = false;
-
- using Item = std::pair<Value *, const Instruction *>;
- SmallSet<Item, 16> Visited;
- SmallVector<Item, 16> Worklist;
- Worklist.push_back({&IRP.getAssociatedValue(), CtxI});
-
- int Iteration = 0;
- do {
- Item I = Worklist.pop_back_val();
- Value *V = I.first;
- CtxI = I.second;
- if (StripCB)
- V = StripCB(V);
-
- // Check if we should process the current value. To prevent endless
- // recursion keep a record of the values we followed!
- if (!Visited.insert(I).second)
- continue;
-
- // Make sure we limit the compile time for complex expressions.
- if (Iteration++ >= MaxValues)
- return false;
-
- // Explicitly look through calls with a "returned" attribute if we do
- // not have a pointer as stripPointerCasts only works on them.
- Value *NewV = nullptr;
- if (V->getType()->isPointerTy()) {
- NewV = V->stripPointerCasts();
- } else {
- CallSite CS(V);
- if (CS && CS.getCalledFunction()) {
- for (Argument &Arg : CS.getCalledFunction()->args())
- if (Arg.hasReturnedAttr()) {
- NewV = CS.getArgOperand(Arg.getArgNo());
- break;
- }
- }
- }
- if (NewV && NewV != V) {
- Worklist.push_back({NewV, CtxI});
- continue;
- }
-
- // Look through select instructions, visit both potential values.
- if (auto *SI = dyn_cast<SelectInst>(V)) {
- Worklist.push_back({SI->getTrueValue(), CtxI});
- Worklist.push_back({SI->getFalseValue(), CtxI});
- continue;
- }
-
- // Look through phi nodes, visit all live operands.
- if (auto *PHI = dyn_cast<PHINode>(V)) {
- assert(LivenessAA &&
- "Expected liveness in the presence of instructions!");
- for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
- BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
- if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA,
- LivenessAA,
- /* CheckBBLivenessOnly */ true)) {
- AnyDead = true;
- continue;
- }
- Worklist.push_back(
- {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
- }
- continue;
- }
-
- // Once a leaf is reached we inform the user through the callback.
- if (!VisitValueCB(*V, CtxI, State, Iteration > 1))
- return false;
- } while (!Worklist.empty());
-
- // If we actually used liveness information so we have to record a dependence.
- if (AnyDead)
- A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL);
-
- // All values have been visited.
- return true;
-}
-
-/// Return true if \p New is equal or worse than \p Old.
-static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
- if (!Old.isIntAttribute())
- return true;
-
- return Old.getValueAsInt() >= New.getValueAsInt();
-}
-
-/// Return true if the information provided by \p Attr was added to the
-/// attribute list \p Attrs. This is only the case if it was not already present
-/// in \p Attrs at the position describe by \p PK and \p AttrIdx.
-static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
- AttributeList &Attrs, int AttrIdx) {
-
- if (Attr.isEnumAttribute()) {
- Attribute::AttrKind Kind = Attr.getKindAsEnum();
- if (Attrs.hasAttribute(AttrIdx, Kind))
- if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
- return false;
- Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
- return true;
- }
- if (Attr.isStringAttribute()) {
- StringRef Kind = Attr.getKindAsString();
- if (Attrs.hasAttribute(AttrIdx, Kind))
- if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
- return false;
- Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
- return true;
- }
- if (Attr.isIntAttribute()) {
- Attribute::AttrKind Kind = Attr.getKindAsEnum();
- if (Attrs.hasAttribute(AttrIdx, Kind))
- if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
- return false;
- Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind);
- Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
- return true;
- }
-
- llvm_unreachable("Expected enum or string attribute!");
-}
-
-static const Value *
-getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset,
- const DataLayout &DL,
- bool AllowNonInbounds = false) {
- const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
- if (!Ptr)
- return nullptr;
-
- return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL,
- AllowNonInbounds);
-}
-
ChangeStatus AbstractAttribute::update(Attributor &A) {
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
if (getState().isAtFixpoint())
break;
}
- ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
- LLVMContext &Ctx = IRP.getAnchorValue().getContext();
- for (const Attribute &Attr : DeducedAttrs) {
- if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx()))
- continue;
-
- HasChanged = ChangeStatus::CHANGED;
- }
-
- if (HasChanged == ChangeStatus::UNCHANGED)
- return HasChanged;
-
- switch (PK) {
- case IRPosition::IRP_ARGUMENT:
- case IRPosition::IRP_FUNCTION:
- case IRPosition::IRP_RETURNED:
- ScopeFn->setAttributes(Attrs);
- break;
- case IRPosition::IRP_CALL_SITE:
- case IRPosition::IRP_CALL_SITE_RETURNED:
- case IRPosition::IRP_CALL_SITE_ARGUMENT:
- CallSite(&IRP.getAnchorValue()).setAttributes(Attrs);
- break;
- case IRPosition::IRP_INVALID:
- case IRPosition::IRP_FLOAT:
- break;
- }
-
- return HasChanged;
-}
-
-const IRPosition IRPosition::EmptyKey(255);
-const IRPosition IRPosition::TombstoneKey(256);
-
-SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
- IRPositions.emplace_back(IRP);
-
- ImmutableCallSite ICS(&IRP.getAnchorValue());
- switch (IRP.getPositionKind()) {
- case IRPosition::IRP_INVALID:
- case IRPosition::IRP_FLOAT:
- case IRPosition::IRP_FUNCTION:
- return;
- case IRPosition::IRP_ARGUMENT:
- case IRPosition::IRP_RETURNED:
- IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
- return;
- case IRPosition::IRP_CALL_SITE:
- assert(ICS && "Expected call site!");
- // TODO: We need to look at the operand bundles similar to the redirection
- // in CallBase.
- if (!ICS.hasOperandBundles())
- if (const Function *Callee = ICS.getCalledFunction())
- IRPositions.emplace_back(IRPosition::function(*Callee));
- return;
- case IRPosition::IRP_CALL_SITE_RETURNED:
- assert(ICS && "Expected call site!");
- // TODO: We need to look at the operand bundles similar to the redirection
- // in CallBase.
- if (!ICS.hasOperandBundles()) {
- if (const Function *Callee = ICS.getCalledFunction()) {
- IRPositions.emplace_back(IRPosition::returned(*Callee));
- IRPositions.emplace_back(IRPosition::function(*Callee));
- for (const Argument &Arg : Callee->args())
- if (Arg.hasReturnedAttr()) {
- IRPositions.emplace_back(
- IRPosition::callsite_argument(ICS, Arg.getArgNo()));
- IRPositions.emplace_back(
- IRPosition::value(*ICS.getArgOperand(Arg.getArgNo())));
- IRPositions.emplace_back(IRPosition::argument(Arg));
- }
- }
- }
- IRPositions.emplace_back(
- IRPosition::callsite_function(cast<CallBase>(*ICS.getInstruction())));
- return;
- case IRPosition::IRP_CALL_SITE_ARGUMENT: {
- int ArgNo = IRP.getArgNo();
- assert(ICS && ArgNo >= 0 && "Expected call site!");
- // TODO: We need to look at the operand bundles similar to the redirection
- // in CallBase.
- if (!ICS.hasOperandBundles()) {
- const Function *Callee = ICS.getCalledFunction();
- if (Callee && Callee->arg_size() > unsigned(ArgNo))
- IRPositions.emplace_back(IRPosition::argument(*Callee->getArg(ArgNo)));
- if (Callee)
- IRPositions.emplace_back(IRPosition::function(*Callee));
- }
- IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
- return;
- }
- }
-}
-
-bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
- bool IgnoreSubsumingPositions, Attributor *A) const {
- SmallVector<Attribute, 4> Attrs;
- for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
- for (Attribute::AttrKind AK : AKs)
- if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
- return true;
- // The first position returned by the SubsumingPositionIterator is
- // always the position itself. If we ignore subsuming positions we
- // are done after the first iteration.
- if (IgnoreSubsumingPositions)
- break;
- }
- if (A)
- for (Attribute::AttrKind AK : AKs)
- if (getAttrsFromAssumes(AK, Attrs, *A))
- return true;
- return false;
-}
-
-void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
- SmallVectorImpl<Attribute> &Attrs,
- bool IgnoreSubsumingPositions, Attributor *A) const {
- for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
- for (Attribute::AttrKind AK : AKs)
- EquivIRP.getAttrsFromIRAttr(AK, Attrs);
- // The first position returned by the SubsumingPositionIterator is
- // always the position itself. If we ignore subsuming positions we
- // are done after the first iteration.
- if (IgnoreSubsumingPositions)
- break;
- }
- if (A)
- for (Attribute::AttrKind AK : AKs)
- getAttrsFromAssumes(AK, Attrs, *A);
-}
-
-bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
- SmallVectorImpl<Attribute> &Attrs) const {
- if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
- return false;
-
- AttributeList AttrList;
- if (ImmutableCallSite ICS = ImmutableCallSite(&getAnchorValue()))
- AttrList = ICS.getAttributes();
- else
- AttrList = getAssociatedFunction()->getAttributes();
-
- bool HasAttr = AttrList.hasAttribute(getAttrIdx(), AK);
- if (HasAttr)
- Attrs.push_back(AttrList.getAttribute(getAttrIdx(), AK));
- return HasAttr;
-}
-
-bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
- SmallVectorImpl<Attribute> &Attrs,
- Attributor &A) const {
- assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
- Value &AssociatedValue = getAssociatedValue();
-
- const Assume2KnowledgeMap &A2K =
- A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
-
- // Check if we found any potential assume use, if not we don't need to create
- // explorer iterators.
- if (A2K.empty())
- return false;
-
- LLVMContext &Ctx = AssociatedValue.getContext();
- unsigned AttrsSize = Attrs.size();
- MustBeExecutedContextExplorer &Explorer =
- A.getInfoCache().getMustBeExecutedContextExplorer();
- auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
- for (auto &It : A2K)
- if (Explorer.findInContextOf(It.first, EIt, EEnd))
- Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
- return AttrsSize != Attrs.size();
-}
-
-void IRPosition::verify() {
- switch (KindOrArgNo) {
- default:
- assert(KindOrArgNo >= 0 && "Expected argument or call site argument!");
- assert((isa<CallBase>(AnchorVal) || isa<Argument>(AnchorVal)) &&
- "Expected call base or argument for positive attribute index!");
- if (isa<Argument>(AnchorVal)) {
- assert(cast<Argument>(AnchorVal)->getArgNo() == unsigned(getArgNo()) &&
- "Argument number mismatch!");
- assert(cast<Argument>(AnchorVal) == &getAssociatedValue() &&
- "Associated value mismatch!");
- } else {
- assert(cast<CallBase>(*AnchorVal).arg_size() > unsigned(getArgNo()) &&
- "Call site argument number mismatch!");
- assert(cast<CallBase>(*AnchorVal).getArgOperand(getArgNo()) ==
- &getAssociatedValue() &&
- "Associated value mismatch!");
- }
- break;
- case IRP_INVALID:
- assert(!AnchorVal && "Expected no value for an invalid position!");
- break;
- case IRP_FLOAT:
- assert((!isa<CallBase>(&getAssociatedValue()) &&
- !isa<Argument>(&getAssociatedValue())) &&
- "Expected specialized kind for call base and argument values!");
- break;
- case IRP_RETURNED:
- assert(isa<Function>(AnchorVal) &&
- "Expected function for a 'returned' position!");
- assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
- break;
- case IRP_CALL_SITE_RETURNED:
- assert((isa<CallBase>(AnchorVal)) &&
- "Expected call base for 'call site returned' position!");
- assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
- break;
- case IRP_CALL_SITE:
- assert((isa<CallBase>(AnchorVal)) &&
- "Expected call base for 'call site function' position!");
- assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
- break;
- case IRP_FUNCTION:
- assert(isa<Function>(AnchorVal) &&
- "Expected function for a 'function' position!");
- assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
- break;
- }
-}
-
-namespace {
-
-/// Helper function to clamp a state \p S of type \p StateType with the
-/// information in \p R and indicate/return if \p S did change (as-in update is
-/// required to be run again).
-template <typename StateType>
-ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) {
- auto Assumed = S.getAssumed();
- S ^= R;
- return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
- : ChangeStatus::CHANGED;
-}
-
-/// Clamp the information known for all returned values of a function
-/// (identified by \p QueryingAA) into \p S.
-template <typename AAType, typename StateType = typename AAType::StateType>
-static void clampReturnedValueStates(Attributor &A, const AAType &QueryingAA,
- StateType &S) {
- LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
- << QueryingAA << " into " << S << "\n");
-
- assert((QueryingAA.getIRPosition().getPositionKind() ==
- IRPosition::IRP_RETURNED ||
- QueryingAA.getIRPosition().getPositionKind() ==
- IRPosition::IRP_CALL_SITE_RETURNED) &&
- "Can only clamp returned value states for a function returned or call "
- "site returned position!");
-
- // Use an optional state as there might not be any return values and we want
- // to join (IntegerState::operator&) the state of all there are.
- Optional<StateType> T;
-
- // Callback for each possibly returned value.
- auto CheckReturnValue = [&](Value &RV) -> bool {
- const IRPosition &RVPos = IRPosition::value(RV);
- const AAType &AA = A.getAAFor<AAType>(QueryingAA, RVPos);
- LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
- << " @ " << RVPos << "\n");
- const StateType &AAS = static_cast<const StateType &>(AA.getState());
- if (T.hasValue())
- *T &= AAS;
- else
- T = AAS;
- LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
- << "\n");
- return T->isValidState();
- };
-
- if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
- S.indicatePessimisticFixpoint();
- else if (T.hasValue())
- S ^= *T;
-}
-
-/// Helper class to compose two generic deduction
-template <typename AAType, typename Base, typename StateType,
- template <typename...> class F, template <typename...> class G>
-struct AAComposeTwoGenericDeduction
- : public F<AAType, G<AAType, Base, StateType>, StateType> {
- AAComposeTwoGenericDeduction(const IRPosition &IRP)
- : F<AAType, G<AAType, Base, StateType>, StateType>(IRP) {}
-
- void initialize(Attributor &A) override {
- F<AAType, G<AAType, Base, StateType>, StateType>::initialize(A);
- G<AAType, Base, StateType>::initialize(A);
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- ChangeStatus ChangedF =
- F<AAType, G<AAType, Base, StateType>, StateType>::updateImpl(A);
- ChangeStatus ChangedG = G<AAType, Base, StateType>::updateImpl(A);
- return ChangedF | ChangedG;
- }
-};
-
-/// Helper class for generic deduction: return value -> returned position.
-template <typename AAType, typename Base,
- typename StateType = typename Base::StateType>
-struct AAReturnedFromReturnedValues : public Base {
- AAReturnedFromReturnedValues(const IRPosition &IRP) : Base(IRP) {}
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- StateType S(StateType::getBestState(this->getState()));
- clampReturnedValueStates<AAType, StateType>(A, *this, S);
- // TODO: If we know we visited all returned values, thus no are assumed
- // dead, we can take the known information from the state T.
- return clampStateAndIndicateChange<StateType>(this->getState(), S);
- }
-};
-
-/// Clamp the information known at all call sites for a given argument
-/// (identified by \p QueryingAA) into \p S.
-template <typename AAType, typename StateType = typename AAType::StateType>
-static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
- StateType &S) {
- LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
- << QueryingAA << " into " << S << "\n");
-
- assert(QueryingAA.getIRPosition().getPositionKind() ==
- IRPosition::IRP_ARGUMENT &&
- "Can only clamp call site argument states for an argument position!");
-
- // Use an optional state as there might not be any return values and we want
- // to join (IntegerState::operator&) the state of all there are.
- Optional<StateType> T;
-
- // The argument number which is also the call site argument number.
- unsigned ArgNo = QueryingAA.getIRPosition().getArgNo();
-
- auto CallSiteCheck = [&](AbstractCallSite ACS) {
- const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
- // Check if a coresponding argument was found or if it is on not associated
- // (which can happen for callback calls).
- if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
- return false;
-
- const AAType &AA = A.getAAFor<AAType>(QueryingAA, ACSArgPos);
- LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
- << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
- const StateType &AAS = static_cast<const StateType &>(AA.getState());
- if (T.hasValue())
- *T &= AAS;
- else
- T = AAS;
- LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
- << "\n");
- return T->isValidState();
- };
-
- bool AllCallSitesKnown;
- if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
- AllCallSitesKnown))
- S.indicatePessimisticFixpoint();
- else if (T.hasValue())
- S ^= *T;
-}
-
-/// Helper class for generic deduction: call site argument -> argument position.
-template <typename AAType, typename Base,
- typename StateType = typename AAType::StateType>
-struct AAArgumentFromCallSiteArguments : public Base {
- AAArgumentFromCallSiteArguments(const IRPosition &IRP) : Base(IRP) {}
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- StateType S(StateType::getBestState(this->getState()));
- clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
- // TODO: If we know we visited all incoming values, thus no are assumed
- // dead, we can take the known information from the state T.
- return clampStateAndIndicateChange<StateType>(this->getState(), S);
- }
-};
-
-/// Helper class for generic replication: function returned -> cs returned.
-template <typename AAType, typename Base,
- typename StateType = typename Base::StateType>
-struct AACallSiteReturnedFromReturned : public Base {
- AACallSiteReturnedFromReturned(const IRPosition &IRP) : Base(IRP) {}
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- assert(this->getIRPosition().getPositionKind() ==
- IRPosition::IRP_CALL_SITE_RETURNED &&
- "Can only wrap function returned positions for call site returned "
- "positions!");
- auto &S = this->getState();
-
- const Function *AssociatedFunction =
- this->getIRPosition().getAssociatedFunction();
- if (!AssociatedFunction)
- return S.indicatePessimisticFixpoint();
-
- IRPosition FnPos = IRPosition::returned(*AssociatedFunction);
- const AAType &AA = A.getAAFor<AAType>(*this, FnPos);
- return clampStateAndIndicateChange(
- S, static_cast<const StateType &>(AA.getState()));
- }
-};
-
-/// Helper class for generic deduction using must-be-executed-context
-/// Base class is required to have `followUse` method.
-
-/// bool followUse(Attributor &A, const Use *U, const Instruction *I)
-/// U - Underlying use.
-/// I - The user of the \p U.
-/// `followUse` returns true if the value should be tracked transitively.
-
-template <typename AAType, typename Base,
- typename StateType = typename AAType::StateType>
-struct AAFromMustBeExecutedContext : public Base {
- AAFromMustBeExecutedContext(const IRPosition &IRP) : Base(IRP) {}
-
- void initialize(Attributor &A) override {
- Base::initialize(A);
- const IRPosition &IRP = this->getIRPosition();
- Instruction *CtxI = IRP.getCtxI();
-
- if (!CtxI)
- return;
-
- for (const Use &U : IRP.getAssociatedValue().uses())
- Uses.insert(&U);
- }
-
- /// Helper function to accumulate uses.
- void followUsesInContext(Attributor &A,
- MustBeExecutedContextExplorer &Explorer,
- const Instruction *CtxI,
- SetVector<const Use *> &Uses, StateType &State) {
- auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
- for (unsigned u = 0; u < Uses.size(); ++u) {
- const Use *U = Uses[u];
- if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
- bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
- if (Found && Base::followUse(A, U, UserI, State))
- for (const Use &Us : UserI->uses())
- Uses.insert(&Us);
- }
- }
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- auto BeforeState = this->getState();
- auto &S = this->getState();
- Instruction *CtxI = this->getIRPosition().getCtxI();
- if (!CtxI)
- return ChangeStatus::UNCHANGED;
-
- MustBeExecutedContextExplorer &Explorer =
- A.getInfoCache().getMustBeExecutedContextExplorer();
-
- followUsesInContext(A, Explorer, CtxI, Uses, S);
-
- if (this->isAtFixpoint())
- return ChangeStatus::CHANGED;
-
- SmallVector<const BranchInst *, 4> BrInsts;
- auto Pred = [&](const Instruction *I) {
- if (const BranchInst *Br = dyn_cast<BranchInst>(I))
- if (Br->isConditional())
- BrInsts.push_back(Br);
- return true;
- };
-
- // Here, accumulate conditional branch instructions in the context. We
- // explore the child paths and collect the known states. The disjunction of
- // those states can be merged to its own state. Let ParentState_i be a state
- // to indicate the known information for an i-th branch instruction in the
- // context. ChildStates are created for its successors respectively.
- //
- // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
- // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
- // ...
- // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
- //
- // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
- //
- // FIXME: Currently, recursive branches are not handled. For example, we
- // can't deduce that ptr must be dereferenced in below function.
- //
- // void f(int a, int c, int *ptr) {
- // if(a)
- // if (b) {
- // *ptr = 0;
- // } else {
- // *ptr = 1;
- // }
- // else {
- // if (b) {
- // *ptr = 0;
- // } else {
- // *ptr = 1;
- // }
- // }
- // }
-
- Explorer.checkForAllContext(CtxI, Pred);
- for (const BranchInst *Br : BrInsts) {
- StateType ParentState;
-
- // The known state of the parent state is a conjunction of children's
- // known states so it is initialized with a best state.
- ParentState.indicateOptimisticFixpoint();
-
- for (const BasicBlock *BB : Br->successors()) {
- StateType ChildState;
-
- size_t BeforeSize = Uses.size();
- followUsesInContext(A, Explorer, &BB->front(), Uses, ChildState);
-
- // Erase uses which only appear in the child.
- for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
- It = Uses.erase(It);
-
- ParentState &= ChildState;
- }
-
- // Use only known state.
- S += ParentState;
- }
-
- return BeforeState == S ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
- }
-
-private:
- /// Container for (transitive) uses of the associated value.
- SetVector<const Use *> Uses;
-};
-
-template <typename AAType, typename Base,
- typename StateType = typename AAType::StateType>
-using AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext =
- AAComposeTwoGenericDeduction<AAType, Base, StateType,
- AAFromMustBeExecutedContext,
- AAArgumentFromCallSiteArguments>;
-
-template <typename AAType, typename Base,
- typename StateType = typename AAType::StateType>
-using AACallSiteReturnedFromReturnedAndMustBeExecutedContext =
- AAComposeTwoGenericDeduction<AAType, Base, StateType,
- AAFromMustBeExecutedContext,
- AACallSiteReturnedFromReturned>;
-
-/// -----------------------NoUnwind Function Attribute--------------------------
-
-struct AANoUnwindImpl : AANoUnwind {
- AANoUnwindImpl(const IRPosition &IRP) : AANoUnwind(IRP) {}
-
- const std::string getAsStr() const override {
- return getAssumed() ? "nounwind" : "may-unwind";
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- auto Opcodes = {
- (unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
- (unsigned)Instruction::Call, (unsigned)Instruction::CleanupRet,
- (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
-
- auto CheckForNoUnwind = [&](Instruction &I) {
- if (!I.mayThrow())
- return true;
-
- if (ImmutableCallSite ICS = ImmutableCallSite(&I)) {
- const auto &NoUnwindAA =
- A.getAAFor<AANoUnwind>(*this, IRPosition::callsite_function(ICS));
- return NoUnwindAA.isAssumedNoUnwind();
- }
- return false;
- };
-
- if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes))
- return indicatePessimisticFixpoint();
-
- return ChangeStatus::UNCHANGED;
- }
-};
-
-struct AANoUnwindFunction final : public AANoUnwindImpl {
- AANoUnwindFunction(const IRPosition &IRP) : AANoUnwindImpl(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
-};
-
-/// NoUnwind attribute deduction for a call sites.
-struct AANoUnwindCallSite final : AANoUnwindImpl {
- AANoUnwindCallSite(const IRPosition &IRP) : AANoUnwindImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- AANoUnwindImpl::initialize(A);
- Function *F = getAssociatedFunction();
- if (!F)
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- // TODO: Once we have call site specific value information we can provide
- // call site specific liveness information and then it makes
- // sense to specialize attributes for call sites arguments instead of
- // redirecting requests to the callee argument.
- Function *F = getAssociatedFunction();
- const IRPosition &FnPos = IRPosition::function(*F);
- auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos);
- return clampStateAndIndicateChange(
- getState(),
- static_cast<const AANoUnwind::StateType &>(FnAA.getState()));
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
-};
-
-/// --------------------- Function Return Values -------------------------------
-
-/// "Attribute" that collects all potential returned values and the return
-/// instructions that they arise from.
-///
-/// If there is a unique returned value R, the manifest method will:
-/// - mark R with the "returned" attribute, if R is an argument.
-class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
-
- /// Mapping of values potentially returned by the associated function to the
- /// return instructions that might return them.
- MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
-
- /// Mapping to remember the number of returned values for a call site such
- /// that we can avoid updates if nothing changed.
- DenseMap<const CallBase *, unsigned> NumReturnedValuesPerKnownAA;
-
- /// Set of unresolved calls returned by the associated function.
- SmallSetVector<CallBase *, 4> UnresolvedCalls;
-
- /// State flags
- ///
- ///{
- bool IsFixed = false;
- bool IsValidState = true;
- ///}
-
-public:
- AAReturnedValuesImpl(const IRPosition &IRP) : AAReturnedValues(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- // Reset the state.
- IsFixed = false;
- IsValidState = true;
- ReturnedValues.clear();
-
- Function *F = getAssociatedFunction();
- if (!F) {
- indicatePessimisticFixpoint();
- return;
- }
- assert(!F->getReturnType()->isVoidTy() &&
- "Did not expect a void return type!");
-
- // The map from instruction opcodes to those instructions in the function.
- auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
-
- // Look through all arguments, if one is marked as returned we are done.
- for (Argument &Arg : F->args()) {
- if (Arg.hasReturnedAttr()) {
- auto &ReturnInstSet = ReturnedValues[&Arg];
- for (Instruction *RI : OpcodeInstMap[Instruction::Ret])
- ReturnInstSet.insert(cast<ReturnInst>(RI));
-
- indicateOptimisticFixpoint();
- return;
- }
- }
-
- if (!A.isFunctionIPOAmendable(*F))
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::manifest(...).
- ChangeStatus manifest(Attributor &A) override;
-
- /// See AbstractAttribute::getState(...).
- AbstractState &getState() override { return *this; }
-
- /// See AbstractAttribute::getState(...).
- const AbstractState &getState() const override { return *this; }
-
- /// See AbstractAttribute::updateImpl(Attributor &A).
- ChangeStatus updateImpl(Attributor &A) override;
-
- llvm::iterator_range<iterator> returned_values() override {
- return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
- }
-
- llvm::iterator_range<const_iterator> returned_values() const override {
- return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
- }
-
- const SmallSetVector<CallBase *, 4> &getUnresolvedCalls() const override {
- return UnresolvedCalls;
- }
-
- /// Return the number of potential return values, -1 if unknown.
- size_t getNumReturnValues() const override {
- return isValidState() ? ReturnedValues.size() : -1;
- }
-
- /// Return an assumed unique return value if a single candidate is found. If
- /// there cannot be one, return a nullptr. If it is not clear yet, return the
- /// Optional::NoneType.
- Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
-
- /// See AbstractState::checkForAllReturnedValues(...).
- bool checkForAllReturnedValuesAndReturnInsts(
- function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
- const override;
-
- /// Pretty print the attribute similar to the IR representation.
- const std::string getAsStr() const override;
-
- /// See AbstractState::isAtFixpoint().
- bool isAtFixpoint() const override { return IsFixed; }
-
- /// See AbstractState::isValidState().
- bool isValidState() const override { return IsValidState; }
-
- /// See AbstractState::indicateOptimisticFixpoint(...).
- ChangeStatus indicateOptimisticFixpoint() override {
- IsFixed = true;
- return ChangeStatus::UNCHANGED;
- }
-
- ChangeStatus indicatePessimisticFixpoint() override {
- IsFixed = true;
- IsValidState = false;
- return ChangeStatus::CHANGED;
- }
-};
-
-ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
- ChangeStatus Changed = ChangeStatus::UNCHANGED;
-
- // Bookkeeping.
- assert(isValidState());
- STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
- "Number of functions with known return values");
-
- // Check if we have an assumed unique return value that we could manifest.
- Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
-
- if (!UniqueRV.hasValue() || !UniqueRV.getValue())
- return Changed;
-
- // Bookkeeping.
- STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
- "Number of functions with a unique return");
-
- // Callback to replace the uses of CB with the constant C.
- auto ReplaceCallSiteUsersWith = [&A](CallBase &CB, Constant &C) {
- if (CB.getNumUses() == 0)
- return ChangeStatus::UNCHANGED;
- if (A.changeValueAfterManifest(CB, C))
- return ChangeStatus::CHANGED;
- return ChangeStatus::UNCHANGED;
- };
-
- // If the assumed unique return value is an argument, annotate it.
- if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
- // TODO: This should be handled differently!
- this->AnchorVal = UniqueRVArg;
- this->KindOrArgNo = UniqueRVArg->getArgNo();
- Changed = IRAttribute::manifest(A);
- } else if (auto *RVC = dyn_cast<Constant>(UniqueRV.getValue())) {
- // We can replace the returned value with the unique returned constant.
- Value &AnchorValue = getAnchorValue();
- if (Function *F = dyn_cast<Function>(&AnchorValue)) {
- for (const Use &U : F->uses())
- if (CallBase *CB = dyn_cast<CallBase>(U.getUser()))
- if (CB->isCallee(&U)) {
- Constant *RVCCast =
- CB->getType() == RVC->getType()
- ? RVC
- : ConstantExpr::getTruncOrBitCast(RVC, CB->getType());
- Changed = ReplaceCallSiteUsersWith(*CB, *RVCCast) | Changed;
- }
- } else {
- assert(isa<CallBase>(AnchorValue) &&
- "Expcected a function or call base anchor!");
- Constant *RVCCast =
- AnchorValue.getType() == RVC->getType()
- ? RVC
- : ConstantExpr::getTruncOrBitCast(RVC, AnchorValue.getType());
- Changed = ReplaceCallSiteUsersWith(cast<CallBase>(AnchorValue), *RVCCast);
- }
- if (Changed == ChangeStatus::CHANGED)
- STATS_DECLTRACK(UniqueConstantReturnValue, FunctionReturn,
- "Number of function returns replaced by constant return");
- }
-
- return Changed;
-}
-
-const std::string AAReturnedValuesImpl::getAsStr() const {
- return (isAtFixpoint() ? "returns(#" : "may-return(#") +
- (isValidState() ? std::to_string(getNumReturnValues()) : "?") +
- ")[#UC: " + std::to_string(UnresolvedCalls.size()) + "]";
-}
-
-Optional<Value *>
-AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
- // If checkForAllReturnedValues provides a unique value, ignoring potential
- // undef values that can also be present, it is assumed to be the actual
- // return value and forwarded to the caller of this method. If there are
- // multiple, a nullptr is returned indicating there cannot be a unique
- // returned value.
- Optional<Value *> UniqueRV;
-
- auto Pred = [&](Value &RV) -> bool {
- // If we found a second returned value and neither the current nor the saved
- // one is an undef, there is no unique returned value. Undefs are special
- // since we can pretend they have any value.
- if (UniqueRV.hasValue() && UniqueRV != &RV &&
- !(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) {
- UniqueRV = nullptr;
- return false;
- }
-
- // Do not overwrite a value with an undef.
- if (!UniqueRV.hasValue() || !isa<UndefValue>(RV))
- UniqueRV = &RV;
-
- return true;
- };
-
- if (!A.checkForAllReturnedValues(Pred, *this))
- UniqueRV = nullptr;
-
- return UniqueRV;
-}
-
-bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
- function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
- const {
- if (!isValidState())
- return false;
-
- // Check all returned values but ignore call sites as long as we have not
- // encountered an overdefined one during an update.
- for (auto &It : ReturnedValues) {
- Value *RV = It.first;
-
- CallBase *CB = dyn_cast<CallBase>(RV);
- if (CB && !UnresolvedCalls.count(CB))
- continue;
-
- if (!Pred(*RV, It.second))
- return false;
- }
-
- return true;
-}
-
-ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
- size_t NumUnresolvedCalls = UnresolvedCalls.size();
- bool Changed = false;
-
- // State used in the value traversals starting in returned values.
- struct RVState {
- // The map in which we collect return values -> return instrs.
- decltype(ReturnedValues) &RetValsMap;
- // The flag to indicate a change.
- bool &Changed;
- // The return instrs we come from.
- SmallSetVector<ReturnInst *, 4> RetInsts;
- };
-
- // Callback for a leaf value returned by the associated function.
- auto VisitValueCB = [](Value &Val, const Instruction *, RVState &RVS,
- bool) -> bool {
- auto Size = RVS.RetValsMap[&Val].size();
- RVS.RetValsMap[&Val].insert(RVS.RetInsts.begin(), RVS.RetInsts.end());
- bool Inserted = RVS.RetValsMap[&Val].size() != Size;
- RVS.Changed |= Inserted;
- LLVM_DEBUG({
- if (Inserted)
- dbgs() << "[AAReturnedValues] 1 Add new returned value " << Val
- << " => " << RVS.RetInsts.size() << "\n";
- });
- return true;
- };
-
- // Helper method to invoke the generic value traversal.
- auto VisitReturnedValue = [&](Value &RV, RVState &RVS,
- const Instruction *CtxI) {
- IRPosition RetValPos = IRPosition::value(RV);
- return genericValueTraversal<AAReturnedValues, RVState>(
- A, RetValPos, *this, RVS, VisitValueCB, CtxI);
- };
-
- // Callback for all "return intructions" live in the associated function.
- auto CheckReturnInst = [this, &VisitReturnedValue, &Changed](Instruction &I) {
- ReturnInst &Ret = cast<ReturnInst>(I);
- RVState RVS({ReturnedValues, Changed, {}});
- RVS.RetInsts.insert(&Ret);
- return VisitReturnedValue(*Ret.getReturnValue(), RVS, &I);
- };
-
- // Start by discovering returned values from all live returned instructions in
- // the associated function.
- if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}))
- return indicatePessimisticFixpoint();
-
- // Once returned values "directly" present in the code are handled we try to
- // resolve returned calls.
- decltype(ReturnedValues) NewRVsMap;
- for (auto &It : ReturnedValues) {
- LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned value: " << *It.first
- << " by #" << It.second.size() << " RIs\n");
- CallBase *CB = dyn_cast<CallBase>(It.first);
- if (!CB || UnresolvedCalls.count(CB))
- continue;
-
- if (!CB->getCalledFunction()) {
- LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
- << "\n");
- UnresolvedCalls.insert(CB);
- continue;
- }
-
- // TODO: use the function scope once we have call site AAReturnedValues.
- const auto &RetValAA = A.getAAFor<AAReturnedValues>(
- *this, IRPosition::function(*CB->getCalledFunction()));
- LLVM_DEBUG(dbgs() << "[AAReturnedValues] Found another AAReturnedValues: "
- << RetValAA << "\n");
-
- // Skip dead ends, thus if we do not know anything about the returned
- // call we mark it as unresolved and it will stay that way.
- if (!RetValAA.getState().isValidState()) {
- LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
- << "\n");
- UnresolvedCalls.insert(CB);
- continue;
- }
-
- // Do not try to learn partial information. If the callee has unresolved
- // return values we will treat the call as unresolved/opaque.
- auto &RetValAAUnresolvedCalls = RetValAA.getUnresolvedCalls();
- if (!RetValAAUnresolvedCalls.empty()) {
- UnresolvedCalls.insert(CB);
- continue;
- }
-
- // Now check if we can track transitively returned values. If possible, thus
- // if all return value can be represented in the current scope, do so.
- bool Unresolved = false;
- for (auto &RetValAAIt : RetValAA.returned_values()) {
- Value *RetVal = RetValAAIt.first;
- if (isa<Argument>(RetVal) || isa<CallBase>(RetVal) ||
- isa<Constant>(RetVal))
- continue;
- // Anything that did not fit in the above categories cannot be resolved,
- // mark the call as unresolved.
- LLVM_DEBUG(dbgs() << "[AAReturnedValues] transitively returned value "
- "cannot be translated: "
- << *RetVal << "\n");
- UnresolvedCalls.insert(CB);
- Unresolved = true;
- break;
- }
-
- if (Unresolved)
- continue;
-
- // Now track transitively returned values.
- unsigned &NumRetAA = NumReturnedValuesPerKnownAA[CB];
- if (NumRetAA == RetValAA.getNumReturnValues()) {
- LLVM_DEBUG(dbgs() << "[AAReturnedValues] Skip call as it has not "
- "changed since it was seen last\n");
- continue;
- }
- NumRetAA = RetValAA.getNumReturnValues();
-
- for (auto &RetValAAIt : RetValAA.returned_values()) {
- Value *RetVal = RetValAAIt.first;
- if (Argument *Arg = dyn_cast<Argument>(RetVal)) {
- // Arguments are mapped to call site operands and we begin the traversal
- // again.
- bool Unused = false;
- RVState RVS({NewRVsMap, Unused, RetValAAIt.second});
- VisitReturnedValue(*CB->getArgOperand(Arg->getArgNo()), RVS, CB);
- continue;
- } else if (isa<CallBase>(RetVal)) {
- // Call sites are resolved by the callee attribute over time, no need to
- // do anything for us.
- continue;
- } else if (isa<Constant>(RetVal)) {
- // Constants are valid everywhere, we can simply take them.
- NewRVsMap[RetVal].insert(It.second.begin(), It.second.end());
- continue;
- }
- }
- }
-
- // To avoid modifications to the ReturnedValues map while we iterate over it
- // we kept record of potential new entries in a copy map, NewRVsMap.
- for (auto &It : NewRVsMap) {
- assert(!It.second.empty() && "Entry does not add anything.");
- auto &ReturnInsts = ReturnedValues[It.first];
- for (ReturnInst *RI : It.second)
- if (ReturnInsts.insert(RI)) {
- LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value "
- << *It.first << " => " << *RI << "\n");
- Changed = true;
- }
- }
-
- Changed |= (NumUnresolvedCalls != UnresolvedCalls.size());
- return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
-}
-
-struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
- AAReturnedValuesFunction(const IRPosition &IRP) : AAReturnedValuesImpl(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
-};
-
-/// Returned values information for a call sites.
-struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
- AAReturnedValuesCallSite(const IRPosition &IRP) : AAReturnedValuesImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- // TODO: Once we have call site specific value information we can provide
- // call site specific liveness information and then it makes
- // sense to specialize attributes for call sites instead of
- // redirecting requests to the callee.
- llvm_unreachable("Abstract attributes for returned values are not "
- "supported for call sites yet!");
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- return indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {}
-};
-
-/// ------------------------ NoSync Function Attribute -------------------------
-
-struct AANoSyncImpl : AANoSync {
- AANoSyncImpl(const IRPosition &IRP) : AANoSync(IRP) {}
-
- const std::string getAsStr() const override {
- return getAssumed() ? "nosync" : "may-sync";
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override;
-
- /// Helper function used to determine whether an instruction is non-relaxed
- /// atomic. In other words, if an atomic instruction does not have unordered
- /// or monotonic ordering
- static bool isNonRelaxedAtomic(Instruction *I);
-
- /// Helper function used to determine whether an instruction is volatile.
- static bool isVolatile(Instruction *I);
-
- /// Helper function uset to check if intrinsic is volatile (memcpy, memmove,
- /// memset).
- static bool isNoSyncIntrinsic(Instruction *I);
-};
-
-bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
- if (!I->isAtomic())
- return false;
-
- AtomicOrdering Ordering;
- switch (I->getOpcode()) {
- case Instruction::AtomicRMW:
- Ordering = cast<AtomicRMWInst>(I)->getOrdering();
- break;
- case Instruction::Store:
- Ordering = cast<StoreInst>(I)->getOrdering();
- break;
- case Instruction::Load:
- Ordering = cast<LoadInst>(I)->getOrdering();
- break;
- case Instruction::Fence: {
- auto *FI = cast<FenceInst>(I);
- if (FI->getSyncScopeID() == SyncScope::SingleThread)
- return false;
- Ordering = FI->getOrdering();
- break;
- }
- case Instruction::AtomicCmpXchg: {
- AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering();
- AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering();
- // Only if both are relaxed, than it can be treated as relaxed.
- // Otherwise it is non-relaxed.
- if (Success != AtomicOrdering::Unordered &&
- Success != AtomicOrdering::Monotonic)
- return true;
- if (Failure != AtomicOrdering::Unordered &&
- Failure != AtomicOrdering::Monotonic)
- return true;
- return false;
- }
- default:
- llvm_unreachable(
- "New atomic operations need to be known in the attributor.");
- }
-
- // Relaxed.
- if (Ordering == AtomicOrdering::Unordered ||
- Ordering == AtomicOrdering::Monotonic)
- return false;
- return true;
-}
-
-/// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics.
-/// FIXME: We should ipmrove the handling of intrinsics.
-bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
- if (auto *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- /// Element wise atomic memory intrinsics are can only be unordered,
- /// therefore nosync.
- case Intrinsic::memset_element_unordered_atomic:
- case Intrinsic::memmove_element_unordered_atomic:
- case Intrinsic::memcpy_element_unordered_atomic:
- return true;
- case Intrinsic::memset:
- case Intrinsic::memmove:
- case Intrinsic::memcpy:
- if (!cast<MemIntrinsic>(II)->isVolatile())
- return true;
- return false;
- default:
- return false;
- }
- }
- return false;
-}
-
-bool AANoSyncImpl::isVolatile(Instruction *I) {
- assert(!ImmutableCallSite(I) && !isa<CallBase>(I) &&
- "Calls should not be checked here");
-
- switch (I->getOpcode()) {
- case Instruction::AtomicRMW:
- return cast<AtomicRMWInst>(I)->isVolatile();
- case Instruction::Store:
- return cast<StoreInst>(I)->isVolatile();
- case Instruction::Load:
- return cast<LoadInst>(I)->isVolatile();
- case Instruction::AtomicCmpXchg:
- return cast<AtomicCmpXchgInst>(I)->isVolatile();
- default:
- return false;
- }
-}
-
-ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
-
- auto CheckRWInstForNoSync = [&](Instruction &I) {
- /// We are looking for volatile instructions or Non-Relaxed atomics.
- /// FIXME: We should improve the handling of intrinsics.
-
- if (isa<IntrinsicInst>(&I) && isNoSyncIntrinsic(&I))
- return true;
-
- if (ImmutableCallSite ICS = ImmutableCallSite(&I)) {
- if (ICS.hasFnAttr(Attribute::NoSync))
- return true;
-
- const auto &NoSyncAA =
- A.getAAFor<AANoSync>(*this, IRPosition::callsite_function(ICS));
- if (NoSyncAA.isAssumedNoSync())
- return true;
- return false;
- }
-
- if (!isVolatile(&I) && !isNonRelaxedAtomic(&I))
- return true;
-
- return false;
- };
-
- auto CheckForNoSync = [&](Instruction &I) {
- // At this point we handled all read/write effects and they are all
- // nosync, so they can be skipped.
- if (I.mayReadOrWriteMemory())
- return true;
-
- // non-convergent and readnone imply nosync.
- return !ImmutableCallSite(&I).isConvergent();
- };
-
- if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this) ||
- !A.checkForAllCallLikeInstructions(CheckForNoSync, *this))
- return indicatePessimisticFixpoint();
-
- return ChangeStatus::UNCHANGED;
-}
-
-struct AANoSyncFunction final : public AANoSyncImpl {
- AANoSyncFunction(const IRPosition &IRP) : AANoSyncImpl(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
-};
-
-/// NoSync attribute deduction for a call sites.
-struct AANoSyncCallSite final : AANoSyncImpl {
- AANoSyncCallSite(const IRPosition &IRP) : AANoSyncImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- AANoSyncImpl::initialize(A);
- Function *F = getAssociatedFunction();
- if (!F)
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- // TODO: Once we have call site specific value information we can provide
- // call site specific liveness information and then it makes
- // sense to specialize attributes for call sites arguments instead of
- // redirecting requests to the callee argument.
- Function *F = getAssociatedFunction();
- const IRPosition &FnPos = IRPosition::function(*F);
- auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos);
- return clampStateAndIndicateChange(
- getState(), static_cast<const AANoSync::StateType &>(FnAA.getState()));
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
-};
-
-/// ------------------------ No-Free Attributes ----------------------------
-
-struct AANoFreeImpl : public AANoFree {
- AANoFreeImpl(const IRPosition &IRP) : AANoFree(IRP) {}
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- auto CheckForNoFree = [&](Instruction &I) {
- ImmutableCallSite ICS(&I);
- if (ICS.hasFnAttr(Attribute::NoFree))
- return true;
-
- const auto &NoFreeAA =
- A.getAAFor<AANoFree>(*this, IRPosition::callsite_function(ICS));
- return NoFreeAA.isAssumedNoFree();
- };
-
- if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this))
- return indicatePessimisticFixpoint();
- return ChangeStatus::UNCHANGED;
- }
-
- /// See AbstractAttribute::getAsStr().
- const std::string getAsStr() const override {
- return getAssumed() ? "nofree" : "may-free";
- }
-};
-
-struct AANoFreeFunction final : public AANoFreeImpl {
- AANoFreeFunction(const IRPosition &IRP) : AANoFreeImpl(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
-};
-
-/// NoFree attribute deduction for a call sites.
-struct AANoFreeCallSite final : AANoFreeImpl {
- AANoFreeCallSite(const IRPosition &IRP) : AANoFreeImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- AANoFreeImpl::initialize(A);
- Function *F = getAssociatedFunction();
- if (!F)
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- // TODO: Once we have call site specific value information we can provide
- // call site specific liveness information and then it makes
- // sense to specialize attributes for call sites arguments instead of
- // redirecting requests to the callee argument.
- Function *F = getAssociatedFunction();
- const IRPosition &FnPos = IRPosition::function(*F);
- auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos);
- return clampStateAndIndicateChange(
- getState(), static_cast<const AANoFree::StateType &>(FnAA.getState()));
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
-};
-
-/// NoFree attribute for floating values.
-struct AANoFreeFloating : AANoFreeImpl {
- AANoFreeFloating(const IRPosition &IRP) : AANoFreeImpl(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
-
- /// See Abstract Attribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- const IRPosition &IRP = getIRPosition();
-
- const auto &NoFreeAA =
- A.getAAFor<AANoFree>(*this, IRPosition::function_scope(IRP));
- if (NoFreeAA.isAssumedNoFree())
- return ChangeStatus::UNCHANGED;
-
- Value &AssociatedValue = getIRPosition().getAssociatedValue();
- auto Pred = [&](const Use &U, bool &Follow) -> bool {
- Instruction *UserI = cast<Instruction>(U.getUser());
- if (auto *CB = dyn_cast<CallBase>(UserI)) {
- if (CB->isBundleOperand(&U))
- return false;
- if (!CB->isArgOperand(&U))
- return true;
- unsigned ArgNo = CB->getArgOperandNo(&U);
-
- const auto &NoFreeArg = A.getAAFor<AANoFree>(
- *this, IRPosition::callsite_argument(*CB, ArgNo));
- return NoFreeArg.isAssumedNoFree();
- }
-
- if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
- isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
- Follow = true;
- return true;
- }
- if (isa<ReturnInst>(UserI))
- return true;
-
- // Unknown user.
- return false;
- };
- if (!A.checkForAllUses(Pred, *this, AssociatedValue))
- return indicatePessimisticFixpoint();
-
- return ChangeStatus::UNCHANGED;
- }
-};
-
-/// NoFree attribute for a call site argument.
-struct AANoFreeArgument final : AANoFreeFloating {
- AANoFreeArgument(const IRPosition &IRP) : AANoFreeFloating(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
-};
-
-/// NoFree attribute for call site arguments.
-struct AANoFreeCallSiteArgument final : AANoFreeFloating {
- AANoFreeCallSiteArgument(const IRPosition &IRP) : AANoFreeFloating(IRP) {}
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- // TODO: Once we have call site specific value information we can provide
- // call site specific liveness information and then it makes
- // sense to specialize attributes for call sites arguments instead of
- // redirecting requests to the callee argument.
- Argument *Arg = getAssociatedArgument();
- if (!Arg)
- return indicatePessimisticFixpoint();
- const IRPosition &ArgPos = IRPosition::argument(*Arg);
- auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos);
- return clampStateAndIndicateChange(
- getState(), static_cast<const AANoFree::StateType &>(ArgAA.getState()));
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
-};
-
-/// NoFree attribute for function return value.
-struct AANoFreeReturned final : AANoFreeFloating {
- AANoFreeReturned(const IRPosition &IRP) : AANoFreeFloating(IRP) {
- llvm_unreachable("NoFree is not applicable to function returns!");
- }
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- llvm_unreachable("NoFree is not applicable to function returns!");
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- llvm_unreachable("NoFree is not applicable to function returns!");
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {}
-};
-
-/// NoFree attribute deduction for a call site return value.
-struct AANoFreeCallSiteReturned final : AANoFreeFloating {
- AANoFreeCallSiteReturned(const IRPosition &IRP) : AANoFreeFloating(IRP) {}
-
- ChangeStatus manifest(Attributor &A) override {
- return ChangeStatus::UNCHANGED;
- }
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
-};
-
-/// ------------------------ NonNull Argument Attribute ------------------------
-static int64_t getKnownNonNullAndDerefBytesForUse(
- Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
- const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
- TrackUse = false;
-
- const Value *UseV = U->get();
- if (!UseV->getType()->isPointerTy())
- return 0;
-
- Type *PtrTy = UseV->getType();
- const Function *F = I->getFunction();
- bool NullPointerIsDefined =
- F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
- const DataLayout &DL = A.getInfoCache().getDL();
- if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
- if (ICS.isBundleOperand(U))
- return 0;
-
- if (ICS.isCallee(U)) {
- IsNonNull |= !NullPointerIsDefined;
- return 0;
- }
-
- unsigned ArgNo = ICS.getArgumentNo(U);
- IRPosition IRP = IRPosition::callsite_argument(ICS, ArgNo);
- // As long as we only use known information there is no need to track
- // dependences here.
- auto &DerefAA = A.getAAFor<AADereferenceable>(QueryingAA, IRP,
- /* TrackDependence */ false);
- IsNonNull |= DerefAA.isKnownNonNull();
- return DerefAA.getKnownDereferenceableBytes();
- }
-
- // We need to follow common pointer manipulation uses to the accesses they
- // feed into. We can try to be smart to avoid looking through things we do not
- // like for now, e.g., non-inbounds GEPs.
- if (isa<CastInst>(I)) {
- TrackUse = true;
- return 0;
- }
- if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
- if (GEP->hasAllConstantIndices()) {
- TrackUse = true;
- return 0;
- }
-
- int64_t Offset;
- if (const Value *Base = getBasePointerOfAccessPointerOperand(I, Offset, DL)) {
- if (Base == &AssociatedValue &&
- getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
- int64_t DerefBytes =
- (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset;
-
- IsNonNull |= !NullPointerIsDefined;
- return std::max(int64_t(0), DerefBytes);
- }
- }
-
- /// Corner case when an offset is 0.
- if (const Value *Base = getBasePointerOfAccessPointerOperand(
- I, Offset, DL, /*AllowNonInbounds*/ true)) {
- if (Offset == 0 && Base == &AssociatedValue &&
- getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
- int64_t DerefBytes =
- (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType());
- IsNonNull |= !NullPointerIsDefined;
- return std::max(int64_t(0), DerefBytes);
- }
- }
-
- return 0;
-}
-
-struct AANonNullImpl : AANonNull {
- AANonNullImpl(const IRPosition &IRP)
- : AANonNull(IRP),
- NullIsDefined(NullPointerIsDefined(
- getAnchorScope(),
- getAssociatedValue().getType()->getPointerAddressSpace())) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- if (!NullIsDefined &&
- hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
- /* IgnoreSubsumingPositions */ false, &A))
- indicateOptimisticFixpoint();
- else if (isa<ConstantPointerNull>(getAssociatedValue()))
- indicatePessimisticFixpoint();
- else
- AANonNull::initialize(A);
- }
-
- /// See AAFromMustBeExecutedContext
- bool followUse(Attributor &A, const Use *U, const Instruction *I,
- AANonNull::StateType &State) {
- bool IsNonNull = false;
- bool TrackUse = false;
- getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
- IsNonNull, TrackUse);
- State.setKnown(IsNonNull);
- return TrackUse;
- }
-
- /// See AbstractAttribute::getAsStr().
- const std::string getAsStr() const override {
- return getAssumed() ? "nonnull" : "may-null";
- }
-
- /// Flag to determine if the underlying value can be null and still allow
- /// valid accesses.
- const bool NullIsDefined;
-};
-
-/// NonNull attribute for a floating value.
-struct AANonNullFloating
- : AAFromMustBeExecutedContext<AANonNull, AANonNullImpl> {
- using Base = AAFromMustBeExecutedContext<AANonNull, AANonNullImpl>;
- AANonNullFloating(const IRPosition &IRP) : Base(IRP) {}
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- ChangeStatus Change = Base::updateImpl(A);
- if (isKnownNonNull())
- return Change;
-
- if (!NullIsDefined) {
- const auto &DerefAA =
- A.getAAFor<AADereferenceable>(*this, getIRPosition());
- if (DerefAA.getAssumedDereferenceableBytes())
- return Change;
- }
-
- const DataLayout &DL = A.getDataLayout();
-
- DominatorTree *DT = nullptr;
- AssumptionCache *AC = nullptr;
- InformationCache &InfoCache = A.getInfoCache();
- if (const Function *Fn = getAnchorScope()) {
- DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
- AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
- }
-
- auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
- AANonNull::StateType &T, bool Stripped) -> bool {
- const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V));
- if (!Stripped && this == &AA) {
- if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
- T.indicatePessimisticFixpoint();
- } else {
- // Use abstract attribute information.
- const AANonNull::StateType &NS =
- static_cast<const AANonNull::StateType &>(AA.getState());
- T ^= NS;
- }
- return T.isValidState();
- };
-
- StateType T;
- if (!genericValueTraversal<AANonNull, StateType>(
- A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
- return indicatePessimisticFixpoint();
-
- return clampStateAndIndicateChange(getState(), T);
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
-};
-
-/// NonNull attribute for function return value.
-struct AANonNullReturned final
- : AAReturnedFromReturnedValues<AANonNull, AANonNullImpl> {
- AANonNullReturned(const IRPosition &IRP)
- : AAReturnedFromReturnedValues<AANonNull, AANonNullImpl>(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
-};
-
-/// NonNull attribute for function argument.
-struct AANonNullArgument final
- : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AANonNull,
- AANonNullImpl> {
- AANonNullArgument(const IRPosition &IRP)
- : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AANonNull,
- AANonNullImpl>(
- IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
-};
-
-struct AANonNullCallSiteArgument final : AANonNullFloating {
- AANonNullCallSiteArgument(const IRPosition &IRP) : AANonNullFloating(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
-};
-
-/// NonNull attribute for a call site return position.
-struct AANonNullCallSiteReturned final
- : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AANonNull,
- AANonNullImpl> {
- AANonNullCallSiteReturned(const IRPosition &IRP)
- : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AANonNull,
- AANonNullImpl>(
- IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
-};
-
-/// ------------------------ No-Recurse Attributes ----------------------------
-
-struct AANoRecurseImpl : public AANoRecurse {
- AANoRecurseImpl(const IRPosition &IRP) : AANoRecurse(IRP) {}
-
- /// See AbstractAttribute::getAsStr()
- const std::string getAsStr() const override {
- return getAssumed() ? "norecurse" : "may-recurse";
- }
-};
-
-struct AANoRecurseFunction final : AANoRecurseImpl {
- AANoRecurseFunction(const IRPosition &IRP) : AANoRecurseImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- AANoRecurseImpl::initialize(A);
- if (const Function *F = getAnchorScope())
- if (A.getInfoCache().getSccSize(*F) != 1)
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
-
- // If all live call sites are known to be no-recurse, we are as well.
- auto CallSitePred = [&](AbstractCallSite ACS) {
- const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
- *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
- /* TrackDependence */ false, DepClassTy::OPTIONAL);
- return NoRecurseAA.isKnownNoRecurse();
- };
- bool AllCallSitesKnown;
- if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) {
- // If we know all call sites and all are known no-recurse, we are done.
- // If all known call sites, which might not be all that exist, are known
- // to be no-recurse, we are not done but we can continue to assume
- // no-recurse. If one of the call sites we have not visited will become
- // live, another update is triggered.
- if (AllCallSitesKnown)
- indicateOptimisticFixpoint();
- return ChangeStatus::UNCHANGED;
- }
-
- // If the above check does not hold anymore we look at the calls.
- auto CheckForNoRecurse = [&](Instruction &I) {
- ImmutableCallSite ICS(&I);
- if (ICS.hasFnAttr(Attribute::NoRecurse))
- return true;
-
- const auto &NoRecurseAA =
- A.getAAFor<AANoRecurse>(*this, IRPosition::callsite_function(ICS));
- if (!NoRecurseAA.isAssumedNoRecurse())
- return false;
-
- // Recursion to the same function
- if (ICS.getCalledFunction() == getAnchorScope())
- return false;
-
- return true;
- };
-
- if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this))
- return indicatePessimisticFixpoint();
- return ChangeStatus::UNCHANGED;
- }
-
- void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
-};
-
-/// NoRecurse attribute deduction for a call sites.
-struct AANoRecurseCallSite final : AANoRecurseImpl {
- AANoRecurseCallSite(const IRPosition &IRP) : AANoRecurseImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- AANoRecurseImpl::initialize(A);
- Function *F = getAssociatedFunction();
- if (!F)
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- // TODO: Once we have call site specific value information we can provide
- // call site specific liveness information and then it makes
- // sense to specialize attributes for call sites arguments instead of
- // redirecting requests to the callee argument.
- Function *F = getAssociatedFunction();
- const IRPosition &FnPos = IRPosition::function(*F);
- auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos);
- return clampStateAndIndicateChange(
- getState(),
- static_cast<const AANoRecurse::StateType &>(FnAA.getState()));
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
-};
-
-/// -------------------- Undefined-Behavior Attributes ------------------------
-
-struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
- AAUndefinedBehaviorImpl(const IRPosition &IRP) : AAUndefinedBehavior(IRP) {}
-
- /// See AbstractAttribute::updateImpl(...).
- // through a pointer (i.e. also branches etc.)
- ChangeStatus updateImpl(Attributor &A) override {
- const size_t UBPrevSize = KnownUBInsts.size();
- const size_t NoUBPrevSize = AssumedNoUBInsts.size();
-
- auto InspectMemAccessInstForUB = [&](Instruction &I) {
- // Skip instructions that are already saved.
- if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
- return true;
-
- // If we reach here, we know we have an instruction
- // that accesses memory through a pointer operand,
- // for which getPointerOperand() should give it to us.
- const Value *PtrOp = getPointerOperand(&I, /* AllowVolatile */ true);
- assert(PtrOp &&
- "Expected pointer operand of memory accessing instruction");
-
- // Either we stopped and the appropriate action was taken,
- // or we got back a simplified value to continue.
- Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
- if (!SimplifiedPtrOp.hasValue())
- return true;
- const Value *PtrOpVal = SimplifiedPtrOp.getValue();
-
- // A memory access through a pointer is considered UB
- // only if the pointer has constant null value.
- // TODO: Expand it to not only check constant values.
- if (!isa<ConstantPointerNull>(PtrOpVal)) {
- AssumedNoUBInsts.insert(&I);
- return true;
- }
- const Type *PtrTy = PtrOpVal->getType();
-
- // Because we only consider instructions inside functions,
- // assume that a parent function exists.
- const Function *F = I.getFunction();
-
- // A memory access using constant null pointer is only considered UB
- // if null pointer is _not_ defined for the target platform.
- if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
- AssumedNoUBInsts.insert(&I);
- else
- KnownUBInsts.insert(&I);
- return true;
- };
-
- auto InspectBrInstForUB = [&](Instruction &I) {
- // A conditional branch instruction is considered UB if it has `undef`
- // condition.
-
- // Skip instructions that are already saved.
- if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
- return true;
-
- // We know we have a branch instruction.
- auto BrInst = cast<BranchInst>(&I);
-
- // Unconditional branches are never considered UB.
- if (BrInst->isUnconditional())
- return true;
-
- // Either we stopped and the appropriate action was taken,
- // or we got back a simplified value to continue.
- Optional<Value *> SimplifiedCond =
- stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
- if (!SimplifiedCond.hasValue())
- return true;
- AssumedNoUBInsts.insert(&I);
- return true;
- };
-
- A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
- {Instruction::Load, Instruction::Store,
- Instruction::AtomicCmpXchg,
- Instruction::AtomicRMW},
- /* CheckBBLivenessOnly */ true);
- A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
- /* CheckBBLivenessOnly */ true);
- if (NoUBPrevSize != AssumedNoUBInsts.size() ||
- UBPrevSize != KnownUBInsts.size())
- return ChangeStatus::CHANGED;
- return ChangeStatus::UNCHANGED;
- }
-
- bool isKnownToCauseUB(Instruction *I) const override {
- return KnownUBInsts.count(I);
- }
-
- bool isAssumedToCauseUB(Instruction *I) const override {
- // In simple words, if an instruction is not in the assumed to _not_
- // cause UB, then it is assumed UB (that includes those
- // in the KnownUBInsts set). The rest is boilerplate
- // is to ensure that it is one of the instructions we test
- // for UB.
-
- switch (I->getOpcode()) {
- case Instruction::Load:
- case Instruction::Store:
- case Instruction::AtomicCmpXchg:
- case Instruction::AtomicRMW:
- return !AssumedNoUBInsts.count(I);
- case Instruction::Br: {
- auto BrInst = cast<BranchInst>(I);
- if (BrInst->isUnconditional())
- return false;
- return !AssumedNoUBInsts.count(I);
- } break;
- default:
- return false;
- }
- return false;
- }
-
- ChangeStatus manifest(Attributor &A) override {
- if (KnownUBInsts.empty())
- return ChangeStatus::UNCHANGED;
- for (Instruction *I : KnownUBInsts)
- A.changeToUnreachableAfterManifest(I);
- return ChangeStatus::CHANGED;
- }
-
- /// See AbstractAttribute::getAsStr()
- const std::string getAsStr() const override {
- return getAssumed() ? "undefined-behavior" : "no-ub";
- }
-
- /// Note: The correctness of this analysis depends on the fact that the
- /// following 2 sets will stop changing after some point.
- /// "Change" here means that their size changes.
- /// The size of each set is monotonically increasing
- /// (we only add items to them) and it is upper bounded by the number of
- /// instructions in the processed function (we can never save more
- /// elements in either set than this number). Hence, at some point,
- /// they will stop increasing.
- /// Consequently, at some point, both sets will have stopped
- /// changing, effectively making the analysis reach a fixpoint.
-
- /// Note: These 2 sets are disjoint and an instruction can be considered
- /// one of 3 things:
- /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
- /// the KnownUBInsts set.
- /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
- /// has a reason to assume it).
- /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
- /// could not find a reason to assume or prove that it can cause UB,
- /// hence it assumes it doesn't. We have a set for these instructions
- /// so that we don't reprocess them in every update.
- /// Note however that instructions in this set may cause UB.
-
-protected:
- /// A set of all live instructions _known_ to cause UB.
- SmallPtrSet<Instruction *, 8> KnownUBInsts;
-
-private:
- /// A set of all the (live) instructions that are assumed to _not_ cause UB.
- SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
-
- // Should be called on updates in which if we're processing an instruction
- // \p I that depends on a value \p V, one of the following has to happen:
- // - If the value is assumed, then stop.
- // - If the value is known but undef, then consider it UB.
- // - Otherwise, do specific processing with the simplified value.
- // We return None in the first 2 cases to signify that an appropriate
- // action was taken and the caller should stop.
- // Otherwise, we return the simplified value that the caller should
- // use for specific processing.
- Optional<Value *> stopOnUndefOrAssumed(Attributor &A, const Value *V,
- Instruction *I) {
- const auto &ValueSimplifyAA =
- A.getAAFor<AAValueSimplify>(*this, IRPosition::value(*V));
- Optional<Value *> SimplifiedV =
- ValueSimplifyAA.getAssumedSimplifiedValue(A);
- if (!ValueSimplifyAA.isKnown()) {
- // Don't depend on assumed values.
- return llvm::None;
- }
- if (!SimplifiedV.hasValue()) {
- // If it is known (which we tested above) but it doesn't have a value,
- // then we can assume `undef` and hence the instruction is UB.
- KnownUBInsts.insert(I);
- return llvm::None;
- }
- Value *Val = SimplifiedV.getValue();
- if (isa<UndefValue>(Val)) {
- KnownUBInsts.insert(I);
- return llvm::None;
- }
- return Val;
- }
-};
-
-struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
- AAUndefinedBehaviorFunction(const IRPosition &IRP)
- : AAUndefinedBehaviorImpl(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECL(UndefinedBehaviorInstruction, Instruction,
- "Number of instructions known to have UB");
- BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
- KnownUBInsts.size();
- }
-};
-
-/// ------------------------ Will-Return Attributes ----------------------------
-
-// Helper function that checks whether a function has any cycle which we don't
-// know if it is bounded or not.
-// Loops with maximum trip count are considered bounded, any other cycle not.
-static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
- ScalarEvolution *SE =
- A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
- LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
- // If either SCEV or LoopInfo is not available for the function then we assume
- // any cycle to be unbounded cycle.
- // We use scc_iterator which uses Tarjan algorithm to find all the maximal
- // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
- if (!SE || !LI) {
- for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
- if (SCCI.hasCycle())
- return true;
- return false;
- }
-
- // If there's irreducible control, the function may contain non-loop cycles.
- if (mayContainIrreducibleControl(F, LI))
- return true;
-
- // Any loop that does not have a max trip count is considered unbounded cycle.
- for (auto *L : LI->getLoopsInPreorder()) {
- if (!SE->getSmallConstantMaxTripCount(L))
- return true;
- }
- return false;
-}
-
-struct AAWillReturnImpl : public AAWillReturn {
- AAWillReturnImpl(const IRPosition &IRP) : AAWillReturn(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- AAWillReturn::initialize(A);
-
- Function *F = getAnchorScope();
- if (!F || !A.isFunctionIPOAmendable(*F) || mayContainUnboundedCycle(*F, A))
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- auto CheckForWillReturn = [&](Instruction &I) {
- IRPosition IPos = IRPosition::callsite_function(ImmutableCallSite(&I));
- const auto &WillReturnAA = A.getAAFor<AAWillReturn>(*this, IPos);
- if (WillReturnAA.isKnownWillReturn())
- return true;
- if (!WillReturnAA.isAssumedWillReturn())
- return false;
- const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(*this, IPos);
- return NoRecurseAA.isAssumedNoRecurse();
- };
-
- if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this))
- return indicatePessimisticFixpoint();
-
- return ChangeStatus::UNCHANGED;
- }
-
- /// See AbstractAttribute::getAsStr()
- const std::string getAsStr() const override {
- return getAssumed() ? "willreturn" : "may-noreturn";
- }
-};
-
-struct AAWillReturnFunction final : AAWillReturnImpl {
- AAWillReturnFunction(const IRPosition &IRP) : AAWillReturnImpl(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
-};
-
-/// WillReturn attribute deduction for a call sites.
-struct AAWillReturnCallSite final : AAWillReturnImpl {
- AAWillReturnCallSite(const IRPosition &IRP) : AAWillReturnImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- AAWillReturnImpl::initialize(A);
- Function *F = getAssociatedFunction();
- if (!F)
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- // TODO: Once we have call site specific value information we can provide
- // call site specific liveness information and then it makes
- // sense to specialize attributes for call sites arguments instead of
- // redirecting requests to the callee argument.
- Function *F = getAssociatedFunction();
- const IRPosition &FnPos = IRPosition::function(*F);
- auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos);
- return clampStateAndIndicateChange(
- getState(),
- static_cast<const AAWillReturn::StateType &>(FnAA.getState()));
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
-};
-
-/// -------------------AAReachability Attribute--------------------------
-
-struct AAReachabilityImpl : AAReachability {
- AAReachabilityImpl(const IRPosition &IRP) : AAReachability(IRP) {}
-
- const std::string getAsStr() const override {
- // TODO: Return the number of reachable queries.
- return "reachable";
- }
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override { indicatePessimisticFixpoint(); }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- return indicatePessimisticFixpoint();
- }
-};
-
-struct AAReachabilityFunction final : public AAReachabilityImpl {
- AAReachabilityFunction(const IRPosition &IRP) : AAReachabilityImpl(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
-};
-
-/// ------------------------ NoAlias Argument Attribute ------------------------
-
-struct AANoAliasImpl : AANoAlias {
- AANoAliasImpl(const IRPosition &IRP) : AANoAlias(IRP) {
- assert(getAssociatedType()->isPointerTy() &&
- "Noalias is a pointer attribute");
- }
-
- const std::string getAsStr() const override {
- return getAssumed() ? "noalias" : "may-alias";
- }
-};
-
-/// NoAlias attribute for a floating value.
-struct AANoAliasFloating final : AANoAliasImpl {
- AANoAliasFloating(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- AANoAliasImpl::initialize(A);
- Value *Val = &getAssociatedValue();
- do {
- CastInst *CI = dyn_cast<CastInst>(Val);
- if (!CI)
- break;
- Value *Base = CI->getOperand(0);
- if (Base->getNumUses() != 1)
- break;
- Val = Base;
- } while (true);
-
- if (!Val->getType()->isPointerTy()) {
- indicatePessimisticFixpoint();
- return;
- }
-
- if (isa<AllocaInst>(Val))
- indicateOptimisticFixpoint();
- else if (isa<ConstantPointerNull>(Val) &&
- !NullPointerIsDefined(getAnchorScope(),
- Val->getType()->getPointerAddressSpace()))
- indicateOptimisticFixpoint();
- else if (Val != &getAssociatedValue()) {
- const auto &ValNoAliasAA =
- A.getAAFor<AANoAlias>(*this, IRPosition::value(*Val));
- if (ValNoAliasAA.isKnownNoAlias())
- indicateOptimisticFixpoint();
- }
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- // TODO: Implement this.
- return indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_FLOATING_ATTR(noalias)
- }
-};
-
-/// NoAlias attribute for an argument.
-struct AANoAliasArgument final
- : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
- using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
- AANoAliasArgument(const IRPosition &IRP) : Base(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- Base::initialize(A);
- // See callsite argument attribute and callee argument attribute.
- if (hasAttr({Attribute::ByVal}))
- indicateOptimisticFixpoint();
- }
-
- /// See AbstractAttribute::update(...).
- ChangeStatus updateImpl(Attributor &A) override {
- // We have to make sure no-alias on the argument does not break
- // synchronization when this is a callback argument, see also [1] below.
- // If synchronization cannot be affected, we delegate to the base updateImpl
- // function, otherwise we give up for now.
-
- // If the function is no-sync, no-alias cannot break synchronization.
- const auto &NoSyncAA = A.getAAFor<AANoSync>(
- *this, IRPosition::function_scope(getIRPosition()));
- if (NoSyncAA.isAssumedNoSync())
- return Base::updateImpl(A);
-
- // If the argument is read-only, no-alias cannot break synchronization.
- const auto &MemBehaviorAA =
- A.getAAFor<AAMemoryBehavior>(*this, getIRPosition());
- if (MemBehaviorAA.isAssumedReadOnly())
- return Base::updateImpl(A);
-
- // If the argument is never passed through callbacks, no-alias cannot break
- // synchronization.
- bool AllCallSitesKnown;
- if (A.checkForAllCallSites(
- [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
- true, AllCallSitesKnown))
- return Base::updateImpl(A);
-
- // TODO: add no-alias but make sure it doesn't break synchronization by
- // introducing fake uses. See:
- // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
- // International Workshop on OpenMP 2018,
- // http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
-
- return indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
-};
-
-struct AANoAliasCallSiteArgument final : AANoAliasImpl {
- AANoAliasCallSiteArgument(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- // See callsite argument attribute and callee argument attribute.
- ImmutableCallSite ICS(&getAnchorValue());
- if (ICS.paramHasAttr(getArgNo(), Attribute::NoAlias))
- indicateOptimisticFixpoint();
- Value &Val = getAssociatedValue();
- if (isa<ConstantPointerNull>(Val) &&
- !NullPointerIsDefined(getAnchorScope(),
- Val.getType()->getPointerAddressSpace()))
- indicateOptimisticFixpoint();
- }
-
- /// Determine if the underlying value may alias with the call site argument
- /// \p OtherArgNo of \p ICS (= the underlying call site).
- bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
- const AAMemoryBehavior &MemBehaviorAA,
- ImmutableCallSite ICS, unsigned OtherArgNo) {
- // We do not need to worry about aliasing with the underlying IRP.
- if (this->getArgNo() == (int)OtherArgNo)
- return false;
-
- // If it is not a pointer or pointer vector we do not alias.
- const Value *ArgOp = ICS.getArgOperand(OtherArgNo);
- if (!ArgOp->getType()->isPtrOrPtrVectorTy())
- return false;
-
- auto &ICSArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
- *this, IRPosition::callsite_argument(ICS, OtherArgNo),
- /* TrackDependence */ false);
-
- // If the argument is readnone, there is no read-write aliasing.
- if (ICSArgMemBehaviorAA.isAssumedReadNone()) {
- A.recordDependence(ICSArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
- return false;
- }
-
- // If the argument is readonly and the underlying value is readonly, there
- // is no read-write aliasing.
- bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
- if (ICSArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
- A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
- A.recordDependence(ICSArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
- return false;
- }
-
- // We have to utilize actual alias analysis queries so we need the object.
- if (!AAR)
- AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
-
- // Try to rule it out at the call site.
- bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
- LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
- "callsite arguments: "
- << getAssociatedValue() << " " << *ArgOp << " => "
- << (IsAliasing ? "" : "no-") << "alias \n");
-
- return IsAliasing;
- }
-
- bool
- isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
- const AAMemoryBehavior &MemBehaviorAA,
- const AANoAlias &NoAliasAA) {
- // We can deduce "noalias" if the following conditions hold.
- // (i) Associated value is assumed to be noalias in the definition.
- // (ii) Associated value is assumed to be no-capture in all the uses
- // possibly executed before this callsite.
- // (iii) There is no other pointer argument which could alias with the
- // value.
-
- bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
- if (!AssociatedValueIsNoAliasAtDef) {
- LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
- << " is not no-alias at the definition\n");
- return false;
- }
-
- A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
-
- const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
- auto &NoCaptureAA =
- A.getAAFor<AANoCapture>(*this, VIRP, /* TrackDependence */ false);
- // Check whether the value is captured in the scope using AANoCapture.
- // Look at CFG and check only uses possibly executed before this
- // callsite.
- auto UsePred = [&](const Use &U, bool &Follow) -> bool {
- Instruction *UserI = cast<Instruction>(U.getUser());
-
- // If user if curr instr and only use.
- if ((UserI == getCtxI()) && (UserI->getNumUses() == 1))
- return true;
-
- const Function *ScopeFn = VIRP.getAnchorScope();
- if (ScopeFn) {
- const auto &ReachabilityAA =
- A.getAAFor<AAReachability>(*this, IRPosition::function(*ScopeFn));
-
- if (!ReachabilityAA.isAssumedReachable(UserI, getCtxI()))
- return true;
-
- if (auto *CB = dyn_cast<CallBase>(UserI)) {
- if (CB->isArgOperand(&U)) {
-
- unsigned ArgNo = CB->getArgOperandNo(&U);
-
- const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
- *this, IRPosition::callsite_argument(*CB, ArgNo));
-
- if (NoCaptureAA.isAssumedNoCapture())
- return true;
- }
- }
- }
-
- // For cases which can potentially have more users
- if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
- isa<SelectInst>(U)) {
- Follow = true;
- return true;
- }
-
- LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
- return false;
- };
-
- if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
- if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
- LLVM_DEBUG(
- dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
- << " cannot be noalias as it is potentially captured\n");
- return false;
- }
- }
- A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
-
- // Check there is no other pointer argument which could alias with the
- // value passed at this call site.
- // TODO: AbstractCallSite
- ImmutableCallSite ICS(&getAnchorValue());
- for (unsigned OtherArgNo = 0; OtherArgNo < ICS.getNumArgOperands();
- OtherArgNo++)
- if (mayAliasWithArgument(A, AAR, MemBehaviorAA, ICS, OtherArgNo))
- return false;
-
- return true;
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- // If the argument is readnone we are done as there are no accesses via the
- // argument.
- auto &MemBehaviorAA =
- A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(),
- /* TrackDependence */ false);
- if (MemBehaviorAA.isAssumedReadNone()) {
- A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
- return ChangeStatus::UNCHANGED;
- }
-
- const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
- const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, VIRP,
- /* TrackDependence */ false);
-
- AAResults *AAR = nullptr;
- if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
- NoAliasAA)) {
- LLVM_DEBUG(
- dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
- return ChangeStatus::UNCHANGED;
- }
-
- return indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
-};
-
-/// NoAlias attribute for function return value.
-struct AANoAliasReturned final : AANoAliasImpl {
- AANoAliasReturned(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
-
- /// See AbstractAttribute::updateImpl(...).
- virtual ChangeStatus updateImpl(Attributor &A) override {
-
- auto CheckReturnValue = [&](Value &RV) -> bool {
- if (Constant *C = dyn_cast<Constant>(&RV))
- if (C->isNullValue() || isa<UndefValue>(C))
- return true;
-
- /// For now, we can only deduce noalias if we have call sites.
- /// FIXME: add more support.
- ImmutableCallSite ICS(&RV);
- if (!ICS)
- return false;
-
- const IRPosition &RVPos = IRPosition::value(RV);
- const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, RVPos);
- if (!NoAliasAA.isAssumedNoAlias())
- return false;
-
- const auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, RVPos);
- return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
- };
-
- if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
- return indicatePessimisticFixpoint();
-
- return ChangeStatus::UNCHANGED;
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
-};
-
-/// NoAlias attribute deduction for a call site return value.
-struct AANoAliasCallSiteReturned final : AANoAliasImpl {
- AANoAliasCallSiteReturned(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- AANoAliasImpl::initialize(A);
- Function *F = getAssociatedFunction();
- if (!F)
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- // TODO: Once we have call site specific value information we can provide
- // call site specific liveness information and then it makes
- // sense to specialize attributes for call sites arguments instead of
- // redirecting requests to the callee argument.
- Function *F = getAssociatedFunction();
- const IRPosition &FnPos = IRPosition::returned(*F);
- auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos);
- return clampStateAndIndicateChange(
- getState(), static_cast<const AANoAlias::StateType &>(FnAA.getState()));
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
-};
-
-/// -------------------AAIsDead Function Attribute-----------------------
-
-struct AAIsDeadValueImpl : public AAIsDead {
- AAIsDeadValueImpl(const IRPosition &IRP) : AAIsDead(IRP) {}
-
- /// See AAIsDead::isAssumedDead().
- bool isAssumedDead() const override { return getAssumed(); }
-
- /// See AAIsDead::isKnownDead().
- bool isKnownDead() const override { return getKnown(); }
-
- /// See AAIsDead::isAssumedDead(BasicBlock *).
- bool isAssumedDead(const BasicBlock *BB) const override { return false; }
-
- /// See AAIsDead::isKnownDead(BasicBlock *).
- bool isKnownDead(const BasicBlock *BB) const override { return false; }
-
- /// See AAIsDead::isAssumedDead(Instruction *I).
- bool isAssumedDead(const Instruction *I) const override {
- return I == getCtxI() && isAssumedDead();
- }
-
- /// See AAIsDead::isKnownDead(Instruction *I).
- bool isKnownDead(const Instruction *I) const override {
- return isAssumedDead(I) && getKnown();
- }
-
- /// See AbstractAttribute::getAsStr().
- const std::string getAsStr() const override {
- return isAssumedDead() ? "assumed-dead" : "assumed-live";
- }
-
- /// Check if all uses are assumed dead.
- bool areAllUsesAssumedDead(Attributor &A, Value &V) {
- auto UsePred = [&](const Use &U, bool &Follow) { return false; };
- // Explicitly set the dependence class to required because we want a long
- // chain of N dependent instructions to be considered live as soon as one is
- // without going through N update cycles. This is not required for
- // correctness.
- return A.checkForAllUses(UsePred, *this, V, DepClassTy::REQUIRED);
- }
-
- /// Determine if \p I is assumed to be side-effect free.
- bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
- if (!I || wouldInstructionBeTriviallyDead(I))
- return true;
-
- auto *CB = dyn_cast<CallBase>(I);
- if (!CB || isa<IntrinsicInst>(CB))
- return false;
-
- const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
- const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(*this, CallIRP);
- if (!NoUnwindAA.isAssumedNoUnwind())
- return false;
-
- const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(*this, CallIRP);
- if (!MemBehaviorAA.isAssumedReadOnly())
- return false;
-
- return true;
- }
-};
-
-struct AAIsDeadFloating : public AAIsDeadValueImpl {
- AAIsDeadFloating(const IRPosition &IRP) : AAIsDeadValueImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- if (isa<UndefValue>(getAssociatedValue())) {
- indicatePessimisticFixpoint();
- return;
- }
-
- Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
- if (!isAssumedSideEffectFree(A, I))
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
- if (!isAssumedSideEffectFree(A, I))
- return indicatePessimisticFixpoint();
-
- if (!areAllUsesAssumedDead(A, getAssociatedValue()))
- return indicatePessimisticFixpoint();
- return ChangeStatus::UNCHANGED;
- }
-
- /// See AbstractAttribute::manifest(...).
- ChangeStatus manifest(Attributor &A) override {
- Value &V = getAssociatedValue();
- if (auto *I = dyn_cast<Instruction>(&V)) {
- // If we get here we basically know the users are all dead. We check if
- // isAssumedSideEffectFree returns true here again because it might not be
- // the case and only the users are dead but the instruction (=call) is
- // still needed.
- if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I)) {
- A.deleteAfterManifest(*I);
- return ChangeStatus::CHANGED;
- }
- }
- if (V.use_empty())
- return ChangeStatus::UNCHANGED;
-
- bool UsedAssumedInformation = false;
- Optional<Constant *> C =
- getAssumedConstant(A, V, *this, UsedAssumedInformation);
- if (C.hasValue() && C.getValue())
- return ChangeStatus::UNCHANGED;
-
- UndefValue &UV = *UndefValue::get(V.getType());
- bool AnyChange = A.changeValueAfterManifest(V, UV);
- return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_FLOATING_ATTR(IsDead)
- }
-};
-
-struct AAIsDeadArgument : public AAIsDeadFloating {
- AAIsDeadArgument(const IRPosition &IRP) : AAIsDeadFloating(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- if (!A.isFunctionIPOAmendable(*getAnchorScope()))
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::manifest(...).
- ChangeStatus manifest(Attributor &A) override {
- ChangeStatus Changed = AAIsDeadFloating::manifest(A);
- Argument &Arg = *getAssociatedArgument();
- if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
- if (A.registerFunctionSignatureRewrite(
- Arg, /* ReplacementTypes */ {},
- Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
- Attributor::ArgumentReplacementInfo::ACSRepairCBTy{}))
- return ChangeStatus::CHANGED;
- return Changed;
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
-};
-
-struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
- AAIsDeadCallSiteArgument(const IRPosition &IRP) : AAIsDeadValueImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- if (isa<UndefValue>(getAssociatedValue()))
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- // TODO: Once we have call site specific value information we can provide
- // call site specific liveness information and then it makes
- // sense to specialize attributes for call sites arguments instead of
- // redirecting requests to the callee argument.
- Argument *Arg = getAssociatedArgument();
- if (!Arg)
- return indicatePessimisticFixpoint();
- const IRPosition &ArgPos = IRPosition::argument(*Arg);
- auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos);
- return clampStateAndIndicateChange(
- getState(), static_cast<const AAIsDead::StateType &>(ArgAA.getState()));
- }
-
- /// See AbstractAttribute::manifest(...).
- ChangeStatus manifest(Attributor &A) override {
- CallBase &CB = cast<CallBase>(getAnchorValue());
- Use &U = CB.getArgOperandUse(getArgNo());
- assert(!isa<UndefValue>(U.get()) &&
- "Expected undef values to be filtered out!");
- UndefValue &UV = *UndefValue::get(U->getType());
- if (A.changeUseAfterManifest(U, UV))
- return ChangeStatus::CHANGED;
- return ChangeStatus::UNCHANGED;
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
-};
-
-struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
- AAIsDeadCallSiteReturned(const IRPosition &IRP)
- : AAIsDeadFloating(IRP), IsAssumedSideEffectFree(true) {}
-
- /// See AAIsDead::isAssumedDead().
- bool isAssumedDead() const override {
- return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
- }
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- if (isa<UndefValue>(getAssociatedValue())) {
- indicatePessimisticFixpoint();
- return;
- }
-
- // We track this separately as a secondary state.
- IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- ChangeStatus Changed = ChangeStatus::UNCHANGED;
- if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
- IsAssumedSideEffectFree = false;
- Changed = ChangeStatus::CHANGED;
- }
-
- if (!areAllUsesAssumedDead(A, getAssociatedValue()))
- return indicatePessimisticFixpoint();
- return Changed;
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- if (IsAssumedSideEffectFree)
- STATS_DECLTRACK_CSRET_ATTR(IsDead)
- else
- STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
- }
-
- /// See AbstractAttribute::getAsStr().
- const std::string getAsStr() const override {
- return isAssumedDead()
- ? "assumed-dead"
- : (getAssumed() ? "assumed-dead-users" : "assumed-live");
- }
-
-private:
- bool IsAssumedSideEffectFree;
-};
-
-struct AAIsDeadReturned : public AAIsDeadValueImpl {
- AAIsDeadReturned(const IRPosition &IRP) : AAIsDeadValueImpl(IRP) {}
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
-
- A.checkForAllInstructions([](Instruction &) { return true; }, *this,
- {Instruction::Ret});
-
- auto PredForCallSite = [&](AbstractCallSite ACS) {
- if (ACS.isCallbackCall() || !ACS.getInstruction())
- return false;
- return areAllUsesAssumedDead(A, *ACS.getInstruction());
- };
-
- bool AllCallSitesKnown;
- if (!A.checkForAllCallSites(PredForCallSite, *this, true,
- AllCallSitesKnown))
- return indicatePessimisticFixpoint();
-
- return ChangeStatus::UNCHANGED;
- }
-
- /// See AbstractAttribute::manifest(...).
- ChangeStatus manifest(Attributor &A) override {
- // TODO: Rewrite the signature to return void?
- bool AnyChange = false;
- UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
- auto RetInstPred = [&](Instruction &I) {
- ReturnInst &RI = cast<ReturnInst>(I);
- if (!isa<UndefValue>(RI.getReturnValue()))
- AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
- return true;
- };
- A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret});
- return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
-};
-
-struct AAIsDeadFunction : public AAIsDead {
- AAIsDeadFunction(const IRPosition &IRP) : AAIsDead(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- const Function *F = getAnchorScope();
- if (F && !F->isDeclaration()) {
- ToBeExploredFrom.insert(&F->getEntryBlock().front());
- assumeLive(A, F->getEntryBlock());
- }
- }
-
- /// See AbstractAttribute::getAsStr().
- const std::string getAsStr() const override {
- return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
- std::to_string(getAnchorScope()->size()) + "][#TBEP " +
- std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
- std::to_string(KnownDeadEnds.size()) + "]";
- }
-
- /// See AbstractAttribute::manifest(...).
- ChangeStatus manifest(Attributor &A) override {
- assert(getState().isValidState() &&
- "Attempted to manifest an invalid state!");
-
- ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
- Function &F = *getAnchorScope();
-
- if (AssumedLiveBlocks.empty()) {
- A.deleteAfterManifest(F);
- return ChangeStatus::CHANGED;
- }
-
- // Flag to determine if we can change an invoke to a call assuming the
- // callee is nounwind. This is not possible if the personality of the
- // function allows to catch asynchronous exceptions.
- bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
-
- KnownDeadEnds.set_union(ToBeExploredFrom);
- for (const Instruction *DeadEndI : KnownDeadEnds) {
- auto *CB = dyn_cast<CallBase>(DeadEndI);
- if (!CB)
- continue;
- const auto &NoReturnAA =
- A.getAAFor<AANoReturn>(*this, IRPosition::callsite_function(*CB));
- bool MayReturn = !NoReturnAA.isAssumedNoReturn();
- if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
- continue;
-
- if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
- A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
- else
- A.changeToUnreachableAfterManifest(
- const_cast<Instruction *>(DeadEndI->getNextNode()));
- HasChanged = ChangeStatus::CHANGED;
- }
-
- for (BasicBlock &BB : F)
- if (!AssumedLiveBlocks.count(&BB))
- A.deleteAfterManifest(BB);
-
- return HasChanged;
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override;
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {}
-
- /// Returns true if the function is assumed dead.
- bool isAssumedDead() const override { return false; }
-
- /// See AAIsDead::isKnownDead().
- bool isKnownDead() const override { return false; }
-
- /// See AAIsDead::isAssumedDead(BasicBlock *).
- bool isAssumedDead(const BasicBlock *BB) const override {
- assert(BB->getParent() == getAnchorScope() &&
- "BB must be in the same anchor scope function.");
-
- if (!getAssumed())
- return false;
- return !AssumedLiveBlocks.count(BB);
- }
-
- /// See AAIsDead::isKnownDead(BasicBlock *).
- bool isKnownDead(const BasicBlock *BB) const override {
- return getKnown() && isAssumedDead(BB);
- }
-
- /// See AAIsDead::isAssumed(Instruction *I).
- bool isAssumedDead(const Instruction *I) const override {
- assert(I->getParent()->getParent() == getAnchorScope() &&
- "Instruction must be in the same anchor scope function.");
-
- if (!getAssumed())
- return false;
-
- // If it is not in AssumedLiveBlocks then it for sure dead.
- // Otherwise, it can still be after noreturn call in a live block.
- if (!AssumedLiveBlocks.count(I->getParent()))
- return true;
-
- // If it is not after a liveness barrier it is live.
- const Instruction *PrevI = I->getPrevNode();
- while (PrevI) {
- if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
- return true;
- PrevI = PrevI->getPrevNode();
- }
- return false;
- }
-
- /// See AAIsDead::isKnownDead(Instruction *I).
- bool isKnownDead(const Instruction *I) const override {
- return getKnown() && isAssumedDead(I);
- }
-
- /// Determine if \p F might catch asynchronous exceptions.
- static bool mayCatchAsynchronousExceptions(const Function &F) {
- return F.hasPersonalityFn() && !canSimplifyInvokeNoUnwind(&F);
- }
-
- /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
- /// that internal function called from \p BB should now be looked at.
- bool assumeLive(Attributor &A, const BasicBlock &BB) {
- if (!AssumedLiveBlocks.insert(&BB).second)
- return false;
-
- // We assume that all of BB is (probably) live now and if there are calls to
- // internal functions we will assume that those are now live as well. This
- // is a performance optimization for blocks with calls to a lot of internal
- // functions. It can however cause dead functions to be treated as live.
- for (const Instruction &I : BB)
- if (ImmutableCallSite ICS = ImmutableCallSite(&I))
- if (const Function *F = ICS.getCalledFunction())
- if (F->hasLocalLinkage())
- A.markLiveInternalFunction(*F);
- return true;
- }
-
- /// Collection of instructions that need to be explored again, e.g., we
- /// did assume they do not transfer control to (one of their) successors.
- SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
-
- /// Collection of instructions that are known to not transfer control.
- SmallSetVector<const Instruction *, 8> KnownDeadEnds;
-
- /// Collection of all assumed live BasicBlocks.
- DenseSet<const BasicBlock *> AssumedLiveBlocks;
-};
-
-static bool
-identifyAliveSuccessors(Attributor &A, const CallBase &CB,
- AbstractAttribute &AA,
- SmallVectorImpl<const Instruction *> &AliveSuccessors) {
- const IRPosition &IPos = IRPosition::callsite_function(CB);
-
- const auto &NoReturnAA = A.getAAFor<AANoReturn>(AA, IPos);
- if (NoReturnAA.isAssumedNoReturn())
- return !NoReturnAA.isKnownNoReturn();
- if (CB.isTerminator())
- AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
- else
- AliveSuccessors.push_back(CB.getNextNode());
- return false;
-}
-
-static bool
-identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
- AbstractAttribute &AA,
- SmallVectorImpl<const Instruction *> &AliveSuccessors) {
- bool UsedAssumedInformation =
- identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
-
- // First, determine if we can change an invoke to a call assuming the
- // callee is nounwind. This is not possible if the personality of the
- // function allows to catch asynchronous exceptions.
- if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
- AliveSuccessors.push_back(&II.getUnwindDest()->front());
- } else {
- const IRPosition &IPos = IRPosition::callsite_function(II);
- const auto &AANoUnw = A.getAAFor<AANoUnwind>(AA, IPos);
- if (AANoUnw.isAssumedNoUnwind()) {
- UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
- } else {
- AliveSuccessors.push_back(&II.getUnwindDest()->front());
- }
- }
- return UsedAssumedInformation;
-}
-
-static bool
-identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
- AbstractAttribute &AA,
- SmallVectorImpl<const Instruction *> &AliveSuccessors) {
- bool UsedAssumedInformation = false;
- if (BI.getNumSuccessors() == 1) {
- AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
- } else {
- Optional<ConstantInt *> CI = getAssumedConstantInt(
- A, *BI.getCondition(), AA, UsedAssumedInformation);
- if (!CI.hasValue()) {
- // No value yet, assume both edges are dead.
- } else if (CI.getValue()) {
- const BasicBlock *SuccBB =
- BI.getSuccessor(1 - CI.getValue()->getZExtValue());
- AliveSuccessors.push_back(&SuccBB->front());
- } else {
- AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
- AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
- UsedAssumedInformation = false;
- }
- }
- return UsedAssumedInformation;
-}
-
-static bool
-identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
- AbstractAttribute &AA,
- SmallVectorImpl<const Instruction *> &AliveSuccessors) {
- bool UsedAssumedInformation = false;
- Optional<ConstantInt *> CI =
- getAssumedConstantInt(A, *SI.getCondition(), AA, UsedAssumedInformation);
- if (!CI.hasValue()) {
- // No value yet, assume all edges are dead.
- } else if (CI.getValue()) {
- for (auto &CaseIt : SI.cases()) {
- if (CaseIt.getCaseValue() == CI.getValue()) {
- AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
- return UsedAssumedInformation;
- }
- }
- AliveSuccessors.push_back(&SI.getDefaultDest()->front());
- return UsedAssumedInformation;
- } else {
- for (const BasicBlock *SuccBB : successors(SI.getParent()))
- AliveSuccessors.push_back(&SuccBB->front());
- }
- return UsedAssumedInformation;
-}
-
-ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
- ChangeStatus Change = ChangeStatus::UNCHANGED;
-
- LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
- << getAnchorScope()->size() << "] BBs and "
- << ToBeExploredFrom.size() << " exploration points and "
- << KnownDeadEnds.size() << " known dead ends\n");
-
- // Copy and clear the list of instructions we need to explore from. It is
- // refilled with instructions the next update has to look at.
- SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
- ToBeExploredFrom.end());
- decltype(ToBeExploredFrom) NewToBeExploredFrom;
-
- SmallVector<const Instruction *, 8> AliveSuccessors;
- while (!Worklist.empty()) {
- const Instruction *I = Worklist.pop_back_val();
- LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
-
- AliveSuccessors.clear();
-
- bool UsedAssumedInformation = false;
- switch (I->getOpcode()) {
- // TODO: look for (assumed) UB to backwards propagate "deadness".
- default:
- if (I->isTerminator()) {
- for (const BasicBlock *SuccBB : successors(I->getParent()))
- AliveSuccessors.push_back(&SuccBB->front());
- } else {
- AliveSuccessors.push_back(I->getNextNode());
- }
- break;
- case Instruction::Call:
- UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
- *this, AliveSuccessors);
- break;
- case Instruction::Invoke:
- UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
- *this, AliveSuccessors);
- break;
- case Instruction::Br:
- UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
- *this, AliveSuccessors);
- break;
- case Instruction::Switch:
- UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
- *this, AliveSuccessors);
- break;
- }
-
- if (UsedAssumedInformation) {
- NewToBeExploredFrom.insert(I);
- } else {
- Change = ChangeStatus::CHANGED;
- if (AliveSuccessors.empty() ||
- (I->isTerminator() && AliveSuccessors.size() < I->getNumSuccessors()))
- KnownDeadEnds.insert(I);
- }
-
- LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
- << AliveSuccessors.size() << " UsedAssumedInformation: "
- << UsedAssumedInformation << "\n");
-
- for (const Instruction *AliveSuccessor : AliveSuccessors) {
- if (!I->isTerminator()) {
- assert(AliveSuccessors.size() == 1 &&
- "Non-terminator expected to have a single successor!");
- Worklist.push_back(AliveSuccessor);
- } else {
- if (assumeLive(A, *AliveSuccessor->getParent()))
- Worklist.push_back(AliveSuccessor);
- }
- }
- }
-
- ToBeExploredFrom = std::move(NewToBeExploredFrom);
-
- // If we know everything is live there is no need to query for liveness.
- // Instead, indicating a pessimistic fixpoint will cause the state to be
- // "invalid" and all queries to be answered conservatively without lookups.
- // To be in this state we have to (1) finished the exploration and (3) not
- // discovered any non-trivial dead end and (2) not ruled unreachable code
- // dead.
- if (ToBeExploredFrom.empty() &&
- getAnchorScope()->size() == AssumedLiveBlocks.size() &&
- llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
- return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
- }))
- return indicatePessimisticFixpoint();
- return Change;
-}
-
-/// Liveness information for a call sites.
-struct AAIsDeadCallSite final : AAIsDeadFunction {
- AAIsDeadCallSite(const IRPosition &IRP) : AAIsDeadFunction(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- // TODO: Once we have call site specific value information we can provide
- // call site specific liveness information and then it makes
- // sense to specialize attributes for call sites instead of
- // redirecting requests to the callee.
- llvm_unreachable("Abstract attributes for liveness are not "
- "supported for call sites yet!");
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- return indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {}
-};
-
-/// -------------------- Dereferenceable Argument Attribute --------------------
-
-template <>
-ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
- const DerefState &R) {
- ChangeStatus CS0 =
- clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
- ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
- return CS0 | CS1;
-}
-
-struct AADereferenceableImpl : AADereferenceable {
- AADereferenceableImpl(const IRPosition &IRP) : AADereferenceable(IRP) {}
- using StateType = DerefState;
-
- void initialize(Attributor &A) override {
- SmallVector<Attribute, 4> Attrs;
- getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
- Attrs, /* IgnoreSubsumingPositions */ false, &A);
- for (const Attribute &Attr : Attrs)
- takeKnownDerefBytesMaximum(Attr.getValueAsInt());
-
- NonNullAA = &A.getAAFor<AANonNull>(*this, getIRPosition(),
- /* TrackDependence */ false);
-
- const IRPosition &IRP = this->getIRPosition();
- bool IsFnInterface = IRP.isFnInterfaceKind();
- Function *FnScope = IRP.getAnchorScope();
- if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope)))
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::getState()
- /// {
- StateType &getState() override { return *this; }
- const StateType &getState() const override { return *this; }
- /// }
-
- /// Helper function for collecting accessed bytes in must-be-executed-context
- void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
- DerefState &State) {
- const Value *UseV = U->get();
- if (!UseV->getType()->isPointerTy())
- return;
-
- Type *PtrTy = UseV->getType();
- const DataLayout &DL = A.getDataLayout();
- int64_t Offset;
- if (const Value *Base = getBasePointerOfAccessPointerOperand(
- I, Offset, DL, /*AllowNonInbounds*/ true)) {
- if (Base == &getAssociatedValue() &&
- getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
- uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType());
- State.addAccessedBytes(Offset, Size);
- }
- }
- return;
- }
-
- /// See AAFromMustBeExecutedContext
- bool followUse(Attributor &A, const Use *U, const Instruction *I,
- AADereferenceable::StateType &State) {
- bool IsNonNull = false;
- bool TrackUse = false;
- int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
- A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
-
- addAccessedBytesForUse(A, U, I, State);
- State.takeKnownDerefBytesMaximum(DerefBytes);
- return TrackUse;
- }
-
- /// See AbstractAttribute::manifest(...).
- ChangeStatus manifest(Attributor &A) override {
- ChangeStatus Change = AADereferenceable::manifest(A);
- if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
- removeAttrs({Attribute::DereferenceableOrNull});
- return ChangeStatus::CHANGED;
- }
- return Change;
- }
-
- void getDeducedAttributes(LLVMContext &Ctx,
- SmallVectorImpl<Attribute> &Attrs) const override {
- // TODO: Add *_globally support
- if (isAssumedNonNull())
- Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
- Ctx, getAssumedDereferenceableBytes()));
- else
- Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
- Ctx, getAssumedDereferenceableBytes()));
- }
-
- /// See AbstractAttribute::getAsStr().
- const std::string getAsStr() const override {
- if (!getAssumedDereferenceableBytes())
- return "unknown-dereferenceable";
- return std::string("dereferenceable") +
- (isAssumedNonNull() ? "" : "_or_null") +
- (isAssumedGlobal() ? "_globally" : "") + "<" +
- std::to_string(getKnownDereferenceableBytes()) + "-" +
- std::to_string(getAssumedDereferenceableBytes()) + ">";
- }
-};
-
-/// Dereferenceable attribute for a floating value.
-struct AADereferenceableFloating
- : AAFromMustBeExecutedContext<AADereferenceable, AADereferenceableImpl> {
- using Base =
- AAFromMustBeExecutedContext<AADereferenceable, AADereferenceableImpl>;
- AADereferenceableFloating(const IRPosition &IRP) : Base(IRP) {}
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- ChangeStatus Change = Base::updateImpl(A);
-
- const DataLayout &DL = A.getDataLayout();
-
- auto VisitValueCB = [&](Value &V, const Instruction *, DerefState &T,
- bool Stripped) -> bool {
- unsigned IdxWidth =
- DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
- APInt Offset(IdxWidth, 0);
- const Value *Base =
- V.stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
-
- const auto &AA =
- A.getAAFor<AADereferenceable>(*this, IRPosition::value(*Base));
- int64_t DerefBytes = 0;
- if (!Stripped && this == &AA) {
- // Use IR information if we did not strip anything.
- // TODO: track globally.
- bool CanBeNull;
- DerefBytes = Base->getPointerDereferenceableBytes(DL, CanBeNull);
- T.GlobalState.indicatePessimisticFixpoint();
- } else {
- const DerefState &DS = static_cast<const DerefState &>(AA.getState());
- DerefBytes = DS.DerefBytesState.getAssumed();
- T.GlobalState &= DS.GlobalState;
- }
-
- // TODO: Use `AAConstantRange` to infer dereferenceable bytes.
-
- // For now we do not try to "increase" dereferenceability due to negative
- // indices as we first have to come up with code to deal with loops and
- // for overflows of the dereferenceable bytes.
- int64_t OffsetSExt = Offset.getSExtValue();
- if (OffsetSExt < 0)
- OffsetSExt = 0;
-
- T.takeAssumedDerefBytesMinimum(
- std::max(int64_t(0), DerefBytes - OffsetSExt));
-
- if (this == &AA) {
- if (!Stripped) {
- // If nothing was stripped IR information is all we got.
- T.takeKnownDerefBytesMaximum(
- std::max(int64_t(0), DerefBytes - OffsetSExt));
- T.indicatePessimisticFixpoint();
- } else if (OffsetSExt > 0) {
- // If something was stripped but there is circular reasoning we look
- // for the offset. If it is positive we basically decrease the
- // dereferenceable bytes in a circluar loop now, which will simply
- // drive them down to the known value in a very slow way which we
- // can accelerate.
- T.indicatePessimisticFixpoint();
- }
- }
-
- return T.isValidState();
- };
-
- DerefState T;
- if (!genericValueTraversal<AADereferenceable, DerefState>(
- A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
- return indicatePessimisticFixpoint();
-
- return Change | clampStateAndIndicateChange(getState(), T);
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
- }
-};
-
-/// Dereferenceable attribute for a return value.
-struct AADereferenceableReturned final
- : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
- AADereferenceableReturned(const IRPosition &IRP)
- : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
- IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
- }
-};
-
-/// Dereferenceable attribute for an argument
-struct AADereferenceableArgument final
- : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<
- AADereferenceable, AADereferenceableImpl> {
- using Base = AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<
- AADereferenceable, AADereferenceableImpl>;
- AADereferenceableArgument(const IRPosition &IRP) : Base(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_ARG_ATTR(dereferenceable)
- }
-};
-
-/// Dereferenceable attribute for a call site argument.
-struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
- AADereferenceableCallSiteArgument(const IRPosition &IRP)
- : AADereferenceableFloating(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
- }
-};
-
-/// Dereferenceable attribute deduction for a call site return value.
-struct AADereferenceableCallSiteReturned final
- : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<
- AADereferenceable, AADereferenceableImpl> {
- using Base = AACallSiteReturnedFromReturnedAndMustBeExecutedContext<
- AADereferenceable, AADereferenceableImpl>;
- AADereferenceableCallSiteReturned(const IRPosition &IRP) : Base(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_CS_ATTR(dereferenceable);
- }
-};
-
-// ------------------------ Align Argument Attribute ------------------------
-
-/// \p Ptr is accessed so we can get alignment information if the ABI requires
-/// the element type to be aligned.
-static MaybeAlign getKnownAlignmentFromAccessedPtr(const Value *Ptr,
- const DataLayout &DL) {
- MaybeAlign KnownAlignment = Ptr->getPointerAlignment(DL);
- Type *ElementTy = Ptr->getType()->getPointerElementType();
- if (ElementTy->isSized())
- KnownAlignment = max(KnownAlignment, DL.getABITypeAlign(ElementTy));
- return KnownAlignment;
-}
-
-static unsigned getKnownAlignForUse(Attributor &A,
- AbstractAttribute &QueryingAA,
- Value &AssociatedValue, const Use *U,
- const Instruction *I, bool &TrackUse) {
- // We need to follow common pointer manipulation uses to the accesses they
- // feed into.
- if (isa<CastInst>(I)) {
- // Follow all but ptr2int casts.
- TrackUse = !isa<PtrToIntInst>(I);
- return 0;
- }
- if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
- if (GEP->hasAllConstantIndices()) {
- TrackUse = true;
- return 0;
- }
- }
-
- MaybeAlign MA;
- if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
- if (ICS.isBundleOperand(U) || ICS.isCallee(U))
- return 0;
-
- unsigned ArgNo = ICS.getArgumentNo(U);
- IRPosition IRP = IRPosition::callsite_argument(ICS, ArgNo);
- // As long as we only use known information there is no need to track
- // dependences here.
- auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP,
- /* TrackDependence */ false);
- MA = MaybeAlign(AlignAA.getKnownAlign());
- }
-
- const DataLayout &DL = A.getDataLayout();
- const Value *UseV = U->get();
- if (auto *SI = dyn_cast<StoreInst>(I)) {
- if (SI->getPointerOperand() == UseV) {
- if (unsigned SIAlign = SI->getAlignment())
- MA = MaybeAlign(SIAlign);
- else
- MA = getKnownAlignmentFromAccessedPtr(UseV, DL);
- }
- } else if (auto *LI = dyn_cast<LoadInst>(I)) {
- if (LI->getPointerOperand() == UseV) {
- if (unsigned LIAlign = LI->getAlignment())
- MA = MaybeAlign(LIAlign);
- else
- MA = getKnownAlignmentFromAccessedPtr(UseV, DL);
- }
- }
-
- if (!MA.hasValue() || MA <= 1)
- return 0;
-
- unsigned Alignment = MA->value();
- int64_t Offset;
-
- if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
- if (Base == &AssociatedValue) {
- // BasePointerAddr + Offset = Alignment * Q for some integer Q.
- // So we can say that the maximum power of two which is a divisor of
- // gcd(Offset, Alignment) is an alignment.
-
- uint32_t gcd =
- greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
- Alignment = llvm::PowerOf2Floor(gcd);
- }
- }
-
- return Alignment;
-}
-
-struct AAAlignImpl : AAAlign {
- AAAlignImpl(const IRPosition &IRP) : AAAlign(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- SmallVector<Attribute, 4> Attrs;
- getAttrs({Attribute::Alignment}, Attrs);
- for (const Attribute &Attr : Attrs)
- takeKnownMaximum(Attr.getValueAsInt());
-
- if (getIRPosition().isFnInterfaceKind() &&
- (!getAnchorScope() ||
- !A.isFunctionIPOAmendable(*getAssociatedFunction())))
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::manifest(...).
- ChangeStatus manifest(Attributor &A) override {
- ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
-
- // Check for users that allow alignment annotations.
- Value &AssociatedValue = getAssociatedValue();
- for (const Use &U : AssociatedValue.uses()) {
- if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
- if (SI->getPointerOperand() == &AssociatedValue)
- if (SI->getAlignment() < getAssumedAlign()) {
- STATS_DECLTRACK(AAAlign, Store,
- "Number of times alignment added to a store");
- SI->setAlignment(Align(getAssumedAlign()));
- LoadStoreChanged = ChangeStatus::CHANGED;
- }
- } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
- if (LI->getPointerOperand() == &AssociatedValue)
- if (LI->getAlignment() < getAssumedAlign()) {
- LI->setAlignment(Align(getAssumedAlign()));
- STATS_DECLTRACK(AAAlign, Load,
- "Number of times alignment added to a load");
- LoadStoreChanged = ChangeStatus::CHANGED;
- }
- }
- }
-
- ChangeStatus Changed = AAAlign::manifest(A);
-
- MaybeAlign InheritAlign =
- getAssociatedValue().getPointerAlignment(A.getDataLayout());
- if (InheritAlign.valueOrOne() >= getAssumedAlign())
- return LoadStoreChanged;
- return Changed | LoadStoreChanged;
- }
-
- // TODO: Provide a helper to determine the implied ABI alignment and check in
- // the existing manifest method and a new one for AAAlignImpl that value
- // to avoid making the alignment explicit if it did not improve.
-
- /// See AbstractAttribute::getDeducedAttributes
- virtual void
- getDeducedAttributes(LLVMContext &Ctx,
- SmallVectorImpl<Attribute> &Attrs) const override {
- if (getAssumedAlign() > 1)
- Attrs.emplace_back(
- Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
- }
- /// See AAFromMustBeExecutedContext
- bool followUse(Attributor &A, const Use *U, const Instruction *I,
- AAAlign::StateType &State) {
- bool TrackUse = false;
-
- unsigned int KnownAlign =
- getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
- State.takeKnownMaximum(KnownAlign);
-
- return TrackUse;
- }
-
- /// See AbstractAttribute::getAsStr().
- const std::string getAsStr() const override {
- return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
- "-" + std::to_string(getAssumedAlign()) + ">")
- : "unknown-align";
- }
-};
-
-/// Align attribute for a floating value.
-struct AAAlignFloating : AAFromMustBeExecutedContext<AAAlign, AAAlignImpl> {
- using Base = AAFromMustBeExecutedContext<AAAlign, AAAlignImpl>;
- AAAlignFloating(const IRPosition &IRP) : Base(IRP) {}
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- Base::updateImpl(A);
-
- const DataLayout &DL = A.getDataLayout();
-
- auto VisitValueCB = [&](Value &V, const Instruction *,
- AAAlign::StateType &T, bool Stripped) -> bool {
- const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V));
- if (!Stripped && this == &AA) {
- // Use only IR information if we did not strip anything.
- const MaybeAlign PA = V.getPointerAlignment(DL);
- T.takeKnownMaximum(PA ? PA->value() : 0);
- T.indicatePessimisticFixpoint();
- } else {
- // Use abstract attribute information.
- const AAAlign::StateType &DS =
- static_cast<const AAAlign::StateType &>(AA.getState());
- T ^= DS;
- }
- return T.isValidState();
- };
-
- StateType T;
- if (!genericValueTraversal<AAAlign, StateType>(A, getIRPosition(), *this, T,
- VisitValueCB, getCtxI()))
- return indicatePessimisticFixpoint();
-
- // TODO: If we know we visited all incoming values, thus no are assumed
- // dead, we can take the known information from the state T.
- return clampStateAndIndicateChange(getState(), T);
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
-};
-
-/// Align attribute for function return value.
-struct AAAlignReturned final
- : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
- AAAlignReturned(const IRPosition &IRP)
- : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
-};
-
-/// Align attribute for function argument.
-struct AAAlignArgument final
- : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AAAlign,
- AAAlignImpl> {
- using Base =
- AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AAAlign,
- AAAlignImpl>;
- AAAlignArgument(const IRPosition &IRP) : Base(IRP) {}
-
- /// See AbstractAttribute::manifest(...).
- ChangeStatus manifest(Attributor &A) override {
- // If the associated argument is involved in a must-tail call we give up
- // because we would need to keep the argument alignments of caller and
- // callee in-sync. Just does not seem worth the trouble right now.
- if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
- return ChangeStatus::UNCHANGED;
- return Base::manifest(A);
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
-};
-
-struct AAAlignCallSiteArgument final : AAAlignFloating {
- AAAlignCallSiteArgument(const IRPosition &IRP) : AAAlignFloating(IRP) {}
-
- /// See AbstractAttribute::manifest(...).
- ChangeStatus manifest(Attributor &A) override {
- // If the associated argument is involved in a must-tail call we give up
- // because we would need to keep the argument alignments of caller and
- // callee in-sync. Just does not seem worth the trouble right now.
- if (Argument *Arg = getAssociatedArgument())
- if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
- return ChangeStatus::UNCHANGED;
- ChangeStatus Changed = AAAlignImpl::manifest(A);
- MaybeAlign InheritAlign =
- getAssociatedValue().getPointerAlignment(A.getDataLayout());
- if (InheritAlign.valueOrOne() >= getAssumedAlign())
- Changed = ChangeStatus::UNCHANGED;
- return Changed;
- }
-
- /// See AbstractAttribute::updateImpl(Attributor &A).
- ChangeStatus updateImpl(Attributor &A) override {
- ChangeStatus Changed = AAAlignFloating::updateImpl(A);
- if (Argument *Arg = getAssociatedArgument()) {
- // We only take known information from the argument
- // so we do not need to track a dependence.
- const auto &ArgAlignAA = A.getAAFor<AAAlign>(
- *this, IRPosition::argument(*Arg), /* TrackDependence */ false);
- takeKnownMaximum(ArgAlignAA.getKnownAlign());
- }
- return Changed;
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
-};
-
-/// Align attribute deduction for a call site return value.
-struct AAAlignCallSiteReturned final
- : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AAAlign,
- AAAlignImpl> {
- using Base =
- AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AAAlign,
- AAAlignImpl>;
- AAAlignCallSiteReturned(const IRPosition &IRP) : Base(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- Base::initialize(A);
- Function *F = getAssociatedFunction();
- if (!F)
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
-};
-
-/// ------------------ Function No-Return Attribute ----------------------------
-struct AANoReturnImpl : public AANoReturn {
- AANoReturnImpl(const IRPosition &IRP) : AANoReturn(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- AANoReturn::initialize(A);
- Function *F = getAssociatedFunction();
- if (!F)
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::getAsStr().
- const std::string getAsStr() const override {
- return getAssumed() ? "noreturn" : "may-return";
- }
-
- /// See AbstractAttribute::updateImpl(Attributor &A).
- virtual ChangeStatus updateImpl(Attributor &A) override {
- auto CheckForNoReturn = [](Instruction &) { return false; };
- if (!A.checkForAllInstructions(CheckForNoReturn, *this,
- {(unsigned)Instruction::Ret}))
- return indicatePessimisticFixpoint();
- return ChangeStatus::UNCHANGED;
- }
-};
-
-struct AANoReturnFunction final : AANoReturnImpl {
- AANoReturnFunction(const IRPosition &IRP) : AANoReturnImpl(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
-};
-
-/// NoReturn attribute deduction for a call sites.
-struct AANoReturnCallSite final : AANoReturnImpl {
- AANoReturnCallSite(const IRPosition &IRP) : AANoReturnImpl(IRP) {}
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- // TODO: Once we have call site specific value information we can provide
- // call site specific liveness information and then it makes
- // sense to specialize attributes for call sites arguments instead of
- // redirecting requests to the callee argument.
- Function *F = getAssociatedFunction();
- const IRPosition &FnPos = IRPosition::function(*F);
- auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos);
- return clampStateAndIndicateChange(
- getState(),
- static_cast<const AANoReturn::StateType &>(FnAA.getState()));
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
-};
-
-/// ----------------------- Variable Capturing ---------------------------------
-
-/// A class to hold the state of for no-capture attributes.
-struct AANoCaptureImpl : public AANoCapture {
- AANoCaptureImpl(const IRPosition &IRP) : AANoCapture(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
- indicateOptimisticFixpoint();
- return;
- }
- Function *AnchorScope = getAnchorScope();
- if (isFnInterfaceKind() &&
- (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
- indicatePessimisticFixpoint();
- return;
- }
-
- // You cannot "capture" null in the default address space.
- if (isa<ConstantPointerNull>(getAssociatedValue()) &&
- getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
- indicateOptimisticFixpoint();
- return;
- }
-
- const Function *F = getArgNo() >= 0 ? getAssociatedFunction() : AnchorScope;
-
- // Check what state the associated function can actually capture.
- if (F)
- determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
- else
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override;
-
- /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
- virtual void
- getDeducedAttributes(LLVMContext &Ctx,
- SmallVectorImpl<Attribute> &Attrs) const override {
- if (!isAssumedNoCaptureMaybeReturned())
- return;
-
- if (getArgNo() >= 0) {
- if (isAssumedNoCapture())
- Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
- else if (ManifestInternal)
- Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
- }
- }
-
- /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
- /// depending on the ability of the function associated with \p IRP to capture
- /// state in memory and through "returning/throwing", respectively.
- static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
- const Function &F,
- BitIntegerState &State) {
- // TODO: Once we have memory behavior attributes we should use them here.
-
- // If we know we cannot communicate or write to memory, we do not care about
- // ptr2int anymore.
- if (F.onlyReadsMemory() && F.doesNotThrow() &&
- F.getReturnType()->isVoidTy()) {
- State.addKnownBits(NO_CAPTURE);
- return;
- }
-
- // A function cannot capture state in memory if it only reads memory, it can
- // however return/throw state and the state might be influenced by the
- // pointer value, e.g., loading from a returned pointer might reveal a bit.
- if (F.onlyReadsMemory())
- State.addKnownBits(NOT_CAPTURED_IN_MEM);
-
- // A function cannot communicate state back if it does not through
- // exceptions and doesn not return values.
- if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
- State.addKnownBits(NOT_CAPTURED_IN_RET);
-
- // Check existing "returned" attributes.
- int ArgNo = IRP.getArgNo();
- if (F.doesNotThrow() && ArgNo >= 0) {
- for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
- if (F.hasParamAttribute(u, Attribute::Returned)) {
- if (u == unsigned(ArgNo))
- State.removeAssumedBits(NOT_CAPTURED_IN_RET);
- else if (F.onlyReadsMemory())
- State.addKnownBits(NO_CAPTURE);
- else
- State.addKnownBits(NOT_CAPTURED_IN_RET);
- break;
- }
- }
- }
-
- /// See AbstractState::getAsStr().
- const std::string getAsStr() const override {
- if (isKnownNoCapture())
- return "known not-captured";
- if (isAssumedNoCapture())
- return "assumed not-captured";
- if (isKnownNoCaptureMaybeReturned())
- return "known not-captured-maybe-returned";
- if (isAssumedNoCaptureMaybeReturned())
- return "assumed not-captured-maybe-returned";
- return "assumed-captured";
- }
-};
-
-/// Attributor-aware capture tracker.
-struct AACaptureUseTracker final : public CaptureTracker {
-
- /// Create a capture tracker that can lookup in-flight abstract attributes
- /// through the Attributor \p A.
- ///
- /// If a use leads to a potential capture, \p CapturedInMemory is set and the
- /// search is stopped. If a use leads to a return instruction,
- /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
- /// If a use leads to a ptr2int which may capture the value,
- /// \p CapturedInInteger is set. If a use is found that is currently assumed
- /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
- /// set. All values in \p PotentialCopies are later tracked as well. For every
- /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
- /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
- /// conservatively set to true.
- AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
- const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
- SmallVectorImpl<const Value *> &PotentialCopies,
- unsigned &RemainingUsesToExplore)
- : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
- PotentialCopies(PotentialCopies),
- RemainingUsesToExplore(RemainingUsesToExplore) {}
-
- /// Determine if \p V maybe captured. *Also updates the state!*
- bool valueMayBeCaptured(const Value *V) {
- if (V->getType()->isPointerTy()) {
- PointerMayBeCaptured(V, this);
- } else {
- State.indicatePessimisticFixpoint();
- }
- return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
- }
-
- /// See CaptureTracker::tooManyUses().
- void tooManyUses() override {
- State.removeAssumedBits(AANoCapture::NO_CAPTURE);
- }
-
- bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
- if (CaptureTracker::isDereferenceableOrNull(O, DL))
- return true;
- const auto &DerefAA = A.getAAFor<AADereferenceable>(
- NoCaptureAA, IRPosition::value(*O), /* TrackDependence */ true,
- DepClassTy::OPTIONAL);
- return DerefAA.getAssumedDereferenceableBytes();
- }
-
- /// See CaptureTracker::captured(...).
- bool captured(const Use *U) override {
- Instruction *UInst = cast<Instruction>(U->getUser());
- LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
- << "\n");
-
- // Because we may reuse the tracker multiple times we keep track of the
- // number of explored uses ourselves as well.
- if (RemainingUsesToExplore-- == 0) {
- LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
- return isCapturedIn(/* Memory */ true, /* Integer */ true,
- /* Return */ true);
- }
-
- // Deal with ptr2int by following uses.
- if (isa<PtrToIntInst>(UInst)) {
- LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
- return valueMayBeCaptured(UInst);
- }
-
- // Explicitly catch return instructions.
- if (isa<ReturnInst>(UInst))
- return isCapturedIn(/* Memory */ false, /* Integer */ false,
- /* Return */ true);
-
- // For now we only use special logic for call sites. However, the tracker
- // itself knows about a lot of other non-capturing cases already.
- CallSite CS(UInst);
- if (!CS || !CS.isArgOperand(U))
- return isCapturedIn(/* Memory */ true, /* Integer */ true,
- /* Return */ true);
-
- unsigned ArgNo = CS.getArgumentNo(U);
- const IRPosition &CSArgPos = IRPosition::callsite_argument(CS, ArgNo);
- // If we have a abstract no-capture attribute for the argument we can use
- // it to justify a non-capture attribute here. This allows recursion!
- auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos);
- if (ArgNoCaptureAA.isAssumedNoCapture())
- return isCapturedIn(/* Memory */ false, /* Integer */ false,
- /* Return */ false);
- if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
- addPotentialCopy(CS);
- return isCapturedIn(/* Memory */ false, /* Integer */ false,
- /* Return */ false);
- }
-
- // Lastly, we could not find a reason no-capture can be assumed so we don't.
- return isCapturedIn(/* Memory */ true, /* Integer */ true,
- /* Return */ true);
- }
-
- /// Register \p CS as potential copy of the value we are checking.
- void addPotentialCopy(CallSite CS) {
- PotentialCopies.push_back(CS.getInstruction());
- }
-
- /// See CaptureTracker::shouldExplore(...).
- bool shouldExplore(const Use *U) override {
- // Check liveness and ignore droppable users.
- return !U->getUser()->isDroppable() &&
- !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA);
- }
-
- /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
- /// \p CapturedInRet, then return the appropriate value for use in the
- /// CaptureTracker::captured() interface.
- bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
- bool CapturedInRet) {
- LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
- << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
- if (CapturedInMem)
- State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
- if (CapturedInInt)
- State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
- if (CapturedInRet)
- State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
- return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
- }
-
-private:
- /// The attributor providing in-flight abstract attributes.
- Attributor &A;
-
- /// The abstract attribute currently updated.
- AANoCapture &NoCaptureAA;
-
- /// The abstract liveness state.
- const AAIsDead &IsDeadAA;
-
- /// The state currently updated.
- AANoCapture::StateType &State;
-
- /// Set of potential copies of the tracked value.
- SmallVectorImpl<const Value *> &PotentialCopies;
-
- /// Global counter to limit the number of explored uses.
- unsigned &RemainingUsesToExplore;
-};
-
-ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
- const IRPosition &IRP = getIRPosition();
- const Value *V =
- getArgNo() >= 0 ? IRP.getAssociatedArgument() : &IRP.getAssociatedValue();
- if (!V)
- return indicatePessimisticFixpoint();
-
- const Function *F =
- getArgNo() >= 0 ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
- assert(F && "Expected a function!");
- const IRPosition &FnPos = IRPosition::function(*F);
- const auto &IsDeadAA =
- A.getAAFor<AAIsDead>(*this, FnPos, /* TrackDependence */ false);
-
- AANoCapture::StateType T;
-
- // Readonly means we cannot capture through memory.
- const auto &FnMemAA = A.getAAFor<AAMemoryBehavior>(
- *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
- if (FnMemAA.isAssumedReadOnly()) {
- T.addKnownBits(NOT_CAPTURED_IN_MEM);
- if (FnMemAA.isKnownReadOnly())
- addKnownBits(NOT_CAPTURED_IN_MEM);
- }
-
- // Make sure all returned values are different than the underlying value.
- // TODO: we could do this in a more sophisticated way inside
- // AAReturnedValues, e.g., track all values that escape through returns
- // directly somehow.
- auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
- bool SeenConstant = false;
- for (auto &It : RVAA.returned_values()) {
- if (isa<Constant>(It.first)) {
- if (SeenConstant)
- return false;
- SeenConstant = true;
- } else if (!isa<Argument>(It.first) ||
- It.first == getAssociatedArgument())
- return false;
- }
- return true;
- };
-
- const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
- *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
- if (NoUnwindAA.isAssumedNoUnwind()) {
- bool IsVoidTy = F->getReturnType()->isVoidTy();
- const AAReturnedValues *RVAA =
- IsVoidTy ? nullptr
- : &A.getAAFor<AAReturnedValues>(*this, FnPos,
- /* TrackDependence */ true,
- DepClassTy::OPTIONAL);
- if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
- T.addKnownBits(NOT_CAPTURED_IN_RET);
- if (T.isKnown(NOT_CAPTURED_IN_MEM))
- return ChangeStatus::UNCHANGED;
- if (NoUnwindAA.isKnownNoUnwind() &&
- (IsVoidTy || RVAA->getState().isAtFixpoint())) {
- addKnownBits(NOT_CAPTURED_IN_RET);
- if (isKnown(NOT_CAPTURED_IN_MEM))
- return indicateOptimisticFixpoint();
- }
- }
- }
-
- // Use the CaptureTracker interface and logic with the specialized tracker,
- // defined in AACaptureUseTracker, that can look at in-flight abstract
- // attributes and directly updates the assumed state.
- SmallVector<const Value *, 4> PotentialCopies;
- unsigned RemainingUsesToExplore = DefaultMaxUsesToExplore;
- AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
- RemainingUsesToExplore);
-
- // Check all potential copies of the associated value until we can assume
- // none will be captured or we have to assume at least one might be.
- unsigned Idx = 0;
- PotentialCopies.push_back(V);
- while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
- Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
-
- AANoCapture::StateType &S = getState();
- auto Assumed = S.getAssumed();
- S.intersectAssumedBits(T.getAssumed());
- if (!isAssumedNoCaptureMaybeReturned())
- return indicatePessimisticFixpoint();
- return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
- : ChangeStatus::CHANGED;
-}
-
-/// NoCapture attribute for function arguments.
-struct AANoCaptureArgument final : AANoCaptureImpl {
- AANoCaptureArgument(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
-};
-
-/// NoCapture attribute for call site arguments.
-struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
- AANoCaptureCallSiteArgument(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- if (Argument *Arg = getAssociatedArgument())
- if (Arg->hasByValAttr())
- indicateOptimisticFixpoint();
- AANoCaptureImpl::initialize(A);
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- // TODO: Once we have call site specific value information we can provide
- // call site specific liveness information and then it makes
- // sense to specialize attributes for call sites arguments instead of
- // redirecting requests to the callee argument.
- Argument *Arg = getAssociatedArgument();
- if (!Arg)
- return indicatePessimisticFixpoint();
- const IRPosition &ArgPos = IRPosition::argument(*Arg);
- auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos);
- return clampStateAndIndicateChange(
- getState(),
- static_cast<const AANoCapture::StateType &>(ArgAA.getState()));
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
-};
-
-/// NoCapture attribute for floating values.
-struct AANoCaptureFloating final : AANoCaptureImpl {
- AANoCaptureFloating(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_FLOATING_ATTR(nocapture)
- }
-};
-
-/// NoCapture attribute for function return value.
-struct AANoCaptureReturned final : AANoCaptureImpl {
- AANoCaptureReturned(const IRPosition &IRP) : AANoCaptureImpl(IRP) {
- llvm_unreachable("NoCapture is not applicable to function returns!");
- }
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- llvm_unreachable("NoCapture is not applicable to function returns!");
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- llvm_unreachable("NoCapture is not applicable to function returns!");
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {}
-};
-
-/// NoCapture attribute deduction for a call site return value.
-struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
- AANoCaptureCallSiteReturned(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_CSRET_ATTR(nocapture)
- }
-};
-
-/// ------------------ Value Simplify Attribute ----------------------------
-struct AAValueSimplifyImpl : AAValueSimplify {
- AAValueSimplifyImpl(const IRPosition &IRP) : AAValueSimplify(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- if (getAssociatedValue().getType()->isVoidTy())
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::getAsStr().
- const std::string getAsStr() const override {
- return getAssumed() ? (getKnown() ? "simplified" : "maybe-simple")
- : "not-simple";
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {}
-
- /// See AAValueSimplify::getAssumedSimplifiedValue()
- Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
- if (!getAssumed())
- return const_cast<Value *>(&getAssociatedValue());
- return SimplifiedAssociatedValue;
- }
-
- /// Helper function for querying AAValueSimplify and updating candicate.
- /// \param QueryingValue Value trying to unify with SimplifiedValue
- /// \param AccumulatedSimplifiedValue Current simplification result.
- static bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
- Value &QueryingValue,
- Optional<Value *> &AccumulatedSimplifiedValue) {
- // FIXME: Add a typecast support.
-
- auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>(
- QueryingAA, IRPosition::value(QueryingValue));
-
- Optional<Value *> QueryingValueSimplified =
- ValueSimplifyAA.getAssumedSimplifiedValue(A);
-
- if (!QueryingValueSimplified.hasValue())
- return true;
-
- if (!QueryingValueSimplified.getValue())
- return false;
-
- Value &QueryingValueSimplifiedUnwrapped =
- *QueryingValueSimplified.getValue();
-
- if (AccumulatedSimplifiedValue.hasValue() &&
- !isa<UndefValue>(AccumulatedSimplifiedValue.getValue()) &&
- !isa<UndefValue>(QueryingValueSimplifiedUnwrapped))
- return AccumulatedSimplifiedValue == QueryingValueSimplified;
- if (AccumulatedSimplifiedValue.hasValue() &&
- isa<UndefValue>(QueryingValueSimplifiedUnwrapped))
- return true;
-
- LLVM_DEBUG(dbgs() << "[ValueSimplify] " << QueryingValue
- << " is assumed to be "
- << QueryingValueSimplifiedUnwrapped << "\n");
-
- AccumulatedSimplifiedValue = QueryingValueSimplified;
- return true;
- }
-
- bool askSimplifiedValueForAAValueConstantRange(Attributor &A) {
- if (!getAssociatedValue().getType()->isIntegerTy())
- return false;
-
- const auto &ValueConstantRangeAA =
- A.getAAFor<AAValueConstantRange>(*this, getIRPosition());
-
- Optional<ConstantInt *> COpt =
- ValueConstantRangeAA.getAssumedConstantInt(A);
- if (COpt.hasValue()) {
- if (auto *C = COpt.getValue())
- SimplifiedAssociatedValue = C;
- else
- return false;
- } else {
- SimplifiedAssociatedValue = llvm::None;
- }
- return true;
- }
-
- /// See AbstractAttribute::manifest(...).
- ChangeStatus manifest(Attributor &A) override {
- ChangeStatus Changed = ChangeStatus::UNCHANGED;
-
- if (SimplifiedAssociatedValue.hasValue() &&
- !SimplifiedAssociatedValue.getValue())
- return Changed;
-
- Value &V = getAssociatedValue();
- auto *C = SimplifiedAssociatedValue.hasValue()
- ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
- : UndefValue::get(V.getType());
- if (C) {
- // We can replace the AssociatedValue with the constant.
- if (!V.user_empty() && &V != C && V.getType() == C->getType()) {
- LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *C
- << " :: " << *this << "\n");
- if (A.changeValueAfterManifest(V, *C))
- Changed = ChangeStatus::CHANGED;
- }
- }
-
- return Changed | AAValueSimplify::manifest(A);
- }
-
- /// See AbstractState::indicatePessimisticFixpoint(...).
- ChangeStatus indicatePessimisticFixpoint() override {
- // NOTE: Associated value will be returned in a pessimistic fixpoint and is
- // regarded as known. That's why`indicateOptimisticFixpoint` is called.
- SimplifiedAssociatedValue = &getAssociatedValue();
- indicateOptimisticFixpoint();
- return ChangeStatus::CHANGED;
- }
-
-protected:
- // An assumed simplified value. Initially, it is set to Optional::None, which
- // means that the value is not clear under current assumption. If in the
- // pessimistic state, getAssumedSimplifiedValue doesn't return this value but
- // returns orignal associated value.
- Optional<Value *> SimplifiedAssociatedValue;
-};
-
-struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
- AAValueSimplifyArgument(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {}
-
- void initialize(Attributor &A) override {
- AAValueSimplifyImpl::initialize(A);
- if (!getAnchorScope() || getAnchorScope()->isDeclaration())
- indicatePessimisticFixpoint();
- if (hasAttr({Attribute::InAlloca, Attribute::StructRet, Attribute::Nest},
- /* IgnoreSubsumingPositions */ true))
- indicatePessimisticFixpoint();
-
- // FIXME: This is a hack to prevent us from propagating function poiner in
- // the new pass manager CGSCC pass as it creates call edges the
- // CallGraphUpdater cannot handle yet.
- Value &V = getAssociatedValue();
- if (V.getType()->isPointerTy() &&
- V.getType()->getPointerElementType()->isFunctionTy() &&
- !A.isModulePass())
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- // Byval is only replacable if it is readonly otherwise we would write into
- // the replaced value and not the copy that byval creates implicitly.
- Argument *Arg = getAssociatedArgument();
- if (Arg->hasByValAttr()) {
- // TODO: We probably need to verify synchronization is not an issue, e.g.,
- // there is no race by not copying a constant byval.
- const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition());
- if (!MemAA.isAssumedReadOnly())
- return indicatePessimisticFixpoint();
- }
-
- bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
-
- auto PredForCallSite = [&](AbstractCallSite ACS) {
- const IRPosition &ACSArgPos =
- IRPosition::callsite_argument(ACS, getArgNo());
- // Check if a coresponding argument was found or if it is on not
- // associated (which can happen for callback calls).
- if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
- return false;
-
- // We can only propagate thread independent values through callbacks.
- // This is different to direct/indirect call sites because for them we
- // know the thread executing the caller and callee is the same. For
- // callbacks this is not guaranteed, thus a thread dependent value could
- // be different for the caller and callee, making it invalid to propagate.
- Value &ArgOp = ACSArgPos.getAssociatedValue();
- if (ACS.isCallbackCall())
- if (auto *C = dyn_cast<Constant>(&ArgOp))
- if (C->isThreadDependent())
- return false;
- return checkAndUpdate(A, *this, ArgOp, SimplifiedAssociatedValue);
- };
-
- bool AllCallSitesKnown;
- if (!A.checkForAllCallSites(PredForCallSite, *this, true,
- AllCallSitesKnown))
- if (!askSimplifiedValueForAAValueConstantRange(A))
- return indicatePessimisticFixpoint();
-
- // If a candicate was found in this update, return CHANGED.
- return HasValueBefore == SimplifiedAssociatedValue.hasValue()
- ? ChangeStatus::UNCHANGED
- : ChangeStatus ::CHANGED;
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_ARG_ATTR(value_simplify)
- }
-};
-
-struct AAValueSimplifyReturned : AAValueSimplifyImpl {
- AAValueSimplifyReturned(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {}
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
-
- auto PredForReturned = [&](Value &V) {
- return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
- };
-
- if (!A.checkForAllReturnedValues(PredForReturned, *this))
- if (!askSimplifiedValueForAAValueConstantRange(A))
- return indicatePessimisticFixpoint();
-
- // If a candicate was found in this update, return CHANGED.
- return HasValueBefore == SimplifiedAssociatedValue.hasValue()
- ? ChangeStatus::UNCHANGED
- : ChangeStatus ::CHANGED;
- }
-
- ChangeStatus manifest(Attributor &A) override {
- ChangeStatus Changed = ChangeStatus::UNCHANGED;
-
- if (SimplifiedAssociatedValue.hasValue() &&
- !SimplifiedAssociatedValue.getValue())
- return Changed;
-
- Value &V = getAssociatedValue();
- auto *C = SimplifiedAssociatedValue.hasValue()
- ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
- : UndefValue::get(V.getType());
- if (C) {
- auto PredForReturned =
- [&](Value &V, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
- // We can replace the AssociatedValue with the constant.
- if (&V == C || V.getType() != C->getType() || isa<UndefValue>(V))
- return true;
-
- for (ReturnInst *RI : RetInsts) {
- if (RI->getFunction() != getAnchorScope())
- continue;
- LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *C
- << " in " << *RI << " :: " << *this << "\n");
- if (A.changeUseAfterManifest(RI->getOperandUse(0), *C))
- Changed = ChangeStatus::CHANGED;
- }
- return true;
- };
- A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
- }
-
- return Changed | AAValueSimplify::manifest(A);
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_FNRET_ATTR(value_simplify)
- }
-};
-
-struct AAValueSimplifyFloating : AAValueSimplifyImpl {
- AAValueSimplifyFloating(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- // FIXME: This might have exposed a SCC iterator update bug in the old PM.
- // Needs investigation.
- // AAValueSimplifyImpl::initialize(A);
- Value &V = getAnchorValue();
-
- // TODO: add other stuffs
- if (isa<Constant>(V))
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
-
- auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
- bool Stripped) -> bool {
- auto &AA = A.getAAFor<AAValueSimplify>(*this, IRPosition::value(V));
- if (!Stripped && this == &AA) {
- // TODO: Look the instruction and check recursively.
-
- LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
- << "\n");
- return false;
- }
- return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
- };
-
- bool Dummy = false;
- if (!genericValueTraversal<AAValueSimplify, bool>(
- A, getIRPosition(), *this, Dummy, VisitValueCB, getCtxI()))
- if (!askSimplifiedValueForAAValueConstantRange(A))
- return indicatePessimisticFixpoint();
-
- // If a candicate was found in this update, return CHANGED.
-
- return HasValueBefore == SimplifiedAssociatedValue.hasValue()
- ? ChangeStatus::UNCHANGED
- : ChangeStatus ::CHANGED;
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
- }
-};
-
-struct AAValueSimplifyFunction : AAValueSimplifyImpl {
- AAValueSimplifyFunction(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- SimplifiedAssociatedValue = &getAnchorValue();
- indicateOptimisticFixpoint();
- }
- /// See AbstractAttribute::initialize(...).
- ChangeStatus updateImpl(Attributor &A) override {
- llvm_unreachable(
- "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
- }
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_FN_ATTR(value_simplify)
- }
-};
-
-struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
- AAValueSimplifyCallSite(const IRPosition &IRP)
- : AAValueSimplifyFunction(IRP) {}
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_CS_ATTR(value_simplify)
- }
-};
-
-struct AAValueSimplifyCallSiteReturned : AAValueSimplifyReturned {
- AAValueSimplifyCallSiteReturned(const IRPosition &IRP)
- : AAValueSimplifyReturned(IRP) {}
-
- /// See AbstractAttribute::manifest(...).
- ChangeStatus manifest(Attributor &A) override {
- return AAValueSimplifyImpl::manifest(A);
- }
-
- void trackStatistics() const override {
- STATS_DECLTRACK_CSRET_ATTR(value_simplify)
- }
-};
-struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
- AAValueSimplifyCallSiteArgument(const IRPosition &IRP)
- : AAValueSimplifyFloating(IRP) {}
-
- void trackStatistics() const override {
- STATS_DECLTRACK_CSARG_ATTR(value_simplify)
- }
-};
-
-/// ----------------------- Heap-To-Stack Conversion ---------------------------
-struct AAHeapToStackImpl : public AAHeapToStack {
- AAHeapToStackImpl(const IRPosition &IRP) : AAHeapToStack(IRP) {}
-
- const std::string getAsStr() const override {
- return "[H2S] Mallocs: " + std::to_string(MallocCalls.size());
- }
-
- ChangeStatus manifest(Attributor &A) override {
- assert(getState().isValidState() &&
- "Attempted to manifest an invalid state!");
-
- ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
- Function *F = getAnchorScope();
- const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
-
- for (Instruction *MallocCall : MallocCalls) {
- // This malloc cannot be replaced.
- if (BadMallocCalls.count(MallocCall))
- continue;
-
- for (Instruction *FreeCall : FreesForMalloc[MallocCall]) {
- LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
- A.deleteAfterManifest(*FreeCall);
- HasChanged = ChangeStatus::CHANGED;
- }
-
- LLVM_DEBUG(dbgs() << "H2S: Removing malloc call: " << *MallocCall
- << "\n");
-
- MaybeAlign Alignment;
- Constant *Size;
- if (isCallocLikeFn(MallocCall, TLI)) {
- auto *Num = cast<ConstantInt>(MallocCall->getOperand(0));
- auto *SizeT = cast<ConstantInt>(MallocCall->getOperand(1));
- APInt TotalSize = SizeT->getValue() * Num->getValue();
- Size =
- ConstantInt::get(MallocCall->getOperand(0)->getType(), TotalSize);
- } else if (isAlignedAllocLikeFn(MallocCall, TLI)) {
- Size = cast<ConstantInt>(MallocCall->getOperand(1));
- Alignment = MaybeAlign(cast<ConstantInt>(MallocCall->getOperand(0))
- ->getValue()
- .getZExtValue());
- } else {
- Size = cast<ConstantInt>(MallocCall->getOperand(0));
- }
-
- unsigned AS = cast<PointerType>(MallocCall->getType())->getAddressSpace();
- Instruction *AI =
- new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
- "", MallocCall->getNextNode());
-
- if (AI->getType() != MallocCall->getType())
- AI = new BitCastInst(AI, MallocCall->getType(), "malloc_bc",
- AI->getNextNode());
-
- A.changeValueAfterManifest(*MallocCall, *AI);
-
- if (auto *II = dyn_cast<InvokeInst>(MallocCall)) {
- auto *NBB = II->getNormalDest();
- BranchInst::Create(NBB, MallocCall->getParent());
- A.deleteAfterManifest(*MallocCall);
- } else {
- A.deleteAfterManifest(*MallocCall);
- }
-
- // Zero out the allocated memory if it was a calloc.
- if (isCallocLikeFn(MallocCall, TLI)) {
- auto *BI = new BitCastInst(AI, MallocCall->getType(), "calloc_bc",
- AI->getNextNode());
- Value *Ops[] = {
- BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size,
- ConstantInt::get(Type::getInt1Ty(F->getContext()), false)};
-
- Type *Tys[] = {BI->getType(), MallocCall->getOperand(0)->getType()};
- Module *M = F->getParent();
- Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
- CallInst::Create(Fn, Ops, "", BI->getNextNode());
- }
- HasChanged = ChangeStatus::CHANGED;
- }
-
- return HasChanged;
- }
-
- /// Collection of all malloc calls in a function.
- SmallSetVector<Instruction *, 4> MallocCalls;
-
- /// Collection of malloc calls that cannot be converted.
- DenseSet<const Instruction *> BadMallocCalls;
-
- /// A map for each malloc call to the set of associated free calls.
- DenseMap<Instruction *, SmallPtrSet<Instruction *, 4>> FreesForMalloc;
-
- ChangeStatus updateImpl(Attributor &A) override;
-};
-
-ChangeStatus AAHeapToStackImpl::updateImpl(Attributor &A) {
- const Function *F = getAnchorScope();
- const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
-
- MustBeExecutedContextExplorer &Explorer =
- A.getInfoCache().getMustBeExecutedContextExplorer();
-
- auto FreeCheck = [&](Instruction &I) {
- const auto &Frees = FreesForMalloc.lookup(&I);
- if (Frees.size() != 1)
- return false;
- Instruction *UniqueFree = *Frees.begin();
- return Explorer.findInContextOf(UniqueFree, I.getNextNode());
- };
-
- auto UsesCheck = [&](Instruction &I) {
- bool ValidUsesOnly = true;
- bool MustUse = true;
- auto Pred = [&](const Use &U, bool &Follow) -> bool {
- Instruction *UserI = cast<Instruction>(U.getUser());
- if (isa<LoadInst>(UserI))
- return true;
- if (auto *SI = dyn_cast<StoreInst>(UserI)) {
- if (SI->getValueOperand() == U.get()) {
- LLVM_DEBUG(dbgs()
- << "[H2S] escaping store to memory: " << *UserI << "\n");
- ValidUsesOnly = false;
- } else {
- // A store into the malloc'ed memory is fine.
- }
- return true;
- }
- if (auto *CB = dyn_cast<CallBase>(UserI)) {
- if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
- return true;
- // Record malloc.
- if (isFreeCall(UserI, TLI)) {
- if (MustUse) {
- FreesForMalloc[&I].insert(UserI);
- } else {
- LLVM_DEBUG(dbgs() << "[H2S] free potentially on different mallocs: "
- << *UserI << "\n");
- ValidUsesOnly = false;
- }
- return true;
- }
-
- unsigned ArgNo = CB->getArgOperandNo(&U);
-
- const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
- *this, IRPosition::callsite_argument(*CB, ArgNo));
-
- // If a callsite argument use is nofree, we are fine.
- const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
- *this, IRPosition::callsite_argument(*CB, ArgNo));
-
- if (!NoCaptureAA.isAssumedNoCapture() ||
- !ArgNoFreeAA.isAssumedNoFree()) {
- LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
- ValidUsesOnly = false;
- }
- return true;
- }
-
- if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
- isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
- MustUse &= !(isa<PHINode>(UserI) || isa<SelectInst>(UserI));
- Follow = true;
- return true;
- }
- // Unknown user for which we can not track uses further (in a way that
- // makes sense).
- LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
- ValidUsesOnly = false;
- return true;
- };
- A.checkForAllUses(Pred, *this, I);
- return ValidUsesOnly;
- };
-
- auto MallocCallocCheck = [&](Instruction &I) {
- if (BadMallocCalls.count(&I))
- return true;
-
- bool IsMalloc = isMallocLikeFn(&I, TLI);
- bool IsAlignedAllocLike = isAlignedAllocLikeFn(&I, TLI);
- bool IsCalloc = !IsMalloc && isCallocLikeFn(&I, TLI);
- if (!IsMalloc && !IsAlignedAllocLike && !IsCalloc) {
- BadMallocCalls.insert(&I);
- return true;
- }
-
- if (IsMalloc) {
- if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(0)))
- if (Size->getValue().ule(MaxHeapToStackSize))
- if (UsesCheck(I) || FreeCheck(I)) {
- MallocCalls.insert(&I);
- return true;
- }
- } else if (IsAlignedAllocLike && isa<ConstantInt>(I.getOperand(0))) {
- // Only if the alignment and sizes are constant.
- if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1)))
- if (Size->getValue().ule(MaxHeapToStackSize))
- if (UsesCheck(I) || FreeCheck(I)) {
- MallocCalls.insert(&I);
- return true;
- }
- } else if (IsCalloc) {
- bool Overflow = false;
- if (auto *Num = dyn_cast<ConstantInt>(I.getOperand(0)))
- if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1)))
- if ((Size->getValue().umul_ov(Num->getValue(), Overflow))
- .ule(MaxHeapToStackSize))
- if (!Overflow && (UsesCheck(I) || FreeCheck(I))) {
- MallocCalls.insert(&I);
- return true;
- }
- }
-
- BadMallocCalls.insert(&I);
- return true;
- };
-
- size_t NumBadMallocs = BadMallocCalls.size();
-
- A.checkForAllCallLikeInstructions(MallocCallocCheck, *this);
-
- if (NumBadMallocs != BadMallocCalls.size())
- return ChangeStatus::CHANGED;
-
- return ChangeStatus::UNCHANGED;
-}
-
-struct AAHeapToStackFunction final : public AAHeapToStackImpl {
- AAHeapToStackFunction(const IRPosition &IRP) : AAHeapToStackImpl(IRP) {}
-
- /// See AbstractAttribute::trackStatistics().
- void trackStatistics() const override {
- STATS_DECL(
- MallocCalls, Function,
- "Number of malloc/calloc/aligned_alloc calls converted to allocas");
- for (auto *C : MallocCalls)
- if (!BadMallocCalls.count(C))
- ++BUILD_STAT_NAME(MallocCalls, Function);
- }
-};
-
-/// ----------------------- Privatizable Pointers ------------------------------
-struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
- AAPrivatizablePtrImpl(const IRPosition &IRP)
- : AAPrivatizablePtr(IRP), PrivatizableType(llvm::None) {}
-
- ChangeStatus indicatePessimisticFixpoint() override {
- AAPrivatizablePtr::indicatePessimisticFixpoint();
- PrivatizableType = nullptr;
- return ChangeStatus::CHANGED;
- }
-
- /// Identify the type we can chose for a private copy of the underlying
- /// argument. None means it is not clear yet, nullptr means there is none.
- virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
-
- /// Return a privatizable type that encloses both T0 and T1.
- /// TODO: This is merely a stub for now as we should manage a mapping as well.
- Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
- if (!T0.hasValue())
- return T1;
- if (!T1.hasValue())
- return T0;
- if (T0 == T1)
- return T0;
- return nullptr;
- }
-
- Optional<Type *> getPrivatizableType() const override {
- return PrivatizableType;
- }
-
- const std::string getAsStr() const override {
- return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
- }
-
-protected:
- Optional<Type *> PrivatizableType;
-};
-
-// TODO: Do this for call site arguments (probably also other values) as well.
-
-struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
- AAPrivatizablePtrArgument(const IRPosition &IRP)
- : AAPrivatizablePtrImpl(IRP) {}
-
- /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
- Optional<Type *> identifyPrivatizableType(Attributor &A) override {
- // If this is a byval argument and we know all the call sites (so we can
- // rewrite them), there is no need to check them explicitly.
- bool AllCallSitesKnown;
- if (getIRPosition().hasAttr(Attribute::ByVal) &&
- A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
- true, AllCallSitesKnown))
- return getAssociatedValue().getType()->getPointerElementType();
-
- Optional<Type *> Ty;
- unsigned ArgNo = getIRPosition().getArgNo();
-
- // Make sure the associated call site argument has the same type at all call
- // sites and it is an allocation we know is safe to privatize, for now that
- // means we only allow alloca instructions.
- // TODO: We can additionally analyze the accesses in the callee to create
- // the type from that information instead. That is a little more
- // involved and will be done in a follow up patch.
- auto CallSiteCheck = [&](AbstractCallSite ACS) {
- IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
- // Check if a coresponding argument was found or if it is one not
- // associated (which can happen for callback calls).
- if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
- return false;
-
- // Check that all call sites agree on a type.
- auto &PrivCSArgAA = A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos);
- Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
-
- LLVM_DEBUG({
- dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
- if (CSTy.hasValue() && CSTy.getValue())
- CSTy.getValue()->print(dbgs());
- else if (CSTy.hasValue())
- dbgs() << "<nullptr>";
- else
- dbgs() << "<none>";
- });
-
- Ty = combineTypes(Ty, CSTy);
-
- LLVM_DEBUG({
- dbgs() << " : New Type: ";
- if (Ty.hasValue() && Ty.getValue())
- Ty.getValue()->print(dbgs());
- else if (Ty.hasValue())
- dbgs() << "<nullptr>";
- else
- dbgs() << "<none>";
- dbgs() << "\n";
- });
-
- return !Ty.hasValue() || Ty.getValue();
- };
-
- if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown))
- return nullptr;
- return Ty;
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- PrivatizableType = identifyPrivatizableType(A);
- if (!PrivatizableType.hasValue())
- return ChangeStatus::UNCHANGED;
- if (!PrivatizableType.getValue())
- return indicatePessimisticFixpoint();
-
- // Avoid arguments with padding for now.
- if (!getIRPosition().hasAttr(Attribute::ByVal) &&
- !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
- A.getInfoCache().getDL())) {
- LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
- return indicatePessimisticFixpoint();
- }
-
- // Verify callee and caller agree on how the promoted argument would be
- // passed.
- // TODO: The use of the ArgumentPromotion interface here is ugly, we need a
- // specialized form of TargetTransformInfo::areFunctionArgsABICompatible
- // which doesn't require the arguments ArgumentPromotion wanted to pass.
- Function &Fn = *getIRPosition().getAnchorScope();
- SmallPtrSet<Argument *, 1> ArgsToPromote, Dummy;
- ArgsToPromote.insert(getAssociatedArgument());
- const auto *TTI =
- A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
- if (!TTI ||
- !ArgumentPromotionPass::areFunctionArgsABICompatible(
- Fn, *TTI, ArgsToPromote, Dummy) ||
- ArgsToPromote.empty()) {
- LLVM_DEBUG(
- dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
- << Fn.getName() << "\n");
- return indicatePessimisticFixpoint();
- }
-
- // Collect the types that will replace the privatizable type in the function
- // signature.
- SmallVector<Type *, 16> ReplacementTypes;
- identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
-
- // Register a rewrite of the argument.
- Argument *Arg = getAssociatedArgument();
- if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
- LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
- return indicatePessimisticFixpoint();
- }
-
- unsigned ArgNo = Arg->getArgNo();
-
- // Helper to check if for the given call site the associated argument is
- // passed to a callback where the privatization would be different.
- auto IsCompatiblePrivArgOfCallback = [&](CallSite CS) {
- SmallVector<const Use *, 4> CBUses;
- AbstractCallSite::getCallbackUses(CS, CBUses);
- for (const Use *U : CBUses) {
- AbstractCallSite CBACS(U);
- assert(CBACS && CBACS.isCallbackCall());
- for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
- int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
-
- LLVM_DEBUG({
- dbgs()
- << "[AAPrivatizablePtr] Argument " << *Arg
- << "check if can be privatized in the context of its parent ("
- << Arg->getParent()->getName()
- << ")\n[AAPrivatizablePtr] because it is an argument in a "
- "callback ("
- << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
- << ")\n[AAPrivatizablePtr] " << CBArg << " : "
- << CBACS.getCallArgOperand(CBArg) << " vs "
- << CS.getArgOperand(ArgNo) << "\n"
- << "[AAPrivatizablePtr] " << CBArg << " : "
- << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
- });
-
- if (CBArgNo != int(ArgNo))
- continue;
- const auto &CBArgPrivAA =
- A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(CBArg));
- if (CBArgPrivAA.isValidState()) {
- auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
- if (!CBArgPrivTy.hasValue())
- continue;
- if (CBArgPrivTy.getValue() == PrivatizableType)
- continue;
- }
-
- LLVM_DEBUG({
- dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
- << " cannot be privatized in the context of its parent ("
- << Arg->getParent()->getName()
- << ")\n[AAPrivatizablePtr] because it is an argument in a "
- "callback ("
- << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
- << ").\n[AAPrivatizablePtr] for which the argument "
- "privatization is not compatible.\n";
- });
- return false;
- }
- }
- return true;
- };
-
- // Helper to check if for the given call site the associated argument is
- // passed to a direct call where the privatization would be different.
- auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
- CallBase *DC = cast<CallBase>(ACS.getInstruction());
- int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
- assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->getNumArgOperands() &&
- "Expected a direct call operand for callback call operand");
-
- LLVM_DEBUG({
- dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
- << " check if be privatized in the context of its parent ("
- << Arg->getParent()->getName()
- << ")\n[AAPrivatizablePtr] because it is an argument in a "
- "direct call of ("
- << DCArgNo << "@" << DC->getCalledFunction()->getName()
- << ").\n";
- });
-
- Function *DCCallee = DC->getCalledFunction();
- if (unsigned(DCArgNo) < DCCallee->arg_size()) {
- const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
- *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)));
- if (DCArgPrivAA.isValidState()) {
- auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
- if (!DCArgPrivTy.hasValue())
- return true;
- if (DCArgPrivTy.getValue() == PrivatizableType)
- return true;
- }
- }
-
- LLVM_DEBUG({
- dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
- << " cannot be privatized in the context of its parent ("
- << Arg->getParent()->getName()
- << ")\n[AAPrivatizablePtr] because it is an argument in a "
- "direct call of ("
- << ACS.getCallSite().getCalledFunction()->getName()
- << ").\n[AAPrivatizablePtr] for which the argument "
- "privatization is not compatible.\n";
- });
- return false;
- };
-
- // Helper to check if the associated argument is used at the given abstract
- // call site in a way that is incompatible with the privatization assumed
- // here.
- auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
- if (ACS.isDirectCall())
- return IsCompatiblePrivArgOfCallback(ACS.getCallSite());
- if (ACS.isCallbackCall())
- return IsCompatiblePrivArgOfDirectCS(ACS);
- return false;
- };
-
- bool AllCallSitesKnown;
- if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
- AllCallSitesKnown))
- return indicatePessimisticFixpoint();
-
- return ChangeStatus::UNCHANGED;
- }
-
- /// Given a type to private \p PrivType, collect the constituates (which are
- /// used) in \p ReplacementTypes.
- static void
- identifyReplacementTypes(Type *PrivType,
- SmallVectorImpl<Type *> &ReplacementTypes) {
- // TODO: For now we expand the privatization type to the fullest which can
- // lead to dead arguments that need to be removed later.
- assert(PrivType && "Expected privatizable type!");
-
- // Traverse the type, extract constituate types on the outermost level.
- if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
- for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
- ReplacementTypes.push_back(PrivStructType->getElementType(u));
- } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
- ReplacementTypes.append(PrivArrayType->getNumElements(),
- PrivArrayType->getElementType());
- } else {
- ReplacementTypes.push_back(PrivType);
- }
- }
-
- /// Initialize \p Base according to the type \p PrivType at position \p IP.
- /// The values needed are taken from the arguments of \p F starting at
- /// position \p ArgNo.
- static void createInitialization(Type *PrivType, Value &Base, Function &F,
- unsigned ArgNo, Instruction &IP) {
- assert(PrivType && "Expected privatizable type!");
-
- IRBuilder<NoFolder> IRB(&IP);
- const DataLayout &DL = F.getParent()->getDataLayout();
-
- // Traverse the type, build GEPs and stores.
- if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
- const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
- for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
- Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
- Value *Ptr = constructPointer(
- PointeeTy, &Base, PrivStructLayout->getElementOffset(u), IRB, DL);
- new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
- }
- } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
- Type *PointeePtrTy = PrivArrayType->getElementType()->getPointerTo();
- uint64_t PointeeTySize = DL.getTypeStoreSize(PointeePtrTy);
- for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
- Value *Ptr =
- constructPointer(PointeePtrTy, &Base, u * PointeeTySize, IRB, DL);
- new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
- }
- } else {
- new StoreInst(F.getArg(ArgNo), &Base, &IP);
- }
- }
-
- /// Extract values from \p Base according to the type \p PrivType at the
- /// call position \p ACS. The values are appended to \p ReplacementValues.
- void createReplacementValues(Type *PrivType, AbstractCallSite ACS,
- Value *Base,
- SmallVectorImpl<Value *> &ReplacementValues) {
- assert(Base && "Expected base value!");
- assert(PrivType && "Expected privatizable type!");
- Instruction *IP = ACS.getInstruction();
-
- IRBuilder<NoFolder> IRB(IP);
- const DataLayout &DL = IP->getModule()->getDataLayout();
-
- if (Base->getType()->getPointerElementType() != PrivType)
- Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(),
- "", ACS.getInstruction());
-
- // TODO: Improve the alignment of the loads.
- // Traverse the type, build GEPs and loads.
- if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
- const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
- for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
- Type *PointeeTy = PrivStructType->getElementType(u);
- Value *Ptr =
- constructPointer(PointeeTy->getPointerTo(), Base,
- PrivStructLayout->getElementOffset(u), IRB, DL);
- LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
- L->setAlignment(Align(1));
- ReplacementValues.push_back(L);
- }
- } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
- Type *PointeeTy = PrivArrayType->getElementType();
- uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
- Type *PointeePtrTy = PointeeTy->getPointerTo();
- for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
- Value *Ptr =
- constructPointer(PointeePtrTy, Base, u * PointeeTySize, IRB, DL);
- LoadInst *L = new LoadInst(PointeePtrTy, Ptr, "", IP);
- L->setAlignment(Align(1));
- ReplacementValues.push_back(L);
- }
- } else {
- LoadInst *L = new LoadInst(PrivType, Base, "", IP);
- L->setAlignment(Align(1));
- ReplacementValues.push_back(L);
- }
- }
-
- /// See AbstractAttribute::manifest(...)
- ChangeStatus manifest(Attributor &A) override {
- if (!PrivatizableType.hasValue())
- return ChangeStatus::UNCHANGED;
- assert(PrivatizableType.getValue() && "Expected privatizable type!");
-
- // Collect all tail calls in the function as we cannot allow new allocas to
- // escape into tail recursion.
- // TODO: Be smarter about new allocas escaping into tail calls.
- SmallVector<CallInst *, 16> TailCalls;
- if (!A.checkForAllInstructions(
- [&](Instruction &I) {
- CallInst &CI = cast<CallInst>(I);
- if (CI.isTailCall())
- TailCalls.push_back(&CI);
- return true;
- },
- *this, {Instruction::Call}))
- return ChangeStatus::UNCHANGED;
-
- Argument *Arg = getAssociatedArgument();
-
- // Callback to repair the associated function. A new alloca is placed at the
- // beginning and initialized with the values passed through arguments. The
- // new alloca replaces the use of the old pointer argument.
- Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
- [=](const Attributor::ArgumentReplacementInfo &ARI,
- Function &ReplacementFn, Function::arg_iterator ArgIt) {
- BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
- Instruction *IP = &*EntryBB.getFirstInsertionPt();
- auto *AI = new AllocaInst(PrivatizableType.getValue(), 0,
- Arg->getName() + ".priv", IP);
- createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
- ArgIt->getArgNo(), *IP);
- Arg->replaceAllUsesWith(AI);
-
- for (CallInst *CI : TailCalls)
- CI->setTailCall(false);
- };
-
- // Callback to repair a call site of the associated function. The elements
- // of the privatizable type are loaded prior to the call and passed to the
- // new function version.
- Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
- [=](const Attributor::ArgumentReplacementInfo &ARI,
- AbstractCallSite ACS, SmallVectorImpl<Value *> &NewArgOperands) {
- createReplacementValues(
- PrivatizableType.getValue(), ACS,
- ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
- NewArgOperands);
- };
-
- // Collect the types that will replace the privatizable type in the function
- // signature.
- SmallVector<Type *, 16> ReplacementTypes;
- identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
-
- // Register a rewrite of the argument.
- if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
- std::move(FnRepairCB),
- std::move(ACSRepairCB)))
- return ChangeStatus::CHANGED;
- return ChangeStatus::UNCHANGED;
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
- }
-};
-
-struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
- AAPrivatizablePtrFloating(const IRPosition &IRP)
- : AAPrivatizablePtrImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- virtual void initialize(Attributor &A) override {
- // TODO: We can privatize more than arguments.
- indicatePessimisticFixpoint();
- }
-
- ChangeStatus updateImpl(Attributor &A) override {
- llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
- "updateImpl will not be called");
- }
-
- /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
- Optional<Type *> identifyPrivatizableType(Attributor &A) override {
- Value *Obj =
- GetUnderlyingObject(&getAssociatedValue(), A.getInfoCache().getDL());
- if (!Obj) {
- LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
- return nullptr;
- }
-
- if (auto *AI = dyn_cast<AllocaInst>(Obj))
- if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
- if (CI->isOne())
- return Obj->getType()->getPointerElementType();
- if (auto *Arg = dyn_cast<Argument>(Obj)) {
- auto &PrivArgAA =
- A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(*Arg));
- if (PrivArgAA.isAssumedPrivatizablePtr())
- return Obj->getType()->getPointerElementType();
- }
-
- LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
- "alloca nor privatizable argument: "
- << *Obj << "!\n");
- return nullptr;
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
- }
-};
-
-struct AAPrivatizablePtrCallSiteArgument final
- : public AAPrivatizablePtrFloating {
- AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP)
- : AAPrivatizablePtrFloating(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- if (getIRPosition().hasAttr(Attribute::ByVal))
- indicateOptimisticFixpoint();
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- PrivatizableType = identifyPrivatizableType(A);
- if (!PrivatizableType.hasValue())
- return ChangeStatus::UNCHANGED;
- if (!PrivatizableType.getValue())
- return indicatePessimisticFixpoint();
-
- const IRPosition &IRP = getIRPosition();
- auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, IRP);
- if (!NoCaptureAA.isAssumedNoCapture()) {
- LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
- return indicatePessimisticFixpoint();
- }
-
- auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP);
- if (!NoAliasAA.isAssumedNoAlias()) {
- LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
- return indicatePessimisticFixpoint();
- }
-
- const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(*this, IRP);
- if (!MemBehaviorAA.isAssumedReadOnly()) {
- LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
- return indicatePessimisticFixpoint();
- }
-
- return ChangeStatus::UNCHANGED;
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
- }
-};
-
-struct AAPrivatizablePtrCallSiteReturned final
- : public AAPrivatizablePtrFloating {
- AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP)
- : AAPrivatizablePtrFloating(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- // TODO: We can privatize more than arguments.
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
- }
-};
-
-struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
- AAPrivatizablePtrReturned(const IRPosition &IRP)
- : AAPrivatizablePtrFloating(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- // TODO: We can privatize more than arguments.
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
- }
-};
-
-/// -------------------- Memory Behavior Attributes ----------------------------
-/// Includes read-none, read-only, and write-only.
-/// ----------------------------------------------------------------------------
-struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
- AAMemoryBehaviorImpl(const IRPosition &IRP) : AAMemoryBehavior(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- intersectAssumedBits(BEST_STATE);
- getKnownStateFromValue(getIRPosition(), getState());
- IRAttribute::initialize(A);
- }
-
- /// Return the memory behavior information encoded in the IR for \p IRP.
- static void getKnownStateFromValue(const IRPosition &IRP,
- BitIntegerState &State,
- bool IgnoreSubsumingPositions = false) {
- SmallVector<Attribute, 2> Attrs;
- IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
- for (const Attribute &Attr : Attrs) {
- switch (Attr.getKindAsEnum()) {
- case Attribute::ReadNone:
- State.addKnownBits(NO_ACCESSES);
- break;
- case Attribute::ReadOnly:
- State.addKnownBits(NO_WRITES);
- break;
- case Attribute::WriteOnly:
- State.addKnownBits(NO_READS);
- break;
- default:
- llvm_unreachable("Unexpected attribute!");
- }
- }
-
- if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
- if (!I->mayReadFromMemory())
- State.addKnownBits(NO_READS);
- if (!I->mayWriteToMemory())
- State.addKnownBits(NO_WRITES);
- }
- }
-
- /// See AbstractAttribute::getDeducedAttributes(...).
- void getDeducedAttributes(LLVMContext &Ctx,
- SmallVectorImpl<Attribute> &Attrs) const override {
- assert(Attrs.size() == 0);
- if (isAssumedReadNone())
- Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
- else if (isAssumedReadOnly())
- Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
- else if (isAssumedWriteOnly())
- Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
- assert(Attrs.size() <= 1);
- }
-
- /// See AbstractAttribute::manifest(...).
- ChangeStatus manifest(Attributor &A) override {
- if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
- return ChangeStatus::UNCHANGED;
-
- const IRPosition &IRP = getIRPosition();
-
- // Check if we would improve the existing attributes first.
- SmallVector<Attribute, 4> DeducedAttrs;
- getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
- if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
- return IRP.hasAttr(Attr.getKindAsEnum(),
- /* IgnoreSubsumingPositions */ true);
- }))
- return ChangeStatus::UNCHANGED;
-
- // Clear existing attributes.
- IRP.removeAttrs(AttrKinds);
-
- // Use the generic manifest method.
- return IRAttribute::manifest(A);
- }
-
- /// See AbstractState::getAsStr().
- const std::string getAsStr() const override {
- if (isAssumedReadNone())
- return "readnone";
- if (isAssumedReadOnly())
- return "readonly";
- if (isAssumedWriteOnly())
- return "writeonly";
- return "may-read/write";
- }
-
- /// The set of IR attributes AAMemoryBehavior deals with.
- static const Attribute::AttrKind AttrKinds[3];
-};
-
-const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
- Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
-
-/// Memory behavior attribute for a floating value.
-struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
- AAMemoryBehaviorFloating(const IRPosition &IRP) : AAMemoryBehaviorImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- AAMemoryBehaviorImpl::initialize(A);
- // Initialize the use vector with all direct uses of the associated value.
- for (const Use &U : getAssociatedValue().uses())
- Uses.insert(&U);
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override;
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- if (isAssumedReadNone())
- STATS_DECLTRACK_FLOATING_ATTR(readnone)
- else if (isAssumedReadOnly())
- STATS_DECLTRACK_FLOATING_ATTR(readonly)
- else if (isAssumedWriteOnly())
- STATS_DECLTRACK_FLOATING_ATTR(writeonly)
- }
-
-private:
- /// Return true if users of \p UserI might access the underlying
- /// variable/location described by \p U and should therefore be analyzed.
- bool followUsersOfUseIn(Attributor &A, const Use *U,
- const Instruction *UserI);
-
- /// Update the state according to the effect of use \p U in \p UserI.
- void analyzeUseIn(Attributor &A, const Use *U, const Instruction *UserI);
-
-protected:
- /// Container for (transitive) uses of the associated argument.
- SetVector<const Use *> Uses;
-};
-
-/// Memory behavior attribute for function argument.
-struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
- AAMemoryBehaviorArgument(const IRPosition &IRP)
- : AAMemoryBehaviorFloating(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- intersectAssumedBits(BEST_STATE);
- const IRPosition &IRP = getIRPosition();
- // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
- // can query it when we use has/getAttr. That would allow us to reuse the
- // initialize of the base class here.
- bool HasByVal =
- IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
- getKnownStateFromValue(IRP, getState(),
- /* IgnoreSubsumingPositions */ HasByVal);
-
- // Initialize the use vector with all direct uses of the associated value.
- Argument *Arg = getAssociatedArgument();
- if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent()))) {
- indicatePessimisticFixpoint();
- } else {
- // Initialize the use vector with all direct uses of the associated value.
- for (const Use &U : Arg->uses())
- Uses.insert(&U);
- }
- }
-
- ChangeStatus manifest(Attributor &A) override {
- // TODO: Pointer arguments are not supported on vectors of pointers yet.
- if (!getAssociatedValue().getType()->isPointerTy())
- return ChangeStatus::UNCHANGED;
-
- // TODO: From readattrs.ll: "inalloca parameters are always
- // considered written"
- if (hasAttr({Attribute::InAlloca})) {
- removeKnownBits(NO_WRITES);
- removeAssumedBits(NO_WRITES);
- }
- return AAMemoryBehaviorFloating::manifest(A);
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- if (isAssumedReadNone())
- STATS_DECLTRACK_ARG_ATTR(readnone)
- else if (isAssumedReadOnly())
- STATS_DECLTRACK_ARG_ATTR(readonly)
- else if (isAssumedWriteOnly())
- STATS_DECLTRACK_ARG_ATTR(writeonly)
- }
-};
-
-struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
- AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP)
- : AAMemoryBehaviorArgument(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- if (Argument *Arg = getAssociatedArgument()) {
- if (Arg->hasByValAttr()) {
- addKnownBits(NO_WRITES);
- removeKnownBits(NO_READS);
- removeAssumedBits(NO_READS);
- }
- } else {
- }
- AAMemoryBehaviorArgument::initialize(A);
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- // TODO: Once we have call site specific value information we can provide
- // call site specific liveness liveness information and then it makes
- // sense to specialize attributes for call sites arguments instead of
- // redirecting requests to the callee argument.
- Argument *Arg = getAssociatedArgument();
- const IRPosition &ArgPos = IRPosition::argument(*Arg);
- auto &ArgAA = A.getAAFor<AAMemoryBehavior>(*this, ArgPos);
- return clampStateAndIndicateChange(
- getState(),
- static_cast<const AAMemoryBehavior::StateType &>(ArgAA.getState()));
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- if (isAssumedReadNone())
- STATS_DECLTRACK_CSARG_ATTR(readnone)
- else if (isAssumedReadOnly())
- STATS_DECLTRACK_CSARG_ATTR(readonly)
- else if (isAssumedWriteOnly())
- STATS_DECLTRACK_CSARG_ATTR(writeonly)
- }
-};
-
-/// Memory behavior attribute for a call site return position.
-struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
- AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP)
- : AAMemoryBehaviorFloating(IRP) {}
-
- /// See AbstractAttribute::manifest(...).
- ChangeStatus manifest(Attributor &A) override {
- // We do not annotate returned values.
- return ChangeStatus::UNCHANGED;
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {}
-};
-
-/// An AA to represent the memory behavior function attributes.
-struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
- AAMemoryBehaviorFunction(const IRPosition &IRP) : AAMemoryBehaviorImpl(IRP) {}
-
- /// See AbstractAttribute::updateImpl(Attributor &A).
- virtual ChangeStatus updateImpl(Attributor &A) override;
-
- /// See AbstractAttribute::manifest(...).
- ChangeStatus manifest(Attributor &A) override {
- Function &F = cast<Function>(getAnchorValue());
- if (isAssumedReadNone()) {
- F.removeFnAttr(Attribute::ArgMemOnly);
- F.removeFnAttr(Attribute::InaccessibleMemOnly);
- F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
- }
- return AAMemoryBehaviorImpl::manifest(A);
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- if (isAssumedReadNone())
- STATS_DECLTRACK_FN_ATTR(readnone)
- else if (isAssumedReadOnly())
- STATS_DECLTRACK_FN_ATTR(readonly)
- else if (isAssumedWriteOnly())
- STATS_DECLTRACK_FN_ATTR(writeonly)
- }
-};
-
-/// AAMemoryBehavior attribute for call sites.
-struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
- AAMemoryBehaviorCallSite(const IRPosition &IRP) : AAMemoryBehaviorImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- AAMemoryBehaviorImpl::initialize(A);
- Function *F = getAssociatedFunction();
- if (!F || !A.isFunctionIPOAmendable(*F))
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- // TODO: Once we have call site specific value information we can provide
- // call site specific liveness liveness information and then it makes
- // sense to specialize attributes for call sites arguments instead of
- // redirecting requests to the callee argument.
- Function *F = getAssociatedFunction();
- const IRPosition &FnPos = IRPosition::function(*F);
- auto &FnAA = A.getAAFor<AAMemoryBehavior>(*this, FnPos);
- return clampStateAndIndicateChange(
- getState(),
- static_cast<const AAMemoryBehavior::StateType &>(FnAA.getState()));
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- if (isAssumedReadNone())
- STATS_DECLTRACK_CS_ATTR(readnone)
- else if (isAssumedReadOnly())
- STATS_DECLTRACK_CS_ATTR(readonly)
- else if (isAssumedWriteOnly())
- STATS_DECLTRACK_CS_ATTR(writeonly)
- }
-};
-
-ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
-
- // The current assumed state used to determine a change.
- auto AssumedState = getAssumed();
-
- auto CheckRWInst = [&](Instruction &I) {
- // If the instruction has an own memory behavior state, use it to restrict
- // the local state. No further analysis is required as the other memory
- // state is as optimistic as it gets.
- if (ImmutableCallSite ICS = ImmutableCallSite(&I)) {
- const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
- *this, IRPosition::callsite_function(ICS));
- intersectAssumedBits(MemBehaviorAA.getAssumed());
- return !isAtFixpoint();
- }
-
- // Remove access kind modifiers if necessary.
- if (I.mayReadFromMemory())
- removeAssumedBits(NO_READS);
- if (I.mayWriteToMemory())
- removeAssumedBits(NO_WRITES);
- return !isAtFixpoint();
- };
-
- if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this))
- return indicatePessimisticFixpoint();
-
- return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
- : ChangeStatus::UNCHANGED;
-}
-
-ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
-
- const IRPosition &IRP = getIRPosition();
- const IRPosition &FnPos = IRPosition::function_scope(IRP);
- AAMemoryBehavior::StateType &S = getState();
-
- // First, check the function scope. We take the known information and we avoid
- // work if the assumed information implies the current assumed information for
- // this attribute. This is a valid for all but byval arguments.
- Argument *Arg = IRP.getAssociatedArgument();
- AAMemoryBehavior::base_t FnMemAssumedState =
- AAMemoryBehavior::StateType::getWorstState();
- if (!Arg || !Arg->hasByValAttr()) {
- const auto &FnMemAA = A.getAAFor<AAMemoryBehavior>(
- *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
- FnMemAssumedState = FnMemAA.getAssumed();
- S.addKnownBits(FnMemAA.getKnown());
- if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
- return ChangeStatus::UNCHANGED;
- }
-
- // Make sure the value is not captured (except through "return"), if
- // it is, any information derived would be irrelevant anyway as we cannot
- // check the potential aliases introduced by the capture. However, no need
- // to fall back to anythign less optimistic than the function state.
- const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
- *this, IRP, /* TrackDependence */ true, DepClassTy::OPTIONAL);
- if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
- S.intersectAssumedBits(FnMemAssumedState);
- return ChangeStatus::CHANGED;
- }
-
- // The current assumed state used to determine a change.
- auto AssumedState = S.getAssumed();
-
- // Liveness information to exclude dead users.
- // TODO: Take the FnPos once we have call site specific liveness information.
- const auto &LivenessAA = A.getAAFor<AAIsDead>(
- *this, IRPosition::function(*IRP.getAssociatedFunction()),
- /* TrackDependence */ false);
-
- // Visit and expand uses until all are analyzed or a fixpoint is reached.
- for (unsigned i = 0; i < Uses.size() && !isAtFixpoint(); i++) {
- const Use *U = Uses[i];
- Instruction *UserI = cast<Instruction>(U->getUser());
- LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << **U << " in " << *UserI
- << " [Dead: " << (A.isAssumedDead(*U, this, &LivenessAA))
- << "]\n");
- if (A.isAssumedDead(*U, this, &LivenessAA))
- continue;
-
- // Droppable users, e.g., llvm::assume does not actually perform any action.
- if (UserI->isDroppable())
- continue;
-
- // Check if the users of UserI should also be visited.
- if (followUsersOfUseIn(A, U, UserI))
- for (const Use &UserIUse : UserI->uses())
- Uses.insert(&UserIUse);
-
- // If UserI might touch memory we analyze the use in detail.
- if (UserI->mayReadOrWriteMemory())
- analyzeUseIn(A, U, UserI);
- }
-
- return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
- : ChangeStatus::UNCHANGED;
-}
-
-bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use *U,
- const Instruction *UserI) {
- // The loaded value is unrelated to the pointer argument, no need to
- // follow the users of the load.
- if (isa<LoadInst>(UserI))
- return false;
-
- // By default we follow all uses assuming UserI might leak information on U,
- // we have special handling for call sites operands though.
- ImmutableCallSite ICS(UserI);
- if (!ICS || !ICS.isArgOperand(U))
- return true;
-
- // If the use is a call argument known not to be captured, the users of
- // the call do not need to be visited because they have to be unrelated to
- // the input. Note that this check is not trivial even though we disallow
- // general capturing of the underlying argument. The reason is that the
- // call might the argument "through return", which we allow and for which we
- // need to check call users.
- if (U->get()->getType()->isPointerTy()) {
- unsigned ArgNo = ICS.getArgumentNo(U);
- const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
- *this, IRPosition::callsite_argument(ICS, ArgNo),
- /* TrackDependence */ true, DepClassTy::OPTIONAL);
- return !ArgNoCaptureAA.isAssumedNoCapture();
- }
-
- return true;
-}
-
-void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use *U,
- const Instruction *UserI) {
- assert(UserI->mayReadOrWriteMemory());
-
- switch (UserI->getOpcode()) {
- default:
- // TODO: Handle all atomics and other side-effect operations we know of.
- break;
- case Instruction::Load:
- // Loads cause the NO_READS property to disappear.
- removeAssumedBits(NO_READS);
- return;
-
- case Instruction::Store:
- // Stores cause the NO_WRITES property to disappear if the use is the
- // pointer operand. Note that we do assume that capturing was taken care of
- // somewhere else.
- if (cast<StoreInst>(UserI)->getPointerOperand() == U->get())
- removeAssumedBits(NO_WRITES);
- return;
-
- case Instruction::Call:
- case Instruction::CallBr:
- case Instruction::Invoke: {
- // For call sites we look at the argument memory behavior attribute (this
- // could be recursive!) in order to restrict our own state.
- ImmutableCallSite ICS(UserI);
-
- // Give up on operand bundles.
- if (ICS.isBundleOperand(U)) {
- indicatePessimisticFixpoint();
- return;
- }
-
- // Calling a function does read the function pointer, maybe write it if the
- // function is self-modifying.
- if (ICS.isCallee(U)) {
- removeAssumedBits(NO_READS);
- break;
- }
-
- // Adjust the possible access behavior based on the information on the
- // argument.
- IRPosition Pos;
- if (U->get()->getType()->isPointerTy())
- Pos = IRPosition::callsite_argument(ICS, ICS.getArgumentNo(U));
- else
- Pos = IRPosition::callsite_function(ICS);
- const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
- *this, Pos,
- /* TrackDependence */ true, DepClassTy::OPTIONAL);
- // "assumed" has at most the same bits as the MemBehaviorAA assumed
- // and at least "known".
- intersectAssumedBits(MemBehaviorAA.getAssumed());
- return;
- }
- };
-
- // Generally, look at the "may-properties" and adjust the assumed state if we
- // did not trigger special handling before.
- if (UserI->mayReadFromMemory())
- removeAssumedBits(NO_READS);
- if (UserI->mayWriteToMemory())
- removeAssumedBits(NO_WRITES);
-}
-
-} // namespace
-
-/// -------------------- Memory Locations Attributes ---------------------------
-/// Includes read-none, argmemonly, inaccessiblememonly,
-/// inaccessiblememorargmemonly
-/// ----------------------------------------------------------------------------
-
-std::string AAMemoryLocation::getMemoryLocationsAsStr(
- AAMemoryLocation::MemoryLocationsKind MLK) {
- if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
- return "all memory";
- if (MLK == AAMemoryLocation::NO_LOCATIONS)
- return "no memory";
- std::string S = "memory:";
- if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
- S += "stack,";
- if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
- S += "constant,";
- if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
- S += "internal global,";
- if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
- S += "external global,";
- if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
- S += "argument,";
- if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
- S += "inaccessible,";
- if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
- S += "malloced,";
- if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
- S += "unknown,";
- S.pop_back();
- return S;
-}
-
-namespace {
-
-struct AAMemoryLocationImpl : public AAMemoryLocation {
-
- AAMemoryLocationImpl(const IRPosition &IRP) : AAMemoryLocation(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- intersectAssumedBits(BEST_STATE);
- getKnownStateFromValue(getIRPosition(), getState());
- IRAttribute::initialize(A);
- }
-
- /// Return the memory behavior information encoded in the IR for \p IRP.
- static void getKnownStateFromValue(const IRPosition &IRP,
- BitIntegerState &State,
- bool IgnoreSubsumingPositions = false) {
- SmallVector<Attribute, 2> Attrs;
- IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
- for (const Attribute &Attr : Attrs) {
- switch (Attr.getKindAsEnum()) {
- case Attribute::ReadNone:
- State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
- break;
- case Attribute::InaccessibleMemOnly:
- State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
- break;
- case Attribute::ArgMemOnly:
- State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
- break;
- case Attribute::InaccessibleMemOrArgMemOnly:
- State.addKnownBits(
- inverseLocation(NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
- break;
- default:
- llvm_unreachable("Unexpected attribute!");
- }
- }
- }
-
- /// See AbstractAttribute::getDeducedAttributes(...).
- void getDeducedAttributes(LLVMContext &Ctx,
- SmallVectorImpl<Attribute> &Attrs) const override {
- assert(Attrs.size() == 0);
- if (isAssumedReadNone()) {
- Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
- } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
- if (isAssumedInaccessibleMemOnly())
- Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
- else if (isAssumedArgMemOnly())
- Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
- else if (isAssumedInaccessibleOrArgMemOnly())
- Attrs.push_back(
- Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
- }
- assert(Attrs.size() <= 1);
- }
-
- /// See AbstractAttribute::manifest(...).
- ChangeStatus manifest(Attributor &A) override {
- const IRPosition &IRP = getIRPosition();
-
- // Check if we would improve the existing attributes first.
- SmallVector<Attribute, 4> DeducedAttrs;
- getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
- if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
- return IRP.hasAttr(Attr.getKindAsEnum(),
- /* IgnoreSubsumingPositions */ true);
- }))
- return ChangeStatus::UNCHANGED;
-
- // Clear existing attributes.
- IRP.removeAttrs(AttrKinds);
- if (isAssumedReadNone())
- IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
-
- // Use the generic manifest method.
- return IRAttribute::manifest(A);
- }
-
- /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
- bool checkForAllAccessesToMemoryKind(
- function_ref<bool(const Instruction *, const Value *, AccessKind,
- MemoryLocationsKind)>
- Pred,
- MemoryLocationsKind RequestedMLK) const override {
- if (!isValidState())
- return false;
-
- MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
- if (AssumedMLK == NO_LOCATIONS)
- return true;
-
- for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
- if (CurMLK & RequestedMLK)
- continue;
-
- const auto &Accesses = AccessKindAccessesMap.lookup(CurMLK);
- for (const AccessInfo &AI : Accesses) {
- if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
- return false;
- }
- }
-
- return true;
- }
-
- ChangeStatus indicatePessimisticFixpoint() override {
- // If we give up and indicate a pessimistic fixpoint this instruction will
- // become an access for all potential access kinds:
- // TODO: Add pointers for argmemonly and globals to improve the results of
- // checkForAllAccessesToMemoryKind.
- bool Changed = false;
- MemoryLocationsKind KnownMLK = getKnown();
- Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
- for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
- if (!(CurMLK & KnownMLK))
- updateStateAndAccessesMap(getState(), AccessKindAccessesMap, CurMLK, I,
- nullptr, Changed);
- return AAMemoryLocation::indicatePessimisticFixpoint();
- }
-
-protected:
- /// Helper struct to tie together an instruction that has a read or write
- /// effect with the pointer it accesses (if any).
- struct AccessInfo {
-
- /// The instruction that caused the access.
- const Instruction *I;
-
- /// The base pointer that is accessed, or null if unknown.
- const Value *Ptr;
-
- /// The kind of access (read/write/read+write).
- AccessKind Kind;
-
- bool operator==(const AccessInfo &RHS) const {
- return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
- }
- bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
- if (LHS.I != RHS.I)
- return LHS.I < RHS.I;
- if (LHS.Ptr != RHS.Ptr)
- return LHS.Ptr < RHS.Ptr;
- if (LHS.Kind != RHS.Kind)
- return LHS.Kind < RHS.Kind;
- return false;
- }
- };
-
- /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
- /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
- using AccessKindAccessesMapTy =
- DenseMap<unsigned, SmallSet<AccessInfo, 8, AccessInfo>>;
- AccessKindAccessesMapTy AccessKindAccessesMap;
-
- /// Return the kind(s) of location that may be accessed by \p V.
- AAMemoryLocation::MemoryLocationsKind
- categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
-
- /// Update the state \p State and the AccessKindAccessesMap given that \p I is
- /// an access to a \p MLK memory location with the access pointer \p Ptr.
- static void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
- AccessKindAccessesMapTy &AccessMap,
- MemoryLocationsKind MLK,
- const Instruction *I, const Value *Ptr,
- bool &Changed) {
- // TODO: The kind should be determined at the call sites based on the
- // information we have there.
- AccessKind Kind = READ_WRITE;
- if (I) {
- Kind = I->mayReadFromMemory() ? READ : NONE;
- Kind = AccessKind(Kind | (I->mayWriteToMemory() ? WRITE : NONE));
- }
-
- assert(isPowerOf2_32(MLK) && "Expected a single location set!");
- Changed |= AccessMap[MLK].insert(AccessInfo{I, Ptr, Kind}).second;
- State.removeAssumedBits(MLK);
- }
-
- /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
- /// arguments, and update the state and access map accordingly.
- void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
- AAMemoryLocation::StateType &State, bool &Changed);
-
- /// The set of IR attributes AAMemoryLocation deals with.
- static const Attribute::AttrKind AttrKinds[4];
-};
-
-const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
- Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
- Attribute::InaccessibleMemOrArgMemOnly};
-
-void AAMemoryLocationImpl::categorizePtrValue(
- Attributor &A, const Instruction &I, const Value &Ptr,
- AAMemoryLocation::StateType &State, bool &Changed) {
- LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
- << Ptr << " ["
- << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
-
- auto StripGEPCB = [](Value *V) -> Value * {
- auto *GEP = dyn_cast<GEPOperator>(V);
- while (GEP) {
- V = GEP->getPointerOperand();
- GEP = dyn_cast<GEPOperator>(V);
- }
- return V;
- };
-
- auto VisitValueCB = [&](Value &V, const Instruction *,
- AAMemoryLocation::StateType &T,
- bool Stripped) -> bool {
- assert(!isa<GEPOperator>(V) && "GEPs should have been stripped.");
- if (isa<UndefValue>(V))
- return true;
- if (auto *Arg = dyn_cast<Argument>(&V)) {
- if (Arg->hasByValAttr())
- updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_LOCAL_MEM, &I,
- &V, Changed);
- else
- updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_ARGUMENT_MEM, &I,
- &V, Changed);
- return true;
- }
- if (auto *GV = dyn_cast<GlobalValue>(&V)) {
- if (GV->hasLocalLinkage())
- updateStateAndAccessesMap(T, AccessKindAccessesMap,
- NO_GLOBAL_INTERNAL_MEM, &I, &V, Changed);
- else
- updateStateAndAccessesMap(T, AccessKindAccessesMap,
- NO_GLOBAL_EXTERNAL_MEM, &I, &V, Changed);
- return true;
- }
- if (isa<AllocaInst>(V)) {
- updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_LOCAL_MEM, &I, &V,
- Changed);
- return true;
- }
- if (ImmutableCallSite ICS = ImmutableCallSite(&V)) {
- const auto &NoAliasAA =
- A.getAAFor<AANoAlias>(*this, IRPosition::callsite_returned(ICS));
- if (NoAliasAA.isAssumedNoAlias()) {
- updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_MALLOCED_MEM, &I,
- &V, Changed);
- return true;
- }
- }
-
- updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_UNKOWN_MEM, &I, &V,
- Changed);
- LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value cannot be categorized: "
- << V << " -> " << getMemoryLocationsAsStr(T.getAssumed())
- << "\n");
- return true;
- };
-
- if (!genericValueTraversal<AAMemoryLocation, AAMemoryLocation::StateType>(
- A, IRPosition::value(Ptr), *this, State, VisitValueCB, getCtxI(),
- /* MaxValues */ 32, StripGEPCB)) {
- LLVM_DEBUG(
- dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
- updateStateAndAccessesMap(State, AccessKindAccessesMap, NO_UNKOWN_MEM, &I,
- nullptr, Changed);
- } else {
- LLVM_DEBUG(
- dbgs()
- << "[AAMemoryLocation] Accessed locations with pointer locations: "
- << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
- }
-}
-
-AAMemoryLocation::MemoryLocationsKind
-AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
- bool &Changed) {
- LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
- << I << "\n");
-
- AAMemoryLocation::StateType AccessedLocs;
- AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
-
- if (ImmutableCallSite ICS = ImmutableCallSite(&I)) {
-
- // First check if we assume any memory is access is visible.
- const auto &ICSMemLocationAA =
- A.getAAFor<AAMemoryLocation>(*this, IRPosition::callsite_function(ICS));
- LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
- << " [" << ICSMemLocationAA << "]\n");
-
- if (ICSMemLocationAA.isAssumedReadNone())
- return NO_LOCATIONS;
-
- if (ICSMemLocationAA.isAssumedInaccessibleMemOnly()) {
- updateStateAndAccessesMap(AccessedLocs, AccessKindAccessesMap,
- NO_INACCESSIBLE_MEM, &I, nullptr, Changed);
- return AccessedLocs.getAssumed();
- }
-
- uint32_t ICSAssumedNotAccessedLocs =
- ICSMemLocationAA.getAssumedNotAccessedLocation();
-
- // Set the argmemonly and global bit as we handle them separately below.
- uint32_t ICSAssumedNotAccessedLocsNoArgMem =
- ICSAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
-
- for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
- if (ICSAssumedNotAccessedLocsNoArgMem & CurMLK)
- continue;
- updateStateAndAccessesMap(AccessedLocs, AccessKindAccessesMap, CurMLK, &I,
- nullptr, Changed);
- }
-
- // Now handle global memory if it might be accessed.
- bool HasGlobalAccesses = !(ICSAssumedNotAccessedLocs & NO_GLOBAL_MEM);
- if (HasGlobalAccesses) {
- auto AccessPred = [&](const Instruction *, const Value *Ptr,
- AccessKind Kind, MemoryLocationsKind MLK) {
- updateStateAndAccessesMap(AccessedLocs, AccessKindAccessesMap, MLK, &I,
- Ptr, Changed);
- return true;
- };
- if (!ICSMemLocationAA.checkForAllAccessesToMemoryKind(
- AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
- return AccessedLocs.getWorstState();
- }
-
- LLVM_DEBUG(
- dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
- << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
-
- // Now handle argument memory if it might be accessed.
- bool HasArgAccesses = !(ICSAssumedNotAccessedLocs & NO_ARGUMENT_MEM);
- if (HasArgAccesses) {
- for (unsigned ArgNo = 0, e = ICS.getNumArgOperands(); ArgNo < e;
- ++ArgNo) {
-
- // Skip non-pointer arguments.
- const Value *ArgOp = ICS.getArgOperand(ArgNo);
- if (!ArgOp->getType()->isPtrOrPtrVectorTy())
- continue;
-
- // Skip readnone arguments.
- const IRPosition &ArgOpIRP = IRPosition::callsite_argument(ICS, ArgNo);
- const auto &ArgOpMemLocationAA = A.getAAFor<AAMemoryBehavior>(
- *this, ArgOpIRP, /* TrackDependence */ true, DepClassTy::OPTIONAL);
-
- if (ArgOpMemLocationAA.isAssumedReadNone())
- continue;
-
- // Categorize potentially accessed pointer arguments as if there was an
- // access instruction with them as pointer.
- categorizePtrValue(A, I, *ArgOp, AccessedLocs, Changed);
- }
- }
-
- LLVM_DEBUG(
- dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
- << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
-
- return AccessedLocs.getAssumed();
- }
-
- if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
- LLVM_DEBUG(
- dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
- << I << " [" << *Ptr << "]\n");
- categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
- return AccessedLocs.getAssumed();
- }
-
- LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
- << I << "\n");
- updateStateAndAccessesMap(AccessedLocs, AccessKindAccessesMap, NO_UNKOWN_MEM,
- &I, nullptr, Changed);
- return AccessedLocs.getAssumed();
-}
-
-/// An AA to represent the memory behavior function attributes.
-struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
- AAMemoryLocationFunction(const IRPosition &IRP) : AAMemoryLocationImpl(IRP) {}
-
- /// See AbstractAttribute::updateImpl(Attributor &A).
- virtual ChangeStatus updateImpl(Attributor &A) override {
-
- const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
- *this, getIRPosition(), /* TrackDependence */ false);
- if (MemBehaviorAA.isAssumedReadNone()) {
- if (MemBehaviorAA.isKnownReadNone())
- return indicateOptimisticFixpoint();
- assert(isAssumedReadNone() &&
- "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
- A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
- return ChangeStatus::UNCHANGED;
- }
-
- // The current assumed state used to determine a change.
- auto AssumedState = getAssumed();
- bool Changed = false;
-
- auto CheckRWInst = [&](Instruction &I) {
- MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
- LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
- << ": " << getMemoryLocationsAsStr(MLK) << "\n");
- removeAssumedBits(inverseLocation(MLK, false, false));
- return true;
- };
-
- if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this))
- return indicatePessimisticFixpoint();
-
- Changed |= AssumedState != getAssumed();
- return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- if (isAssumedReadNone())
- STATS_DECLTRACK_FN_ATTR(readnone)
- else if (isAssumedArgMemOnly())
- STATS_DECLTRACK_FN_ATTR(argmemonly)
- else if (isAssumedInaccessibleMemOnly())
- STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
- else if (isAssumedInaccessibleOrArgMemOnly())
- STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
- }
-};
-
-/// AAMemoryLocation attribute for call sites.
-struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
- AAMemoryLocationCallSite(const IRPosition &IRP) : AAMemoryLocationImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- AAMemoryLocationImpl::initialize(A);
- Function *F = getAssociatedFunction();
- if (!F || !A.isFunctionIPOAmendable(*F))
- indicatePessimisticFixpoint();
- }
-
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- // TODO: Once we have call site specific value information we can provide
- // call site specific liveness liveness information and then it makes
- // sense to specialize attributes for call sites arguments instead of
- // redirecting requests to the callee argument.
- Function *F = getAssociatedFunction();
- const IRPosition &FnPos = IRPosition::function(*F);
- auto &FnAA = A.getAAFor<AAMemoryLocation>(*this, FnPos);
- bool Changed = false;
- auto AccessPred = [&](const Instruction *I, const Value *Ptr,
- AccessKind Kind, MemoryLocationsKind MLK) {
- updateStateAndAccessesMap(getState(), AccessKindAccessesMap, MLK, I, Ptr,
- Changed);
- return true;
- };
- if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
- return indicatePessimisticFixpoint();
- return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- if (isAssumedReadNone())
- STATS_DECLTRACK_CS_ATTR(readnone)
- }
-};
-
-/// ------------------ Value Constant Range Attribute -------------------------
-
-struct AAValueConstantRangeImpl : AAValueConstantRange {
- using StateType = IntegerRangeState;
- AAValueConstantRangeImpl(const IRPosition &IRP) : AAValueConstantRange(IRP) {}
-
- /// See AbstractAttribute::getAsStr().
- const std::string getAsStr() const override {
- std::string Str;
- llvm::raw_string_ostream OS(Str);
- OS << "range(" << getBitWidth() << ")<";
- getKnown().print(OS);
- OS << " / ";
- getAssumed().print(OS);
- OS << ">";
- return OS.str();
- }
-
- /// Helper function to get a SCEV expr for the associated value at program
- /// point \p I.
- const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
- if (!getAnchorScope())
- return nullptr;
-
- ScalarEvolution *SE =
- A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
- *getAnchorScope());
-
- LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
- *getAnchorScope());
-
- if (!SE || !LI)
- return nullptr;
-
- const SCEV *S = SE->getSCEV(&getAssociatedValue());
- if (!I)
- return S;
-
- return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
- }
-
- /// Helper function to get a range from SCEV for the associated value at
- /// program point \p I.
- ConstantRange getConstantRangeFromSCEV(Attributor &A,
- const Instruction *I = nullptr) const {
- if (!getAnchorScope())
- return getWorstState(getBitWidth());
-
- ScalarEvolution *SE =
- A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
- *getAnchorScope());
-
- const SCEV *S = getSCEV(A, I);
- if (!SE || !S)
- return getWorstState(getBitWidth());
-
- return SE->getUnsignedRange(S);
- }
-
- /// Helper function to get a range from LVI for the associated value at
- /// program point \p I.
- ConstantRange
- getConstantRangeFromLVI(Attributor &A,
- const Instruction *CtxI = nullptr) const {
- if (!getAnchorScope())
- return getWorstState(getBitWidth());
-
- LazyValueInfo *LVI =
- A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
- *getAnchorScope());
-
- if (!LVI || !CtxI)
- return getWorstState(getBitWidth());
- return LVI->getConstantRange(&getAssociatedValue(),
- const_cast<BasicBlock *>(CtxI->getParent()),
- const_cast<Instruction *>(CtxI));
- }
-
- /// See AAValueConstantRange::getKnownConstantRange(..).
- ConstantRange
- getKnownConstantRange(Attributor &A,
- const Instruction *CtxI = nullptr) const override {
- if (!CtxI || CtxI == getCtxI())
- return getKnown();
-
- ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
- ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
- return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
- }
-
- /// See AAValueConstantRange::getAssumedConstantRange(..).
- ConstantRange
- getAssumedConstantRange(Attributor &A,
- const Instruction *CtxI = nullptr) const override {
- // TODO: Make SCEV use Attributor assumption.
- // We may be able to bound a variable range via assumptions in
- // Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
- // evolve to x^2 + x, then we can say that y is in [2, 12].
-
- if (!CtxI || CtxI == getCtxI())
- return getAssumed();
-
- ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
- ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
- return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
- }
-
- /// See AbstractAttribute::initialize(..).
- void initialize(Attributor &A) override {
- // Intersect a range given by SCEV.
- intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
-
- // Intersect a range given by LVI.
- intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
- }
-
- /// Helper function to create MDNode for range metadata.
- static MDNode *
- getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
- const ConstantRange &AssumedConstantRange) {
- Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
- Ty, AssumedConstantRange.getLower())),
- ConstantAsMetadata::get(ConstantInt::get(
- Ty, AssumedConstantRange.getUpper()))};
- return MDNode::get(Ctx, LowAndHigh);
- }
-
- /// Return true if \p Assumed is included in \p KnownRanges.
- static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
-
- if (Assumed.isFullSet())
- return false;
-
- if (!KnownRanges)
- return true;
-
- // If multiple ranges are annotated in IR, we give up to annotate assumed
- // range for now.
-
- // TODO: If there exists a known range which containts assumed range, we
- // can say assumed range is better.
- if (KnownRanges->getNumOperands() > 2)
- return false;
-
- ConstantInt *Lower =
- mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
- ConstantInt *Upper =
- mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
-
- ConstantRange Known(Lower->getValue(), Upper->getValue());
- return Known.contains(Assumed) && Known != Assumed;
- }
-
- /// Helper function to set range metadata.
- static bool
- setRangeMetadataIfisBetterRange(Instruction *I,
- const ConstantRange &AssumedConstantRange) {
- auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
- if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
- if (!AssumedConstantRange.isEmptySet()) {
- I->setMetadata(LLVMContext::MD_range,
- getMDNodeForConstantRange(I->getType(), I->getContext(),
- AssumedConstantRange));
- return true;
- }
- }
- return false;
- }
-
- /// See AbstractAttribute::manifest()
- ChangeStatus manifest(Attributor &A) override {
- ChangeStatus Changed = ChangeStatus::UNCHANGED;
- ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
- assert(!AssumedConstantRange.isFullSet() && "Invalid state");
-
- auto &V = getAssociatedValue();
- if (!AssumedConstantRange.isEmptySet() &&
- !AssumedConstantRange.isSingleElement()) {
- if (Instruction *I = dyn_cast<Instruction>(&V))
- if (isa<CallInst>(I) || isa<LoadInst>(I))
- if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
- Changed = ChangeStatus::CHANGED;
- }
-
- return Changed;
- }
-};
-
-struct AAValueConstantRangeArgument final
- : AAArgumentFromCallSiteArguments<
- AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState> {
- using Base = AAArgumentFromCallSiteArguments<
- AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState>;
- AAValueConstantRangeArgument(const IRPosition &IRP) : Base(IRP) {}
-
- /// See AbstractAttribute::initialize(..).
- void initialize(Attributor &A) override {
- if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
- indicatePessimisticFixpoint();
- } else {
- Base::initialize(A);
- }
- }
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_ARG_ATTR(value_range)
- }
-};
-
-struct AAValueConstantRangeReturned
- : AAReturnedFromReturnedValues<AAValueConstantRange,
- AAValueConstantRangeImpl> {
- using Base = AAReturnedFromReturnedValues<AAValueConstantRange,
- AAValueConstantRangeImpl>;
- AAValueConstantRangeReturned(const IRPosition &IRP) : Base(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_FNRET_ATTR(value_range)
- }
-};
-
-struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
- AAValueConstantRangeFloating(const IRPosition &IRP)
- : AAValueConstantRangeImpl(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- AAValueConstantRangeImpl::initialize(A);
- Value &V = getAssociatedValue();
-
- if (auto *C = dyn_cast<ConstantInt>(&V)) {
- unionAssumed(ConstantRange(C->getValue()));
- indicateOptimisticFixpoint();
- return;
- }
-
- if (isa<UndefValue>(&V)) {
- // Collapse the undef state to 0.
- unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
- indicateOptimisticFixpoint();
- return;
- }
-
- if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
- return;
- // If it is a load instruction with range metadata, use it.
- if (LoadInst *LI = dyn_cast<LoadInst>(&V))
- if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
- intersectKnown(getConstantRangeFromMetadata(*RangeMD));
- return;
- }
-
- // We can work with PHI and select instruction as we traverse their operands
- // during update.
- if (isa<SelectInst>(V) || isa<PHINode>(V))
- return;
-
- // Otherwise we give up.
- indicatePessimisticFixpoint();
-
- LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
- << getAssociatedValue() << "\n");
- }
-
- bool calculateBinaryOperator(
- Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
- const Instruction *CtxI,
- SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
- Value *LHS = BinOp->getOperand(0);
- Value *RHS = BinOp->getOperand(1);
- // TODO: Allow non integers as well.
- if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
- return false;
-
- auto &LHSAA =
- A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS));
- QuerriedAAs.push_back(&LHSAA);
- auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
-
- auto &RHSAA =
- A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS));
- QuerriedAAs.push_back(&RHSAA);
- auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
-
- auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
-
- T.unionAssumed(AssumedRange);
-
- // TODO: Track a known state too.
-
- return T.isValidState();
- }
-
- bool calculateCastInst(
- Attributor &A, CastInst *CastI, IntegerRangeState &T,
- const Instruction *CtxI,
- SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
- assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
- // TODO: Allow non integers as well.
- Value &OpV = *CastI->getOperand(0);
- if (!OpV.getType()->isIntegerTy())
- return false;
-
- auto &OpAA =
- A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(OpV));
- QuerriedAAs.push_back(&OpAA);
- T.unionAssumed(
- OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
- return T.isValidState();
- }
-
- bool
- calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
- const Instruction *CtxI,
- SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
- Value *LHS = CmpI->getOperand(0);
- Value *RHS = CmpI->getOperand(1);
- // TODO: Allow non integers as well.
- if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
- return false;
-
- auto &LHSAA =
- A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS));
- QuerriedAAs.push_back(&LHSAA);
- auto &RHSAA =
- A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS));
- QuerriedAAs.push_back(&RHSAA);
-
- auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
- auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
-
- // If one of them is empty set, we can't decide.
- if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
- return true;
-
- bool MustTrue = false, MustFalse = false;
-
- auto AllowedRegion =
- ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
-
- auto SatisfyingRegion = ConstantRange::makeSatisfyingICmpRegion(
- CmpI->getPredicate(), RHSAARange);
-
- if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
- MustFalse = true;
-
- if (SatisfyingRegion.contains(LHSAARange))
- MustTrue = true;
-
- assert((!MustTrue || !MustFalse) &&
- "Either MustTrue or MustFalse should be false!");
+ ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
+ LLVMContext &Ctx = IRP.getAnchorValue().getContext();
+ for (const Attribute &Attr : DeducedAttrs) {
+ if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx()))
+ continue;
- if (MustTrue)
- T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
- else if (MustFalse)
- T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
- else
- T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
+ HasChanged = ChangeStatus::CHANGED;
+ }
- LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
- << " " << RHSAA << "\n");
+ if (HasChanged == ChangeStatus::UNCHANGED)
+ return HasChanged;
- // TODO: Track a known state too.
- return T.isValidState();
+ switch (PK) {
+ case IRPosition::IRP_ARGUMENT:
+ case IRPosition::IRP_FUNCTION:
+ case IRPosition::IRP_RETURNED:
+ ScopeFn->setAttributes(Attrs);
+ break;
+ case IRPosition::IRP_CALL_SITE:
+ case IRPosition::IRP_CALL_SITE_RETURNED:
+ case IRPosition::IRP_CALL_SITE_ARGUMENT:
+ CallSite(&IRP.getAnchorValue()).setAttributes(Attrs);
+ break;
+ case IRPosition::IRP_INVALID:
+ case IRPosition::IRP_FLOAT:
+ break;
}
- /// See AbstractAttribute::updateImpl(...).
- ChangeStatus updateImpl(Attributor &A) override {
- auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
- IntegerRangeState &T, bool Stripped) -> bool {
- Instruction *I = dyn_cast<Instruction>(&V);
- if (!I || isa<CallBase>(I)) {
+ return HasChanged;
+}
- // If the value is not instruction, we query AA to Attributor.
- const auto &AA =
- A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(V));
+const IRPosition IRPosition::EmptyKey(255);
+const IRPosition IRPosition::TombstoneKey(256);
- // Clamp operator is not used to utilize a program point CtxI.
- T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
+SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
+ IRPositions.emplace_back(IRP);
- return T.isValidState();
+ ImmutableCallSite ICS(&IRP.getAnchorValue());
+ switch (IRP.getPositionKind()) {
+ case IRPosition::IRP_INVALID:
+ case IRPosition::IRP_FLOAT:
+ case IRPosition::IRP_FUNCTION:
+ return;
+ case IRPosition::IRP_ARGUMENT:
+ case IRPosition::IRP_RETURNED:
+ IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
+ return;
+ case IRPosition::IRP_CALL_SITE:
+ assert(ICS && "Expected call site!");
+ // TODO: We need to look at the operand bundles similar to the redirection
+ // in CallBase.
+ if (!ICS.hasOperandBundles())
+ if (const Function *Callee = ICS.getCalledFunction())
+ IRPositions.emplace_back(IRPosition::function(*Callee));
+ return;
+ case IRPosition::IRP_CALL_SITE_RETURNED:
+ assert(ICS && "Expected call site!");
+ // TODO: We need to look at the operand bundles similar to the redirection
+ // in CallBase.
+ if (!ICS.hasOperandBundles()) {
+ if (const Function *Callee = ICS.getCalledFunction()) {
+ IRPositions.emplace_back(IRPosition::returned(*Callee));
+ IRPositions.emplace_back(IRPosition::function(*Callee));
+ for (const Argument &Arg : Callee->args())
+ if (Arg.hasReturnedAttr()) {
+ IRPositions.emplace_back(
+ IRPosition::callsite_argument(ICS, Arg.getArgNo()));
+ IRPositions.emplace_back(
+ IRPosition::value(*ICS.getArgOperand(Arg.getArgNo())));
+ IRPositions.emplace_back(IRPosition::argument(Arg));
+ }
}
+ }
+ IRPositions.emplace_back(
+ IRPosition::callsite_function(cast<CallBase>(*ICS.getInstruction())));
+ return;
+ case IRPosition::IRP_CALL_SITE_ARGUMENT: {
+ int ArgNo = IRP.getArgNo();
+ assert(ICS && ArgNo >= 0 && "Expected call site!");
+ // TODO: We need to look at the operand bundles similar to the redirection
+ // in CallBase.
+ if (!ICS.hasOperandBundles()) {
+ const Function *Callee = ICS.getCalledFunction();
+ if (Callee && Callee->arg_size() > unsigned(ArgNo))
+ IRPositions.emplace_back(IRPosition::argument(*Callee->getArg(ArgNo)));
+ if (Callee)
+ IRPositions.emplace_back(IRPosition::function(*Callee));
+ }
+ IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
+ return;
+ }
+ }
+}
- SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
- if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
- if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
- return false;
- } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
- if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
- return false;
- } else if (auto *CastI = dyn_cast<CastInst>(I)) {
- if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
- return false;
- } else {
- // Give up with other instructions.
- // TODO: Add other instructions
+bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
+ bool IgnoreSubsumingPositions, Attributor *A) const {
+ SmallVector<Attribute, 4> Attrs;
+ for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
+ for (Attribute::AttrKind AK : AKs)
+ if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
+ return true;
+ // The first position returned by the SubsumingPositionIterator is
+ // always the position itself. If we ignore subsuming positions we
+ // are done after the first iteration.
+ if (IgnoreSubsumingPositions)
+ break;
+ }
+ if (A)
+ for (Attribute::AttrKind AK : AKs)
+ if (getAttrsFromAssumes(AK, Attrs, *A))
+ return true;
+ return false;
+}
- T.indicatePessimisticFixpoint();
- return false;
- }
+void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
+ SmallVectorImpl<Attribute> &Attrs,
+ bool IgnoreSubsumingPositions, Attributor *A) const {
+ for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
+ for (Attribute::AttrKind AK : AKs)
+ EquivIRP.getAttrsFromIRAttr(AK, Attrs);
+ // The first position returned by the SubsumingPositionIterator is
+ // always the position itself. If we ignore subsuming positions we
+ // are done after the first iteration.
+ if (IgnoreSubsumingPositions)
+ break;
+ }
+ if (A)
+ for (Attribute::AttrKind AK : AKs)
+ getAttrsFromAssumes(AK, Attrs, *A);
+}
- // Catch circular reasoning in a pessimistic way for now.
- // TODO: Check how the range evolves and if we stripped anything, see also
- // AADereferenceable or AAAlign for similar situations.
- for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
- if (QueriedAA != this)
- continue;
- // If we are in a stady state we do not need to worry.
- if (T.getAssumed() == getState().getAssumed())
- continue;
- T.indicatePessimisticFixpoint();
- }
+bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
+ SmallVectorImpl<Attribute> &Attrs) const {
+ if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
+ return false;
- return T.isValidState();
- };
+ AttributeList AttrList;
+ if (ImmutableCallSite ICS = ImmutableCallSite(&getAnchorValue()))
+ AttrList = ICS.getAttributes();
+ else
+ AttrList = getAssociatedFunction()->getAttributes();
- IntegerRangeState T(getBitWidth());
+ bool HasAttr = AttrList.hasAttribute(getAttrIdx(), AK);
+ if (HasAttr)
+ Attrs.push_back(AttrList.getAttribute(getAttrIdx(), AK));
+ return HasAttr;
+}
- if (!genericValueTraversal<AAValueConstantRange, IntegerRangeState>(
- A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
- return indicatePessimisticFixpoint();
+bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
+ SmallVectorImpl<Attribute> &Attrs,
+ Attributor &A) const {
+ assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
+ Value &AssociatedValue = getAssociatedValue();
- return clampStateAndIndicateChange(getState(), T);
- }
+ const Assume2KnowledgeMap &A2K =
+ A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_FLOATING_ATTR(value_range)
- }
-};
+ // Check if we found any potential assume use, if not we don't need to create
+ // explorer iterators.
+ if (A2K.empty())
+ return false;
-struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
- AAValueConstantRangeFunction(const IRPosition &IRP)
- : AAValueConstantRangeImpl(IRP) {}
+ LLVMContext &Ctx = AssociatedValue.getContext();
+ unsigned AttrsSize = Attrs.size();
+ MustBeExecutedContextExplorer &Explorer =
+ A.getInfoCache().getMustBeExecutedContextExplorer();
+ auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
+ for (auto &It : A2K)
+ if (Explorer.findInContextOf(It.first, EIt, EEnd))
+ Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
+ return AttrsSize != Attrs.size();
+}
- /// See AbstractAttribute::initialize(...).
- ChangeStatus updateImpl(Attributor &A) override {
- llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
- "not be called");
+void IRPosition::verify() {
+ switch (KindOrArgNo) {
+ default:
+ assert(KindOrArgNo >= 0 && "Expected argument or call site argument!");
+ assert((isa<CallBase>(AnchorVal) || isa<Argument>(AnchorVal)) &&
+ "Expected call base or argument for positive attribute index!");
+ if (isa<Argument>(AnchorVal)) {
+ assert(cast<Argument>(AnchorVal)->getArgNo() == unsigned(getArgNo()) &&
+ "Argument number mismatch!");
+ assert(cast<Argument>(AnchorVal) == &getAssociatedValue() &&
+ "Associated value mismatch!");
+ } else {
+ assert(cast<CallBase>(*AnchorVal).arg_size() > unsigned(getArgNo()) &&
+ "Call site argument number mismatch!");
+ assert(cast<CallBase>(*AnchorVal).getArgOperand(getArgNo()) ==
+ &getAssociatedValue() &&
+ "Associated value mismatch!");
+ }
+ break;
+ case IRP_INVALID:
+ assert(!AnchorVal && "Expected no value for an invalid position!");
+ break;
+ case IRP_FLOAT:
+ assert((!isa<CallBase>(&getAssociatedValue()) &&
+ !isa<Argument>(&getAssociatedValue())) &&
+ "Expected specialized kind for call base and argument values!");
+ break;
+ case IRP_RETURNED:
+ assert(isa<Function>(AnchorVal) &&
+ "Expected function for a 'returned' position!");
+ assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
+ break;
+ case IRP_CALL_SITE_RETURNED:
+ assert((isa<CallBase>(AnchorVal)) &&
+ "Expected call base for 'call site returned' position!");
+ assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
+ break;
+ case IRP_CALL_SITE:
+ assert((isa<CallBase>(AnchorVal)) &&
+ "Expected call base for 'call site function' position!");
+ assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
+ break;
+ case IRP_FUNCTION:
+ assert(isa<Function>(AnchorVal) &&
+ "Expected function for a 'function' position!");
+ assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
+ break;
}
+}
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
-};
-
-struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
- AAValueConstantRangeCallSite(const IRPosition &IRP)
- : AAValueConstantRangeFunction(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
-};
-
-struct AAValueConstantRangeCallSiteReturned
- : AACallSiteReturnedFromReturned<AAValueConstantRange,
- AAValueConstantRangeImpl> {
- AAValueConstantRangeCallSiteReturned(const IRPosition &IRP)
- : AACallSiteReturnedFromReturned<AAValueConstantRange,
- AAValueConstantRangeImpl>(IRP) {}
-
- /// See AbstractAttribute::initialize(...).
- void initialize(Attributor &A) override {
- // If it is a load instruction with range metadata, use the metadata.
- if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
- if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
- intersectKnown(getConstantRangeFromMetadata(*RangeMD));
-
- AAValueConstantRangeImpl::initialize(A);
+Optional<Constant *>
+Attributor::getAssumedConstant(const Value &V, const AbstractAttribute &AA,
+ bool &UsedAssumedInformation) {
+ const auto &ValueSimplifyAA = getAAFor<AAValueSimplify>(
+ AA, IRPosition::value(V), /* TrackDependence */ false);
+ Optional<Value *> SimplifiedV =
+ ValueSimplifyAA.getAssumedSimplifiedValue(*this);
+ bool IsKnown = ValueSimplifyAA.isKnown();
+ UsedAssumedInformation |= !IsKnown;
+ if (!SimplifiedV.hasValue()) {
+ recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
+ return llvm::None;
}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_CSRET_ATTR(value_range)
+ if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
+ recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
+ return llvm::None;
}
-};
-struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
- AAValueConstantRangeCallSiteArgument(const IRPosition &IRP)
- : AAValueConstantRangeFloating(IRP) {}
-
- /// See AbstractAttribute::trackStatistics()
- void trackStatistics() const override {
- STATS_DECLTRACK_CSARG_ATTR(value_range)
+ Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
+ if (CI && CI->getType() != V.getType()) {
+ // TODO: Check for a save conversion.
+ return nullptr;
}
-};
-
-} // namespace
-/// ----------------------------------------------------------------------------
-/// Attributor
-/// ----------------------------------------------------------------------------
+ if (CI)
+ recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
+ return CI;
+}
Attributor::~Attributor() {
// The abstract attributes are allocated via the BumpPtrAllocator Allocator,
// however, that should be clear from the presence of the argument.
bool UsedAssumedInformation = false;
Optional<Constant *> C =
- getAssumedConstant(*this, V, QueryingAA, UsedAssumedInformation);
+ getAssumedConstant(V, QueryingAA, UsedAssumedInformation);
if (C.hasValue() && C.getValue()) {
LLVM_DEBUG(dbgs() << "[Attributor] Value is simplified, uses skipped: " << V
<< " -> " << *C.getValue() << "\n");
bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
bool Invoke2CallAllowed =
- !AAIsDeadFunction::mayCatchAsynchronousExceptions(
- *II->getFunction());
+ !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
assert((UnwindBBIsDead || NormalBBIsDead) &&
"Invoke does not have dead successors!");
BasicBlock *BB = II->getParent();
// unreachable but untangling branches that jump here is something we need
// to do in a more generic way.
DetatchDeadBlocks(ToBeDeletedBBs, nullptr);
- STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
- BUILD_STAT_NAME(AAIsDead, BasicBlock) += ToBeDeletedBlocks.size();
}
// Identify dead internal functions and delete them. This happens outside
for (Function *Fn : CGModifiedFunctions)
CGUpdater.reanalyzeFunction(*Fn);
- STATS_DECL(AAIsDead, Function, "Number of dead functions deleted.");
- BUILD_STAT_NAME(AAIsDead, Function) += ToBeDeletedFunctions.size();
-
for (Function *Fn : ToBeDeletedFunctions)
CGUpdater.removeFunction(*Fn);
+ NumFnDeleted += ToBeDeletedFunctions.size();
+
if (VerifyMaxFixpointIterations &&
IterationCounter != MaxFixpointIterations) {
errs() << "\n[Attributor] Fixpoint iteration done after: "
<< Pos.getAnchorValue().getName() << "@" << Pos.getArgNo() << "]}";
}
-template <typename base_ty, base_ty BestState, base_ty WorstState>
-raw_ostream &
-llvm::operator<<(raw_ostream &OS,
- const IntegerStateBase<base_ty, BestState, WorstState> &S) {
- return OS << "(" << S.getKnown() << "-" << S.getAssumed() << ")"
- << static_cast<const AbstractState &>(S);
-}
-
raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
OS << "range-state(" << S.getBitWidth() << ")<";
S.getKnown().print(OS);
char AttributorLegacyPass::ID = 0;
char AttributorCGSCCLegacyPass::ID = 0;
-const char AAReturnedValues::ID = 0;
-const char AANoUnwind::ID = 0;
-const char AANoSync::ID = 0;
-const char AANoFree::ID = 0;
-const char AANonNull::ID = 0;
-const char AANoRecurse::ID = 0;
-const char AAWillReturn::ID = 0;
-const char AAUndefinedBehavior::ID = 0;
-const char AANoAlias::ID = 0;
-const char AAReachability::ID = 0;
-const char AANoReturn::ID = 0;
-const char AAIsDead::ID = 0;
-const char AADereferenceable::ID = 0;
-const char AAAlign::ID = 0;
-const char AANoCapture::ID = 0;
-const char AAValueSimplify::ID = 0;
-const char AAHeapToStack::ID = 0;
-const char AAPrivatizablePtr::ID = 0;
-const char AAMemoryBehavior::ID = 0;
-const char AAMemoryLocation::ID = 0;
-const char AAValueConstantRange::ID = 0;
-
-// Macro magic to create the static generator function for attributes that
-// follow the naming scheme.
-
-#define SWITCH_PK_INV(CLASS, PK, POS_NAME) \
- case IRPosition::PK: \
- llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
-
-#define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX) \
- case IRPosition::PK: \
- AA = new (A.Allocator) CLASS##SUFFIX(IRP); \
- break;
-
-#define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
- CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
- CLASS *AA = nullptr; \
- switch (IRP.getPositionKind()) { \
- SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
- SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \
- SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \
- SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
- SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \
- SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
- } \
- return *AA; \
- }
-
-#define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
- CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
- CLASS *AA = nullptr; \
- switch (IRP.getPositionKind()) { \
- SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
- SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function") \
- SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
- } \
- return *AA; \
- }
-
-#define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
- CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
- CLASS *AA = nullptr; \
- switch (IRP.getPositionKind()) { \
- SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
- } \
- return *AA; \
- }
-
-#define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
- CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
- CLASS *AA = nullptr; \
- switch (IRP.getPositionKind()) { \
- SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
- SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \
- SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \
- SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
- SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \
- SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \
- SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
- } \
- return *AA; \
- }
-
-#define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
- CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
- CLASS *AA = nullptr; \
- switch (IRP.getPositionKind()) { \
- SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
- SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
- SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
- } \
- return *AA; \
- }
-
-CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
-CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
-CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
-CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
-CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
-CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
-CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
-
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
-CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
-
-CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
-CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
-CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
-
-CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
-CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
-CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
-
-CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
-
-#undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
-#undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
-#undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
-#undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
-#undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
-#undef SWITCH_PK_CREATE
-#undef SWITCH_PK_INV
-
INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
"Deduce and propagate attributes", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
--- /dev/null
+//===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// See the Attributor.h file comment and the class descriptions in that file for
+// more information.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/IPO/Attributor.h"
+
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/LazyValueInfo.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/NoFolder.h"
+#include "llvm/Transforms/IPO/ArgumentPromotion.h"
+#include "llvm/Transforms/Utils/Local.h"
+
+#include <cassert>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "attributor"
+
+static cl::opt<bool> ManifestInternal(
+ "attributor-manifest-internal", cl::Hidden,
+ cl::desc("Manifest Attributor internal string attributes."),
+ cl::init(false));
+
+static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
+ cl::Hidden);
+
+// Some helper macros to deal with statistics tracking.
+//
+// Usage:
+// For simple IR attribute tracking overload trackStatistics in the abstract
+// attribute and choose the right STATS_DECLTRACK_********* macro,
+// e.g.,:
+// void trackStatistics() const override {
+// STATS_DECLTRACK_ARG_ATTR(returned)
+// }
+// If there is a single "increment" side one can use the macro
+// STATS_DECLTRACK with a custom message. If there are multiple increment
+// sides, STATS_DECL and STATS_TRACK can also be used separatly.
+//
+#define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME) \
+ ("Number of " #TYPE " marked '" #NAME "'")
+#define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
+#define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
+#define STATS_DECL(NAME, TYPE, MSG) \
+ STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
+#define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
+#define STATS_DECLTRACK(NAME, TYPE, MSG) \
+ { \
+ STATS_DECL(NAME, TYPE, MSG) \
+ STATS_TRACK(NAME, TYPE) \
+ }
+#define STATS_DECLTRACK_ARG_ATTR(NAME) \
+ STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
+#define STATS_DECLTRACK_CSARG_ATTR(NAME) \
+ STATS_DECLTRACK(NAME, CSArguments, \
+ BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
+#define STATS_DECLTRACK_FN_ATTR(NAME) \
+ STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
+#define STATS_DECLTRACK_CS_ATTR(NAME) \
+ STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
+#define STATS_DECLTRACK_FNRET_ATTR(NAME) \
+ STATS_DECLTRACK(NAME, FunctionReturn, \
+ BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
+#define STATS_DECLTRACK_CSRET_ATTR(NAME) \
+ STATS_DECLTRACK(NAME, CSReturn, \
+ BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
+#define STATS_DECLTRACK_FLOATING_ATTR(NAME) \
+ STATS_DECLTRACK(NAME, Floating, \
+ ("Number of floating values known to be '" #NAME "'"))
+
+// Specialization of the operator<< for abstract attributes subclasses. This
+// disambiguates situations where multiple operators are applicable.
+namespace llvm {
+#define PIPE_OPERATOR(CLASS) \
+ raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) { \
+ return OS << static_cast<const AbstractAttribute &>(AA); \
+ }
+
+PIPE_OPERATOR(AAIsDead)
+PIPE_OPERATOR(AANoUnwind)
+PIPE_OPERATOR(AANoSync)
+PIPE_OPERATOR(AANoRecurse)
+PIPE_OPERATOR(AAWillReturn)
+PIPE_OPERATOR(AANoReturn)
+PIPE_OPERATOR(AAReturnedValues)
+PIPE_OPERATOR(AANonNull)
+PIPE_OPERATOR(AANoAlias)
+PIPE_OPERATOR(AADereferenceable)
+PIPE_OPERATOR(AAAlign)
+PIPE_OPERATOR(AANoCapture)
+PIPE_OPERATOR(AAValueSimplify)
+PIPE_OPERATOR(AANoFree)
+PIPE_OPERATOR(AAHeapToStack)
+PIPE_OPERATOR(AAReachability)
+PIPE_OPERATOR(AAMemoryBehavior)
+PIPE_OPERATOR(AAMemoryLocation)
+PIPE_OPERATOR(AAValueConstantRange)
+PIPE_OPERATOR(AAPrivatizablePtr)
+
+#undef PIPE_OPERATOR
+} // namespace llvm
+
+namespace {
+
+static Optional<ConstantInt *>
+getAssumedConstantInt(Attributor &A, const Value &V,
+ const AbstractAttribute &AA,
+ bool &UsedAssumedInformation) {
+ Optional<Constant *> C = A.getAssumedConstant(V, AA, UsedAssumedInformation);
+ if (C.hasValue())
+ return dyn_cast_or_null<ConstantInt>(C.getValue());
+ return llvm::None;
+}
+
+/// Get pointer operand of memory accessing instruction. If \p I is
+/// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
+/// is set to false and the instruction is volatile, return nullptr.
+static const Value *getPointerOperand(const Instruction *I,
+ bool AllowVolatile) {
+ if (auto *LI = dyn_cast<LoadInst>(I)) {
+ if (!AllowVolatile && LI->isVolatile())
+ return nullptr;
+ return LI->getPointerOperand();
+ }
+
+ if (auto *SI = dyn_cast<StoreInst>(I)) {
+ if (!AllowVolatile && SI->isVolatile())
+ return nullptr;
+ return SI->getPointerOperand();
+ }
+
+ if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
+ if (!AllowVolatile && CXI->isVolatile())
+ return nullptr;
+ return CXI->getPointerOperand();
+ }
+
+ if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
+ if (!AllowVolatile && RMWI->isVolatile())
+ return nullptr;
+ return RMWI->getPointerOperand();
+ }
+
+ return nullptr;
+}
+
+/// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
+/// advanced by \p Offset bytes. To aid later analysis the method tries to build
+/// getelement pointer instructions that traverse the natural type of \p Ptr if
+/// possible. If that fails, the remaining offset is adjusted byte-wise, hence
+/// through a cast to i8*.
+///
+/// TODO: This could probably live somewhere more prominantly if it doesn't
+/// already exist.
+static Value *constructPointer(Type *ResTy, Value *Ptr, int64_t Offset,
+ IRBuilder<NoFolder> &IRB, const DataLayout &DL) {
+ assert(Offset >= 0 && "Negative offset not supported yet!");
+ LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
+ << "-bytes as " << *ResTy << "\n");
+
+ // The initial type we are trying to traverse to get nice GEPs.
+ Type *Ty = Ptr->getType();
+
+ SmallVector<Value *, 4> Indices;
+ std::string GEPName = Ptr->getName().str();
+ while (Offset) {
+ uint64_t Idx, Rem;
+
+ if (auto *STy = dyn_cast<StructType>(Ty)) {
+ const StructLayout *SL = DL.getStructLayout(STy);
+ if (int64_t(SL->getSizeInBytes()) < Offset)
+ break;
+ Idx = SL->getElementContainingOffset(Offset);
+ assert(Idx < STy->getNumElements() && "Offset calculation error!");
+ Rem = Offset - SL->getElementOffset(Idx);
+ Ty = STy->getElementType(Idx);
+ } else if (auto *PTy = dyn_cast<PointerType>(Ty)) {
+ Ty = PTy->getElementType();
+ if (!Ty->isSized())
+ break;
+ uint64_t ElementSize = DL.getTypeAllocSize(Ty);
+ assert(ElementSize && "Expected type with size!");
+ Idx = Offset / ElementSize;
+ Rem = Offset % ElementSize;
+ } else {
+ // Non-aggregate type, we cast and make byte-wise progress now.
+ break;
+ }
+
+ LLVM_DEBUG(errs() << "Ty: " << *Ty << " Offset: " << Offset
+ << " Idx: " << Idx << " Rem: " << Rem << "\n");
+
+ GEPName += "." + std::to_string(Idx);
+ Indices.push_back(ConstantInt::get(IRB.getInt32Ty(), Idx));
+ Offset = Rem;
+ }
+
+ // Create a GEP if we collected indices above.
+ if (Indices.size())
+ Ptr = IRB.CreateGEP(Ptr, Indices, GEPName);
+
+ // If an offset is left we use byte-wise adjustment.
+ if (Offset) {
+ Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
+ Ptr = IRB.CreateGEP(Ptr, IRB.getInt32(Offset),
+ GEPName + ".b" + Twine(Offset));
+ }
+
+ // Ensure the result has the requested type.
+ Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast");
+
+ LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
+ return Ptr;
+}
+
+/// Recursively visit all values that might become \p IRP at some point. This
+/// will be done by looking through cast instructions, selects, phis, and calls
+/// with the "returned" attribute. Once we cannot look through the value any
+/// further, the callback \p VisitValueCB is invoked and passed the current
+/// value, the \p State, and a flag to indicate if we stripped anything.
+/// Stripped means that we unpacked the value associated with \p IRP at least
+/// once. Note that the value used for the callback may still be the value
+/// associated with \p IRP (due to PHIs). To limit how much effort is invested,
+/// we will never visit more values than specified by \p MaxValues.
+template <typename AAType, typename StateTy>
+static bool genericValueTraversal(
+ Attributor &A, IRPosition IRP, const AAType &QueryingAA, StateTy &State,
+ function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
+ VisitValueCB,
+ const Instruction *CtxI, int MaxValues = 16,
+ function_ref<Value *(Value *)> StripCB = nullptr) {
+
+ const AAIsDead *LivenessAA = nullptr;
+ if (IRP.getAnchorScope())
+ LivenessAA = &A.getAAFor<AAIsDead>(
+ QueryingAA, IRPosition::function(*IRP.getAnchorScope()),
+ /* TrackDependence */ false);
+ bool AnyDead = false;
+
+ using Item = std::pair<Value *, const Instruction *>;
+ SmallSet<Item, 16> Visited;
+ SmallVector<Item, 16> Worklist;
+ Worklist.push_back({&IRP.getAssociatedValue(), CtxI});
+
+ int Iteration = 0;
+ do {
+ Item I = Worklist.pop_back_val();
+ Value *V = I.first;
+ CtxI = I.second;
+ if (StripCB)
+ V = StripCB(V);
+
+ // Check if we should process the current value. To prevent endless
+ // recursion keep a record of the values we followed!
+ if (!Visited.insert(I).second)
+ continue;
+
+ // Make sure we limit the compile time for complex expressions.
+ if (Iteration++ >= MaxValues)
+ return false;
+
+ // Explicitly look through calls with a "returned" attribute if we do
+ // not have a pointer as stripPointerCasts only works on them.
+ Value *NewV = nullptr;
+ if (V->getType()->isPointerTy()) {
+ NewV = V->stripPointerCasts();
+ } else {
+ CallSite CS(V);
+ if (CS && CS.getCalledFunction()) {
+ for (Argument &Arg : CS.getCalledFunction()->args())
+ if (Arg.hasReturnedAttr()) {
+ NewV = CS.getArgOperand(Arg.getArgNo());
+ break;
+ }
+ }
+ }
+ if (NewV && NewV != V) {
+ Worklist.push_back({NewV, CtxI});
+ continue;
+ }
+
+ // Look through select instructions, visit both potential values.
+ if (auto *SI = dyn_cast<SelectInst>(V)) {
+ Worklist.push_back({SI->getTrueValue(), CtxI});
+ Worklist.push_back({SI->getFalseValue(), CtxI});
+ continue;
+ }
+
+ // Look through phi nodes, visit all live operands.
+ if (auto *PHI = dyn_cast<PHINode>(V)) {
+ assert(LivenessAA &&
+ "Expected liveness in the presence of instructions!");
+ for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
+ BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
+ if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA,
+ LivenessAA,
+ /* CheckBBLivenessOnly */ true)) {
+ AnyDead = true;
+ continue;
+ }
+ Worklist.push_back(
+ {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
+ }
+ continue;
+ }
+
+ // Once a leaf is reached we inform the user through the callback.
+ if (!VisitValueCB(*V, CtxI, State, Iteration > 1))
+ return false;
+ } while (!Worklist.empty());
+
+ // If we actually used liveness information so we have to record a dependence.
+ if (AnyDead)
+ A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL);
+
+ // All values have been visited.
+ return true;
+}
+
+static const Value *
+getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset,
+ const DataLayout &DL,
+ bool AllowNonInbounds = false) {
+ const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
+ if (!Ptr)
+ return nullptr;
+
+ return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL,
+ AllowNonInbounds);
+}
+
+/// Helper function to clamp a state \p S of type \p StateType with the
+/// information in \p R and indicate/return if \p S did change (as-in update is
+/// required to be run again).
+template <typename StateType>
+ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) {
+ auto Assumed = S.getAssumed();
+ S ^= R;
+ return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
+ : ChangeStatus::CHANGED;
+}
+
+/// Clamp the information known for all returned values of a function
+/// (identified by \p QueryingAA) into \p S.
+template <typename AAType, typename StateType = typename AAType::StateType>
+static void clampReturnedValueStates(Attributor &A, const AAType &QueryingAA,
+ StateType &S) {
+ LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
+ << QueryingAA << " into " << S << "\n");
+
+ assert((QueryingAA.getIRPosition().getPositionKind() ==
+ IRPosition::IRP_RETURNED ||
+ QueryingAA.getIRPosition().getPositionKind() ==
+ IRPosition::IRP_CALL_SITE_RETURNED) &&
+ "Can only clamp returned value states for a function returned or call "
+ "site returned position!");
+
+ // Use an optional state as there might not be any return values and we want
+ // to join (IntegerState::operator&) the state of all there are.
+ Optional<StateType> T;
+
+ // Callback for each possibly returned value.
+ auto CheckReturnValue = [&](Value &RV) -> bool {
+ const IRPosition &RVPos = IRPosition::value(RV);
+ const AAType &AA = A.getAAFor<AAType>(QueryingAA, RVPos);
+ LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
+ << " @ " << RVPos << "\n");
+ const StateType &AAS = static_cast<const StateType &>(AA.getState());
+ if (T.hasValue())
+ *T &= AAS;
+ else
+ T = AAS;
+ LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
+ << "\n");
+ return T->isValidState();
+ };
+
+ if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
+ S.indicatePessimisticFixpoint();
+ else if (T.hasValue())
+ S ^= *T;
+}
+
+/// Helper class to compose two generic deduction
+template <typename AAType, typename Base, typename StateType,
+ template <typename...> class F, template <typename...> class G>
+struct AAComposeTwoGenericDeduction
+ : public F<AAType, G<AAType, Base, StateType>, StateType> {
+ AAComposeTwoGenericDeduction(const IRPosition &IRP)
+ : F<AAType, G<AAType, Base, StateType>, StateType>(IRP) {}
+
+ void initialize(Attributor &A) override {
+ F<AAType, G<AAType, Base, StateType>, StateType>::initialize(A);
+ G<AAType, Base, StateType>::initialize(A);
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ ChangeStatus ChangedF =
+ F<AAType, G<AAType, Base, StateType>, StateType>::updateImpl(A);
+ ChangeStatus ChangedG = G<AAType, Base, StateType>::updateImpl(A);
+ return ChangedF | ChangedG;
+ }
+};
+
+/// Helper class for generic deduction: return value -> returned position.
+template <typename AAType, typename Base,
+ typename StateType = typename Base::StateType>
+struct AAReturnedFromReturnedValues : public Base {
+ AAReturnedFromReturnedValues(const IRPosition &IRP) : Base(IRP) {}
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ StateType S(StateType::getBestState(this->getState()));
+ clampReturnedValueStates<AAType, StateType>(A, *this, S);
+ // TODO: If we know we visited all returned values, thus no are assumed
+ // dead, we can take the known information from the state T.
+ return clampStateAndIndicateChange<StateType>(this->getState(), S);
+ }
+};
+
+/// Clamp the information known at all call sites for a given argument
+/// (identified by \p QueryingAA) into \p S.
+template <typename AAType, typename StateType = typename AAType::StateType>
+static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
+ StateType &S) {
+ LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
+ << QueryingAA << " into " << S << "\n");
+
+ assert(QueryingAA.getIRPosition().getPositionKind() ==
+ IRPosition::IRP_ARGUMENT &&
+ "Can only clamp call site argument states for an argument position!");
+
+ // Use an optional state as there might not be any return values and we want
+ // to join (IntegerState::operator&) the state of all there are.
+ Optional<StateType> T;
+
+ // The argument number which is also the call site argument number.
+ unsigned ArgNo = QueryingAA.getIRPosition().getArgNo();
+
+ auto CallSiteCheck = [&](AbstractCallSite ACS) {
+ const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
+ // Check if a coresponding argument was found or if it is on not associated
+ // (which can happen for callback calls).
+ if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
+ return false;
+
+ const AAType &AA = A.getAAFor<AAType>(QueryingAA, ACSArgPos);
+ LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
+ << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
+ const StateType &AAS = static_cast<const StateType &>(AA.getState());
+ if (T.hasValue())
+ *T &= AAS;
+ else
+ T = AAS;
+ LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
+ << "\n");
+ return T->isValidState();
+ };
+
+ bool AllCallSitesKnown;
+ if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
+ AllCallSitesKnown))
+ S.indicatePessimisticFixpoint();
+ else if (T.hasValue())
+ S ^= *T;
+}
+
+/// Helper class for generic deduction: call site argument -> argument position.
+template <typename AAType, typename Base,
+ typename StateType = typename AAType::StateType>
+struct AAArgumentFromCallSiteArguments : public Base {
+ AAArgumentFromCallSiteArguments(const IRPosition &IRP) : Base(IRP) {}
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ StateType S(StateType::getBestState(this->getState()));
+ clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
+ // TODO: If we know we visited all incoming values, thus no are assumed
+ // dead, we can take the known information from the state T.
+ return clampStateAndIndicateChange<StateType>(this->getState(), S);
+ }
+};
+
+/// Helper class for generic replication: function returned -> cs returned.
+template <typename AAType, typename Base,
+ typename StateType = typename Base::StateType>
+struct AACallSiteReturnedFromReturned : public Base {
+ AACallSiteReturnedFromReturned(const IRPosition &IRP) : Base(IRP) {}
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ assert(this->getIRPosition().getPositionKind() ==
+ IRPosition::IRP_CALL_SITE_RETURNED &&
+ "Can only wrap function returned positions for call site returned "
+ "positions!");
+ auto &S = this->getState();
+
+ const Function *AssociatedFunction =
+ this->getIRPosition().getAssociatedFunction();
+ if (!AssociatedFunction)
+ return S.indicatePessimisticFixpoint();
+
+ IRPosition FnPos = IRPosition::returned(*AssociatedFunction);
+ const AAType &AA = A.getAAFor<AAType>(*this, FnPos);
+ return clampStateAndIndicateChange(
+ S, static_cast<const StateType &>(AA.getState()));
+ }
+};
+
+/// Helper class for generic deduction using must-be-executed-context
+/// Base class is required to have `followUse` method.
+
+/// bool followUse(Attributor &A, const Use *U, const Instruction *I)
+/// U - Underlying use.
+/// I - The user of the \p U.
+/// `followUse` returns true if the value should be tracked transitively.
+
+template <typename AAType, typename Base,
+ typename StateType = typename AAType::StateType>
+struct AAFromMustBeExecutedContext : public Base {
+ AAFromMustBeExecutedContext(const IRPosition &IRP) : Base(IRP) {}
+
+ void initialize(Attributor &A) override {
+ Base::initialize(A);
+ const IRPosition &IRP = this->getIRPosition();
+ Instruction *CtxI = IRP.getCtxI();
+
+ if (!CtxI)
+ return;
+
+ for (const Use &U : IRP.getAssociatedValue().uses())
+ Uses.insert(&U);
+ }
+
+ /// Helper function to accumulate uses.
+ void followUsesInContext(Attributor &A,
+ MustBeExecutedContextExplorer &Explorer,
+ const Instruction *CtxI,
+ SetVector<const Use *> &Uses, StateType &State) {
+ auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
+ for (unsigned u = 0; u < Uses.size(); ++u) {
+ const Use *U = Uses[u];
+ if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
+ bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
+ if (Found && Base::followUse(A, U, UserI, State))
+ for (const Use &Us : UserI->uses())
+ Uses.insert(&Us);
+ }
+ }
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ auto BeforeState = this->getState();
+ auto &S = this->getState();
+ Instruction *CtxI = this->getIRPosition().getCtxI();
+ if (!CtxI)
+ return ChangeStatus::UNCHANGED;
+
+ MustBeExecutedContextExplorer &Explorer =
+ A.getInfoCache().getMustBeExecutedContextExplorer();
+
+ followUsesInContext(A, Explorer, CtxI, Uses, S);
+
+ if (this->isAtFixpoint())
+ return ChangeStatus::CHANGED;
+
+ SmallVector<const BranchInst *, 4> BrInsts;
+ auto Pred = [&](const Instruction *I) {
+ if (const BranchInst *Br = dyn_cast<BranchInst>(I))
+ if (Br->isConditional())
+ BrInsts.push_back(Br);
+ return true;
+ };
+
+ // Here, accumulate conditional branch instructions in the context. We
+ // explore the child paths and collect the known states. The disjunction of
+ // those states can be merged to its own state. Let ParentState_i be a state
+ // to indicate the known information for an i-th branch instruction in the
+ // context. ChildStates are created for its successors respectively.
+ //
+ // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
+ // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
+ // ...
+ // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
+ //
+ // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
+ //
+ // FIXME: Currently, recursive branches are not handled. For example, we
+ // can't deduce that ptr must be dereferenced in below function.
+ //
+ // void f(int a, int c, int *ptr) {
+ // if(a)
+ // if (b) {
+ // *ptr = 0;
+ // } else {
+ // *ptr = 1;
+ // }
+ // else {
+ // if (b) {
+ // *ptr = 0;
+ // } else {
+ // *ptr = 1;
+ // }
+ // }
+ // }
+
+ Explorer.checkForAllContext(CtxI, Pred);
+ for (const BranchInst *Br : BrInsts) {
+ StateType ParentState;
+
+ // The known state of the parent state is a conjunction of children's
+ // known states so it is initialized with a best state.
+ ParentState.indicateOptimisticFixpoint();
+
+ for (const BasicBlock *BB : Br->successors()) {
+ StateType ChildState;
+
+ size_t BeforeSize = Uses.size();
+ followUsesInContext(A, Explorer, &BB->front(), Uses, ChildState);
+
+ // Erase uses which only appear in the child.
+ for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
+ It = Uses.erase(It);
+
+ ParentState &= ChildState;
+ }
+
+ // Use only known state.
+ S += ParentState;
+ }
+
+ return BeforeState == S ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
+ }
+
+private:
+ /// Container for (transitive) uses of the associated value.
+ SetVector<const Use *> Uses;
+};
+
+template <typename AAType, typename Base,
+ typename StateType = typename AAType::StateType>
+using AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext =
+ AAComposeTwoGenericDeduction<AAType, Base, StateType,
+ AAFromMustBeExecutedContext,
+ AAArgumentFromCallSiteArguments>;
+
+template <typename AAType, typename Base,
+ typename StateType = typename AAType::StateType>
+using AACallSiteReturnedFromReturnedAndMustBeExecutedContext =
+ AAComposeTwoGenericDeduction<AAType, Base, StateType,
+ AAFromMustBeExecutedContext,
+ AACallSiteReturnedFromReturned>;
+
+/// -----------------------NoUnwind Function Attribute--------------------------
+
+struct AANoUnwindImpl : AANoUnwind {
+ AANoUnwindImpl(const IRPosition &IRP) : AANoUnwind(IRP) {}
+
+ const std::string getAsStr() const override {
+ return getAssumed() ? "nounwind" : "may-unwind";
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ auto Opcodes = {
+ (unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
+ (unsigned)Instruction::Call, (unsigned)Instruction::CleanupRet,
+ (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
+
+ auto CheckForNoUnwind = [&](Instruction &I) {
+ if (!I.mayThrow())
+ return true;
+
+ if (ImmutableCallSite ICS = ImmutableCallSite(&I)) {
+ const auto &NoUnwindAA =
+ A.getAAFor<AANoUnwind>(*this, IRPosition::callsite_function(ICS));
+ return NoUnwindAA.isAssumedNoUnwind();
+ }
+ return false;
+ };
+
+ if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes))
+ return indicatePessimisticFixpoint();
+
+ return ChangeStatus::UNCHANGED;
+ }
+};
+
+struct AANoUnwindFunction final : public AANoUnwindImpl {
+ AANoUnwindFunction(const IRPosition &IRP) : AANoUnwindImpl(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
+};
+
+/// NoUnwind attribute deduction for a call sites.
+struct AANoUnwindCallSite final : AANoUnwindImpl {
+ AANoUnwindCallSite(const IRPosition &IRP) : AANoUnwindImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ AANoUnwindImpl::initialize(A);
+ Function *F = getAssociatedFunction();
+ if (!F)
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ // TODO: Once we have call site specific value information we can provide
+ // call site specific liveness information and then it makes
+ // sense to specialize attributes for call sites arguments instead of
+ // redirecting requests to the callee argument.
+ Function *F = getAssociatedFunction();
+ const IRPosition &FnPos = IRPosition::function(*F);
+ auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos);
+ return clampStateAndIndicateChange(
+ getState(),
+ static_cast<const AANoUnwind::StateType &>(FnAA.getState()));
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
+};
+
+/// --------------------- Function Return Values -------------------------------
+
+/// "Attribute" that collects all potential returned values and the return
+/// instructions that they arise from.
+///
+/// If there is a unique returned value R, the manifest method will:
+/// - mark R with the "returned" attribute, if R is an argument.
+class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
+
+ /// Mapping of values potentially returned by the associated function to the
+ /// return instructions that might return them.
+ MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
+
+ /// Mapping to remember the number of returned values for a call site such
+ /// that we can avoid updates if nothing changed.
+ DenseMap<const CallBase *, unsigned> NumReturnedValuesPerKnownAA;
+
+ /// Set of unresolved calls returned by the associated function.
+ SmallSetVector<CallBase *, 4> UnresolvedCalls;
+
+ /// State flags
+ ///
+ ///{
+ bool IsFixed = false;
+ bool IsValidState = true;
+ ///}
+
+public:
+ AAReturnedValuesImpl(const IRPosition &IRP) : AAReturnedValues(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ // Reset the state.
+ IsFixed = false;
+ IsValidState = true;
+ ReturnedValues.clear();
+
+ Function *F = getAssociatedFunction();
+ if (!F) {
+ indicatePessimisticFixpoint();
+ return;
+ }
+ assert(!F->getReturnType()->isVoidTy() &&
+ "Did not expect a void return type!");
+
+ // The map from instruction opcodes to those instructions in the function.
+ auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
+
+ // Look through all arguments, if one is marked as returned we are done.
+ for (Argument &Arg : F->args()) {
+ if (Arg.hasReturnedAttr()) {
+ auto &ReturnInstSet = ReturnedValues[&Arg];
+ for (Instruction *RI : OpcodeInstMap[Instruction::Ret])
+ ReturnInstSet.insert(cast<ReturnInst>(RI));
+
+ indicateOptimisticFixpoint();
+ return;
+ }
+ }
+
+ if (!A.isFunctionIPOAmendable(*F))
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::manifest(...).
+ ChangeStatus manifest(Attributor &A) override;
+
+ /// See AbstractAttribute::getState(...).
+ AbstractState &getState() override { return *this; }
+
+ /// See AbstractAttribute::getState(...).
+ const AbstractState &getState() const override { return *this; }
+
+ /// See AbstractAttribute::updateImpl(Attributor &A).
+ ChangeStatus updateImpl(Attributor &A) override;
+
+ llvm::iterator_range<iterator> returned_values() override {
+ return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
+ }
+
+ llvm::iterator_range<const_iterator> returned_values() const override {
+ return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
+ }
+
+ const SmallSetVector<CallBase *, 4> &getUnresolvedCalls() const override {
+ return UnresolvedCalls;
+ }
+
+ /// Return the number of potential return values, -1 if unknown.
+ size_t getNumReturnValues() const override {
+ return isValidState() ? ReturnedValues.size() : -1;
+ }
+
+ /// Return an assumed unique return value if a single candidate is found. If
+ /// there cannot be one, return a nullptr. If it is not clear yet, return the
+ /// Optional::NoneType.
+ Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
+
+ /// See AbstractState::checkForAllReturnedValues(...).
+ bool checkForAllReturnedValuesAndReturnInsts(
+ function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
+ const override;
+
+ /// Pretty print the attribute similar to the IR representation.
+ const std::string getAsStr() const override;
+
+ /// See AbstractState::isAtFixpoint().
+ bool isAtFixpoint() const override { return IsFixed; }
+
+ /// See AbstractState::isValidState().
+ bool isValidState() const override { return IsValidState; }
+
+ /// See AbstractState::indicateOptimisticFixpoint(...).
+ ChangeStatus indicateOptimisticFixpoint() override {
+ IsFixed = true;
+ return ChangeStatus::UNCHANGED;
+ }
+
+ ChangeStatus indicatePessimisticFixpoint() override {
+ IsFixed = true;
+ IsValidState = false;
+ return ChangeStatus::CHANGED;
+ }
+};
+
+ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
+ ChangeStatus Changed = ChangeStatus::UNCHANGED;
+
+ // Bookkeeping.
+ assert(isValidState());
+ STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
+ "Number of function with known return values");
+
+ // Check if we have an assumed unique return value that we could manifest.
+ Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
+
+ if (!UniqueRV.hasValue() || !UniqueRV.getValue())
+ return Changed;
+
+ // Bookkeeping.
+ STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
+ "Number of function with unique return");
+
+ // Callback to replace the uses of CB with the constant C.
+ auto ReplaceCallSiteUsersWith = [&A](CallBase &CB, Constant &C) {
+ if (CB.getNumUses() == 0)
+ return ChangeStatus::UNCHANGED;
+ if (A.changeValueAfterManifest(CB, C))
+ return ChangeStatus::CHANGED;
+ return ChangeStatus::UNCHANGED;
+ };
+
+ // If the assumed unique return value is an argument, annotate it.
+ if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
+ // TODO: This should be handled differently!
+ this->AnchorVal = UniqueRVArg;
+ this->KindOrArgNo = UniqueRVArg->getArgNo();
+ Changed = IRAttribute::manifest(A);
+ } else if (auto *RVC = dyn_cast<Constant>(UniqueRV.getValue())) {
+ // We can replace the returned value with the unique returned constant.
+ Value &AnchorValue = getAnchorValue();
+ if (Function *F = dyn_cast<Function>(&AnchorValue)) {
+ for (const Use &U : F->uses())
+ if (CallBase *CB = dyn_cast<CallBase>(U.getUser()))
+ if (CB->isCallee(&U)) {
+ Constant *RVCCast =
+ CB->getType() == RVC->getType()
+ ? RVC
+ : ConstantExpr::getTruncOrBitCast(RVC, CB->getType());
+ Changed = ReplaceCallSiteUsersWith(*CB, *RVCCast) | Changed;
+ }
+ } else {
+ assert(isa<CallBase>(AnchorValue) &&
+ "Expcected a function or call base anchor!");
+ Constant *RVCCast =
+ AnchorValue.getType() == RVC->getType()
+ ? RVC
+ : ConstantExpr::getTruncOrBitCast(RVC, AnchorValue.getType());
+ Changed = ReplaceCallSiteUsersWith(cast<CallBase>(AnchorValue), *RVCCast);
+ }
+ if (Changed == ChangeStatus::CHANGED)
+ STATS_DECLTRACK(UniqueConstantReturnValue, FunctionReturn,
+ "Number of function returns replaced by constant return");
+ }
+
+ return Changed;
+}
+
+const std::string AAReturnedValuesImpl::getAsStr() const {
+ return (isAtFixpoint() ? "returns(#" : "may-return(#") +
+ (isValidState() ? std::to_string(getNumReturnValues()) : "?") +
+ ")[#UC: " + std::to_string(UnresolvedCalls.size()) + "]";
+}
+
+Optional<Value *>
+AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
+ // If checkForAllReturnedValues provides a unique value, ignoring potential
+ // undef values that can also be present, it is assumed to be the actual
+ // return value and forwarded to the caller of this method. If there are
+ // multiple, a nullptr is returned indicating there cannot be a unique
+ // returned value.
+ Optional<Value *> UniqueRV;
+
+ auto Pred = [&](Value &RV) -> bool {
+ // If we found a second returned value and neither the current nor the saved
+ // one is an undef, there is no unique returned value. Undefs are special
+ // since we can pretend they have any value.
+ if (UniqueRV.hasValue() && UniqueRV != &RV &&
+ !(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) {
+ UniqueRV = nullptr;
+ return false;
+ }
+
+ // Do not overwrite a value with an undef.
+ if (!UniqueRV.hasValue() || !isa<UndefValue>(RV))
+ UniqueRV = &RV;
+
+ return true;
+ };
+
+ if (!A.checkForAllReturnedValues(Pred, *this))
+ UniqueRV = nullptr;
+
+ return UniqueRV;
+}
+
+bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
+ function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
+ const {
+ if (!isValidState())
+ return false;
+
+ // Check all returned values but ignore call sites as long as we have not
+ // encountered an overdefined one during an update.
+ for (auto &It : ReturnedValues) {
+ Value *RV = It.first;
+
+ CallBase *CB = dyn_cast<CallBase>(RV);
+ if (CB && !UnresolvedCalls.count(CB))
+ continue;
+
+ if (!Pred(*RV, It.second))
+ return false;
+ }
+
+ return true;
+}
+
+ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
+ size_t NumUnresolvedCalls = UnresolvedCalls.size();
+ bool Changed = false;
+
+ // State used in the value traversals starting in returned values.
+ struct RVState {
+ // The map in which we collect return values -> return instrs.
+ decltype(ReturnedValues) &RetValsMap;
+ // The flag to indicate a change.
+ bool &Changed;
+ // The return instrs we come from.
+ SmallSetVector<ReturnInst *, 4> RetInsts;
+ };
+
+ // Callback for a leaf value returned by the associated function.
+ auto VisitValueCB = [](Value &Val, const Instruction *, RVState &RVS,
+ bool) -> bool {
+ auto Size = RVS.RetValsMap[&Val].size();
+ RVS.RetValsMap[&Val].insert(RVS.RetInsts.begin(), RVS.RetInsts.end());
+ bool Inserted = RVS.RetValsMap[&Val].size() != Size;
+ RVS.Changed |= Inserted;
+ LLVM_DEBUG({
+ if (Inserted)
+ dbgs() << "[AAReturnedValues] 1 Add new returned value " << Val
+ << " => " << RVS.RetInsts.size() << "\n";
+ });
+ return true;
+ };
+
+ // Helper method to invoke the generic value traversal.
+ auto VisitReturnedValue = [&](Value &RV, RVState &RVS,
+ const Instruction *CtxI) {
+ IRPosition RetValPos = IRPosition::value(RV);
+ return genericValueTraversal<AAReturnedValues, RVState>(
+ A, RetValPos, *this, RVS, VisitValueCB, CtxI);
+ };
+
+ // Callback for all "return intructions" live in the associated function.
+ auto CheckReturnInst = [this, &VisitReturnedValue, &Changed](Instruction &I) {
+ ReturnInst &Ret = cast<ReturnInst>(I);
+ RVState RVS({ReturnedValues, Changed, {}});
+ RVS.RetInsts.insert(&Ret);
+ return VisitReturnedValue(*Ret.getReturnValue(), RVS, &I);
+ };
+
+ // Start by discovering returned values from all live returned instructions in
+ // the associated function.
+ if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}))
+ return indicatePessimisticFixpoint();
+
+ // Once returned values "directly" present in the code are handled we try to
+ // resolve returned calls.
+ decltype(ReturnedValues) NewRVsMap;
+ for (auto &It : ReturnedValues) {
+ LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned value: " << *It.first
+ << " by #" << It.second.size() << " RIs\n");
+ CallBase *CB = dyn_cast<CallBase>(It.first);
+ if (!CB || UnresolvedCalls.count(CB))
+ continue;
+
+ if (!CB->getCalledFunction()) {
+ LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
+ << "\n");
+ UnresolvedCalls.insert(CB);
+ continue;
+ }
+
+ // TODO: use the function scope once we have call site AAReturnedValues.
+ const auto &RetValAA = A.getAAFor<AAReturnedValues>(
+ *this, IRPosition::function(*CB->getCalledFunction()));
+ LLVM_DEBUG(dbgs() << "[AAReturnedValues] Found another AAReturnedValues: "
+ << RetValAA << "\n");
+
+ // Skip dead ends, thus if we do not know anything about the returned
+ // call we mark it as unresolved and it will stay that way.
+ if (!RetValAA.getState().isValidState()) {
+ LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
+ << "\n");
+ UnresolvedCalls.insert(CB);
+ continue;
+ }
+
+ // Do not try to learn partial information. If the callee has unresolved
+ // return values we will treat the call as unresolved/opaque.
+ auto &RetValAAUnresolvedCalls = RetValAA.getUnresolvedCalls();
+ if (!RetValAAUnresolvedCalls.empty()) {
+ UnresolvedCalls.insert(CB);
+ continue;
+ }
+
+ // Now check if we can track transitively returned values. If possible, thus
+ // if all return value can be represented in the current scope, do so.
+ bool Unresolved = false;
+ for (auto &RetValAAIt : RetValAA.returned_values()) {
+ Value *RetVal = RetValAAIt.first;
+ if (isa<Argument>(RetVal) || isa<CallBase>(RetVal) ||
+ isa<Constant>(RetVal))
+ continue;
+ // Anything that did not fit in the above categories cannot be resolved,
+ // mark the call as unresolved.
+ LLVM_DEBUG(dbgs() << "[AAReturnedValues] transitively returned value "
+ "cannot be translated: "
+ << *RetVal << "\n");
+ UnresolvedCalls.insert(CB);
+ Unresolved = true;
+ break;
+ }
+
+ if (Unresolved)
+ continue;
+
+ // Now track transitively returned values.
+ unsigned &NumRetAA = NumReturnedValuesPerKnownAA[CB];
+ if (NumRetAA == RetValAA.getNumReturnValues()) {
+ LLVM_DEBUG(dbgs() << "[AAReturnedValues] Skip call as it has not "
+ "changed since it was seen last\n");
+ continue;
+ }
+ NumRetAA = RetValAA.getNumReturnValues();
+
+ for (auto &RetValAAIt : RetValAA.returned_values()) {
+ Value *RetVal = RetValAAIt.first;
+ if (Argument *Arg = dyn_cast<Argument>(RetVal)) {
+ // Arguments are mapped to call site operands and we begin the traversal
+ // again.
+ bool Unused = false;
+ RVState RVS({NewRVsMap, Unused, RetValAAIt.second});
+ VisitReturnedValue(*CB->getArgOperand(Arg->getArgNo()), RVS, CB);
+ continue;
+ } else if (isa<CallBase>(RetVal)) {
+ // Call sites are resolved by the callee attribute over time, no need to
+ // do anything for us.
+ continue;
+ } else if (isa<Constant>(RetVal)) {
+ // Constants are valid everywhere, we can simply take them.
+ NewRVsMap[RetVal].insert(It.second.begin(), It.second.end());
+ continue;
+ }
+ }
+ }
+
+ // To avoid modifications to the ReturnedValues map while we iterate over it
+ // we kept record of potential new entries in a copy map, NewRVsMap.
+ for (auto &It : NewRVsMap) {
+ assert(!It.second.empty() && "Entry does not add anything.");
+ auto &ReturnInsts = ReturnedValues[It.first];
+ for (ReturnInst *RI : It.second)
+ if (ReturnInsts.insert(RI)) {
+ LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value "
+ << *It.first << " => " << *RI << "\n");
+ Changed = true;
+ }
+ }
+
+ Changed |= (NumUnresolvedCalls != UnresolvedCalls.size());
+ return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
+}
+
+struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
+ AAReturnedValuesFunction(const IRPosition &IRP) : AAReturnedValuesImpl(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
+};
+
+/// Returned values information for a call sites.
+struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
+ AAReturnedValuesCallSite(const IRPosition &IRP) : AAReturnedValuesImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ // TODO: Once we have call site specific value information we can provide
+ // call site specific liveness information and then it makes
+ // sense to specialize attributes for call sites instead of
+ // redirecting requests to the callee.
+ llvm_unreachable("Abstract attributes for returned values are not "
+ "supported for call sites yet!");
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ return indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {}
+};
+
+/// ------------------------ NoSync Function Attribute -------------------------
+
+struct AANoSyncImpl : AANoSync {
+ AANoSyncImpl(const IRPosition &IRP) : AANoSync(IRP) {}
+
+ const std::string getAsStr() const override {
+ return getAssumed() ? "nosync" : "may-sync";
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override;
+
+ /// Helper function used to determine whether an instruction is non-relaxed
+ /// atomic. In other words, if an atomic instruction does not have unordered
+ /// or monotonic ordering
+ static bool isNonRelaxedAtomic(Instruction *I);
+
+ /// Helper function used to determine whether an instruction is volatile.
+ static bool isVolatile(Instruction *I);
+
+ /// Helper function uset to check if intrinsic is volatile (memcpy, memmove,
+ /// memset).
+ static bool isNoSyncIntrinsic(Instruction *I);
+};
+
+bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
+ if (!I->isAtomic())
+ return false;
+
+ AtomicOrdering Ordering;
+ switch (I->getOpcode()) {
+ case Instruction::AtomicRMW:
+ Ordering = cast<AtomicRMWInst>(I)->getOrdering();
+ break;
+ case Instruction::Store:
+ Ordering = cast<StoreInst>(I)->getOrdering();
+ break;
+ case Instruction::Load:
+ Ordering = cast<LoadInst>(I)->getOrdering();
+ break;
+ case Instruction::Fence: {
+ auto *FI = cast<FenceInst>(I);
+ if (FI->getSyncScopeID() == SyncScope::SingleThread)
+ return false;
+ Ordering = FI->getOrdering();
+ break;
+ }
+ case Instruction::AtomicCmpXchg: {
+ AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering();
+ AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering();
+ // Only if both are relaxed, than it can be treated as relaxed.
+ // Otherwise it is non-relaxed.
+ if (Success != AtomicOrdering::Unordered &&
+ Success != AtomicOrdering::Monotonic)
+ return true;
+ if (Failure != AtomicOrdering::Unordered &&
+ Failure != AtomicOrdering::Monotonic)
+ return true;
+ return false;
+ }
+ default:
+ llvm_unreachable(
+ "New atomic operations need to be known in the attributor.");
+ }
+
+ // Relaxed.
+ if (Ordering == AtomicOrdering::Unordered ||
+ Ordering == AtomicOrdering::Monotonic)
+ return false;
+ return true;
+}
+
+/// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics.
+/// FIXME: We should ipmrove the handling of intrinsics.
+bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
+ if (auto *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ /// Element wise atomic memory intrinsics are can only be unordered,
+ /// therefore nosync.
+ case Intrinsic::memset_element_unordered_atomic:
+ case Intrinsic::memmove_element_unordered_atomic:
+ case Intrinsic::memcpy_element_unordered_atomic:
+ return true;
+ case Intrinsic::memset:
+ case Intrinsic::memmove:
+ case Intrinsic::memcpy:
+ if (!cast<MemIntrinsic>(II)->isVolatile())
+ return true;
+ return false;
+ default:
+ return false;
+ }
+ }
+ return false;
+}
+
+bool AANoSyncImpl::isVolatile(Instruction *I) {
+ assert(!ImmutableCallSite(I) && !isa<CallBase>(I) &&
+ "Calls should not be checked here");
+
+ switch (I->getOpcode()) {
+ case Instruction::AtomicRMW:
+ return cast<AtomicRMWInst>(I)->isVolatile();
+ case Instruction::Store:
+ return cast<StoreInst>(I)->isVolatile();
+ case Instruction::Load:
+ return cast<LoadInst>(I)->isVolatile();
+ case Instruction::AtomicCmpXchg:
+ return cast<AtomicCmpXchgInst>(I)->isVolatile();
+ default:
+ return false;
+ }
+}
+
+ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
+
+ auto CheckRWInstForNoSync = [&](Instruction &I) {
+ /// We are looking for volatile instructions or Non-Relaxed atomics.
+ /// FIXME: We should improve the handling of intrinsics.
+
+ if (isa<IntrinsicInst>(&I) && isNoSyncIntrinsic(&I))
+ return true;
+
+ if (ImmutableCallSite ICS = ImmutableCallSite(&I)) {
+ if (ICS.hasFnAttr(Attribute::NoSync))
+ return true;
+
+ const auto &NoSyncAA =
+ A.getAAFor<AANoSync>(*this, IRPosition::callsite_function(ICS));
+ if (NoSyncAA.isAssumedNoSync())
+ return true;
+ return false;
+ }
+
+ if (!isVolatile(&I) && !isNonRelaxedAtomic(&I))
+ return true;
+
+ return false;
+ };
+
+ auto CheckForNoSync = [&](Instruction &I) {
+ // At this point we handled all read/write effects and they are all
+ // nosync, so they can be skipped.
+ if (I.mayReadOrWriteMemory())
+ return true;
+
+ // non-convergent and readnone imply nosync.
+ return !ImmutableCallSite(&I).isConvergent();
+ };
+
+ if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this) ||
+ !A.checkForAllCallLikeInstructions(CheckForNoSync, *this))
+ return indicatePessimisticFixpoint();
+
+ return ChangeStatus::UNCHANGED;
+}
+
+struct AANoSyncFunction final : public AANoSyncImpl {
+ AANoSyncFunction(const IRPosition &IRP) : AANoSyncImpl(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
+};
+
+/// NoSync attribute deduction for a call sites.
+struct AANoSyncCallSite final : AANoSyncImpl {
+ AANoSyncCallSite(const IRPosition &IRP) : AANoSyncImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ AANoSyncImpl::initialize(A);
+ Function *F = getAssociatedFunction();
+ if (!F)
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ // TODO: Once we have call site specific value information we can provide
+ // call site specific liveness information and then it makes
+ // sense to specialize attributes for call sites arguments instead of
+ // redirecting requests to the callee argument.
+ Function *F = getAssociatedFunction();
+ const IRPosition &FnPos = IRPosition::function(*F);
+ auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos);
+ return clampStateAndIndicateChange(
+ getState(), static_cast<const AANoSync::StateType &>(FnAA.getState()));
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
+};
+
+/// ------------------------ No-Free Attributes ----------------------------
+
+struct AANoFreeImpl : public AANoFree {
+ AANoFreeImpl(const IRPosition &IRP) : AANoFree(IRP) {}
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ auto CheckForNoFree = [&](Instruction &I) {
+ ImmutableCallSite ICS(&I);
+ if (ICS.hasFnAttr(Attribute::NoFree))
+ return true;
+
+ const auto &NoFreeAA =
+ A.getAAFor<AANoFree>(*this, IRPosition::callsite_function(ICS));
+ return NoFreeAA.isAssumedNoFree();
+ };
+
+ if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this))
+ return indicatePessimisticFixpoint();
+ return ChangeStatus::UNCHANGED;
+ }
+
+ /// See AbstractAttribute::getAsStr().
+ const std::string getAsStr() const override {
+ return getAssumed() ? "nofree" : "may-free";
+ }
+};
+
+struct AANoFreeFunction final : public AANoFreeImpl {
+ AANoFreeFunction(const IRPosition &IRP) : AANoFreeImpl(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
+};
+
+/// NoFree attribute deduction for a call sites.
+struct AANoFreeCallSite final : AANoFreeImpl {
+ AANoFreeCallSite(const IRPosition &IRP) : AANoFreeImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ AANoFreeImpl::initialize(A);
+ Function *F = getAssociatedFunction();
+ if (!F)
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ // TODO: Once we have call site specific value information we can provide
+ // call site specific liveness information and then it makes
+ // sense to specialize attributes for call sites arguments instead of
+ // redirecting requests to the callee argument.
+ Function *F = getAssociatedFunction();
+ const IRPosition &FnPos = IRPosition::function(*F);
+ auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos);
+ return clampStateAndIndicateChange(
+ getState(), static_cast<const AANoFree::StateType &>(FnAA.getState()));
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
+};
+
+/// NoFree attribute for floating values.
+struct AANoFreeFloating : AANoFreeImpl {
+ AANoFreeFloating(const IRPosition &IRP) : AANoFreeImpl(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
+
+ /// See Abstract Attribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ const IRPosition &IRP = getIRPosition();
+
+ const auto &NoFreeAA =
+ A.getAAFor<AANoFree>(*this, IRPosition::function_scope(IRP));
+ if (NoFreeAA.isAssumedNoFree())
+ return ChangeStatus::UNCHANGED;
+
+ Value &AssociatedValue = getIRPosition().getAssociatedValue();
+ auto Pred = [&](const Use &U, bool &Follow) -> bool {
+ Instruction *UserI = cast<Instruction>(U.getUser());
+ if (auto *CB = dyn_cast<CallBase>(UserI)) {
+ if (CB->isBundleOperand(&U))
+ return false;
+ if (!CB->isArgOperand(&U))
+ return true;
+ unsigned ArgNo = CB->getArgOperandNo(&U);
+
+ const auto &NoFreeArg = A.getAAFor<AANoFree>(
+ *this, IRPosition::callsite_argument(*CB, ArgNo));
+ return NoFreeArg.isAssumedNoFree();
+ }
+
+ if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
+ isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
+ Follow = true;
+ return true;
+ }
+ if (isa<ReturnInst>(UserI))
+ return true;
+
+ // Unknown user.
+ return false;
+ };
+ if (!A.checkForAllUses(Pred, *this, AssociatedValue))
+ return indicatePessimisticFixpoint();
+
+ return ChangeStatus::UNCHANGED;
+ }
+};
+
+/// NoFree attribute for a call site argument.
+struct AANoFreeArgument final : AANoFreeFloating {
+ AANoFreeArgument(const IRPosition &IRP) : AANoFreeFloating(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
+};
+
+/// NoFree attribute for call site arguments.
+struct AANoFreeCallSiteArgument final : AANoFreeFloating {
+ AANoFreeCallSiteArgument(const IRPosition &IRP) : AANoFreeFloating(IRP) {}
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ // TODO: Once we have call site specific value information we can provide
+ // call site specific liveness information and then it makes
+ // sense to specialize attributes for call sites arguments instead of
+ // redirecting requests to the callee argument.
+ Argument *Arg = getAssociatedArgument();
+ if (!Arg)
+ return indicatePessimisticFixpoint();
+ const IRPosition &ArgPos = IRPosition::argument(*Arg);
+ auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos);
+ return clampStateAndIndicateChange(
+ getState(), static_cast<const AANoFree::StateType &>(ArgAA.getState()));
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
+};
+
+/// NoFree attribute for function return value.
+struct AANoFreeReturned final : AANoFreeFloating {
+ AANoFreeReturned(const IRPosition &IRP) : AANoFreeFloating(IRP) {
+ llvm_unreachable("NoFree is not applicable to function returns!");
+ }
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ llvm_unreachable("NoFree is not applicable to function returns!");
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ llvm_unreachable("NoFree is not applicable to function returns!");
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {}
+};
+
+/// NoFree attribute deduction for a call site return value.
+struct AANoFreeCallSiteReturned final : AANoFreeFloating {
+ AANoFreeCallSiteReturned(const IRPosition &IRP) : AANoFreeFloating(IRP) {}
+
+ ChangeStatus manifest(Attributor &A) override {
+ return ChangeStatus::UNCHANGED;
+ }
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
+};
+
+/// ------------------------ NonNull Argument Attribute ------------------------
+static int64_t getKnownNonNullAndDerefBytesForUse(
+ Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
+ const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
+ TrackUse = false;
+
+ const Value *UseV = U->get();
+ if (!UseV->getType()->isPointerTy())
+ return 0;
+
+ Type *PtrTy = UseV->getType();
+ const Function *F = I->getFunction();
+ bool NullPointerIsDefined =
+ F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
+ const DataLayout &DL = A.getInfoCache().getDL();
+ if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
+ if (ICS.isBundleOperand(U))
+ return 0;
+
+ if (ICS.isCallee(U)) {
+ IsNonNull |= !NullPointerIsDefined;
+ return 0;
+ }
+
+ unsigned ArgNo = ICS.getArgumentNo(U);
+ IRPosition IRP = IRPosition::callsite_argument(ICS, ArgNo);
+ // As long as we only use known information there is no need to track
+ // dependences here.
+ auto &DerefAA = A.getAAFor<AADereferenceable>(QueryingAA, IRP,
+ /* TrackDependence */ false);
+ IsNonNull |= DerefAA.isKnownNonNull();
+ return DerefAA.getKnownDereferenceableBytes();
+ }
+
+ // We need to follow common pointer manipulation uses to the accesses they
+ // feed into. We can try to be smart to avoid looking through things we do not
+ // like for now, e.g., non-inbounds GEPs.
+ if (isa<CastInst>(I)) {
+ TrackUse = true;
+ return 0;
+ }
+ if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
+ if (GEP->hasAllConstantIndices()) {
+ TrackUse = true;
+ return 0;
+ }
+
+ int64_t Offset;
+ if (const Value *Base = getBasePointerOfAccessPointerOperand(I, Offset, DL)) {
+ if (Base == &AssociatedValue &&
+ getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
+ int64_t DerefBytes =
+ (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset;
+
+ IsNonNull |= !NullPointerIsDefined;
+ return std::max(int64_t(0), DerefBytes);
+ }
+ }
+
+ /// Corner case when an offset is 0.
+ if (const Value *Base = getBasePointerOfAccessPointerOperand(
+ I, Offset, DL, /*AllowNonInbounds*/ true)) {
+ if (Offset == 0 && Base == &AssociatedValue &&
+ getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
+ int64_t DerefBytes =
+ (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType());
+ IsNonNull |= !NullPointerIsDefined;
+ return std::max(int64_t(0), DerefBytes);
+ }
+ }
+
+ return 0;
+}
+
+struct AANonNullImpl : AANonNull {
+ AANonNullImpl(const IRPosition &IRP)
+ : AANonNull(IRP),
+ NullIsDefined(NullPointerIsDefined(
+ getAnchorScope(),
+ getAssociatedValue().getType()->getPointerAddressSpace())) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ if (!NullIsDefined &&
+ hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
+ /* IgnoreSubsumingPositions */ false, &A))
+ indicateOptimisticFixpoint();
+ else if (isa<ConstantPointerNull>(getAssociatedValue()))
+ indicatePessimisticFixpoint();
+ else
+ AANonNull::initialize(A);
+ }
+
+ /// See AAFromMustBeExecutedContext
+ bool followUse(Attributor &A, const Use *U, const Instruction *I,
+ AANonNull::StateType &State) {
+ bool IsNonNull = false;
+ bool TrackUse = false;
+ getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
+ IsNonNull, TrackUse);
+ State.setKnown(IsNonNull);
+ return TrackUse;
+ }
+
+ /// See AbstractAttribute::getAsStr().
+ const std::string getAsStr() const override {
+ return getAssumed() ? "nonnull" : "may-null";
+ }
+
+ /// Flag to determine if the underlying value can be null and still allow
+ /// valid accesses.
+ const bool NullIsDefined;
+};
+
+/// NonNull attribute for a floating value.
+struct AANonNullFloating
+ : AAFromMustBeExecutedContext<AANonNull, AANonNullImpl> {
+ using Base = AAFromMustBeExecutedContext<AANonNull, AANonNullImpl>;
+ AANonNullFloating(const IRPosition &IRP) : Base(IRP) {}
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ ChangeStatus Change = Base::updateImpl(A);
+ if (isKnownNonNull())
+ return Change;
+
+ if (!NullIsDefined) {
+ const auto &DerefAA =
+ A.getAAFor<AADereferenceable>(*this, getIRPosition());
+ if (DerefAA.getAssumedDereferenceableBytes())
+ return Change;
+ }
+
+ const DataLayout &DL = A.getDataLayout();
+
+ DominatorTree *DT = nullptr;
+ AssumptionCache *AC = nullptr;
+ InformationCache &InfoCache = A.getInfoCache();
+ if (const Function *Fn = getAnchorScope()) {
+ DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
+ AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
+ }
+
+ auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
+ AANonNull::StateType &T, bool Stripped) -> bool {
+ const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V));
+ if (!Stripped && this == &AA) {
+ if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
+ T.indicatePessimisticFixpoint();
+ } else {
+ // Use abstract attribute information.
+ const AANonNull::StateType &NS =
+ static_cast<const AANonNull::StateType &>(AA.getState());
+ T ^= NS;
+ }
+ return T.isValidState();
+ };
+
+ StateType T;
+ if (!genericValueTraversal<AANonNull, StateType>(
+ A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
+ return indicatePessimisticFixpoint();
+
+ return clampStateAndIndicateChange(getState(), T);
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
+};
+
+/// NonNull attribute for function return value.
+struct AANonNullReturned final
+ : AAReturnedFromReturnedValues<AANonNull, AANonNullImpl> {
+ AANonNullReturned(const IRPosition &IRP)
+ : AAReturnedFromReturnedValues<AANonNull, AANonNullImpl>(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
+};
+
+/// NonNull attribute for function argument.
+struct AANonNullArgument final
+ : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AANonNull,
+ AANonNullImpl> {
+ AANonNullArgument(const IRPosition &IRP)
+ : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AANonNull,
+ AANonNullImpl>(
+ IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
+};
+
+struct AANonNullCallSiteArgument final : AANonNullFloating {
+ AANonNullCallSiteArgument(const IRPosition &IRP) : AANonNullFloating(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
+};
+
+/// NonNull attribute for a call site return position.
+struct AANonNullCallSiteReturned final
+ : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AANonNull,
+ AANonNullImpl> {
+ AANonNullCallSiteReturned(const IRPosition &IRP)
+ : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AANonNull,
+ AANonNullImpl>(
+ IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
+};
+
+/// ------------------------ No-Recurse Attributes ----------------------------
+
+struct AANoRecurseImpl : public AANoRecurse {
+ AANoRecurseImpl(const IRPosition &IRP) : AANoRecurse(IRP) {}
+
+ /// See AbstractAttribute::getAsStr()
+ const std::string getAsStr() const override {
+ return getAssumed() ? "norecurse" : "may-recurse";
+ }
+};
+
+struct AANoRecurseFunction final : AANoRecurseImpl {
+ AANoRecurseFunction(const IRPosition &IRP) : AANoRecurseImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ AANoRecurseImpl::initialize(A);
+ if (const Function *F = getAnchorScope())
+ if (A.getInfoCache().getSccSize(*F) != 1)
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+
+ // If all live call sites are known to be no-recurse, we are as well.
+ auto CallSitePred = [&](AbstractCallSite ACS) {
+ const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
+ *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
+ /* TrackDependence */ false, DepClassTy::OPTIONAL);
+ return NoRecurseAA.isKnownNoRecurse();
+ };
+ bool AllCallSitesKnown;
+ if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) {
+ // If we know all call sites and all are known no-recurse, we are done.
+ // If all known call sites, which might not be all that exist, are known
+ // to be no-recurse, we are not done but we can continue to assume
+ // no-recurse. If one of the call sites we have not visited will become
+ // live, another update is triggered.
+ if (AllCallSitesKnown)
+ indicateOptimisticFixpoint();
+ return ChangeStatus::UNCHANGED;
+ }
+
+ // If the above check does not hold anymore we look at the calls.
+ auto CheckForNoRecurse = [&](Instruction &I) {
+ ImmutableCallSite ICS(&I);
+ if (ICS.hasFnAttr(Attribute::NoRecurse))
+ return true;
+
+ const auto &NoRecurseAA =
+ A.getAAFor<AANoRecurse>(*this, IRPosition::callsite_function(ICS));
+ if (!NoRecurseAA.isAssumedNoRecurse())
+ return false;
+
+ // Recursion to the same function
+ if (ICS.getCalledFunction() == getAnchorScope())
+ return false;
+
+ return true;
+ };
+
+ if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this))
+ return indicatePessimisticFixpoint();
+ return ChangeStatus::UNCHANGED;
+ }
+
+ void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
+};
+
+/// NoRecurse attribute deduction for a call sites.
+struct AANoRecurseCallSite final : AANoRecurseImpl {
+ AANoRecurseCallSite(const IRPosition &IRP) : AANoRecurseImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ AANoRecurseImpl::initialize(A);
+ Function *F = getAssociatedFunction();
+ if (!F)
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ // TODO: Once we have call site specific value information we can provide
+ // call site specific liveness information and then it makes
+ // sense to specialize attributes for call sites arguments instead of
+ // redirecting requests to the callee argument.
+ Function *F = getAssociatedFunction();
+ const IRPosition &FnPos = IRPosition::function(*F);
+ auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos);
+ return clampStateAndIndicateChange(
+ getState(),
+ static_cast<const AANoRecurse::StateType &>(FnAA.getState()));
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
+};
+
+/// -------------------- Undefined-Behavior Attributes ------------------------
+
+struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
+ AAUndefinedBehaviorImpl(const IRPosition &IRP) : AAUndefinedBehavior(IRP) {}
+
+ /// See AbstractAttribute::updateImpl(...).
+ // through a pointer (i.e. also branches etc.)
+ ChangeStatus updateImpl(Attributor &A) override {
+ const size_t UBPrevSize = KnownUBInsts.size();
+ const size_t NoUBPrevSize = AssumedNoUBInsts.size();
+
+ auto InspectMemAccessInstForUB = [&](Instruction &I) {
+ // Skip instructions that are already saved.
+ if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
+ return true;
+
+ // If we reach here, we know we have an instruction
+ // that accesses memory through a pointer operand,
+ // for which getPointerOperand() should give it to us.
+ const Value *PtrOp = getPointerOperand(&I, /* AllowVolatile */ true);
+ assert(PtrOp &&
+ "Expected pointer operand of memory accessing instruction");
+
+ // Either we stopped and the appropriate action was taken,
+ // or we got back a simplified value to continue.
+ Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
+ if (!SimplifiedPtrOp.hasValue())
+ return true;
+ const Value *PtrOpVal = SimplifiedPtrOp.getValue();
+
+ // A memory access through a pointer is considered UB
+ // only if the pointer has constant null value.
+ // TODO: Expand it to not only check constant values.
+ if (!isa<ConstantPointerNull>(PtrOpVal)) {
+ AssumedNoUBInsts.insert(&I);
+ return true;
+ }
+ const Type *PtrTy = PtrOpVal->getType();
+
+ // Because we only consider instructions inside functions,
+ // assume that a parent function exists.
+ const Function *F = I.getFunction();
+
+ // A memory access using constant null pointer is only considered UB
+ // if null pointer is _not_ defined for the target platform.
+ if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
+ AssumedNoUBInsts.insert(&I);
+ else
+ KnownUBInsts.insert(&I);
+ return true;
+ };
+
+ auto InspectBrInstForUB = [&](Instruction &I) {
+ // A conditional branch instruction is considered UB if it has `undef`
+ // condition.
+
+ // Skip instructions that are already saved.
+ if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
+ return true;
+
+ // We know we have a branch instruction.
+ auto BrInst = cast<BranchInst>(&I);
+
+ // Unconditional branches are never considered UB.
+ if (BrInst->isUnconditional())
+ return true;
+
+ // Either we stopped and the appropriate action was taken,
+ // or we got back a simplified value to continue.
+ Optional<Value *> SimplifiedCond =
+ stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
+ if (!SimplifiedCond.hasValue())
+ return true;
+ AssumedNoUBInsts.insert(&I);
+ return true;
+ };
+
+ A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
+ {Instruction::Load, Instruction::Store,
+ Instruction::AtomicCmpXchg,
+ Instruction::AtomicRMW},
+ /* CheckBBLivenessOnly */ true);
+ A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
+ /* CheckBBLivenessOnly */ true);
+ if (NoUBPrevSize != AssumedNoUBInsts.size() ||
+ UBPrevSize != KnownUBInsts.size())
+ return ChangeStatus::CHANGED;
+ return ChangeStatus::UNCHANGED;
+ }
+
+ bool isKnownToCauseUB(Instruction *I) const override {
+ return KnownUBInsts.count(I);
+ }
+
+ bool isAssumedToCauseUB(Instruction *I) const override {
+ // In simple words, if an instruction is not in the assumed to _not_
+ // cause UB, then it is assumed UB (that includes those
+ // in the KnownUBInsts set). The rest is boilerplate
+ // is to ensure that it is one of the instructions we test
+ // for UB.
+
+ switch (I->getOpcode()) {
+ case Instruction::Load:
+ case Instruction::Store:
+ case Instruction::AtomicCmpXchg:
+ case Instruction::AtomicRMW:
+ return !AssumedNoUBInsts.count(I);
+ case Instruction::Br: {
+ auto BrInst = cast<BranchInst>(I);
+ if (BrInst->isUnconditional())
+ return false;
+ return !AssumedNoUBInsts.count(I);
+ } break;
+ default:
+ return false;
+ }
+ return false;
+ }
+
+ ChangeStatus manifest(Attributor &A) override {
+ if (KnownUBInsts.empty())
+ return ChangeStatus::UNCHANGED;
+ for (Instruction *I : KnownUBInsts)
+ A.changeToUnreachableAfterManifest(I);
+ return ChangeStatus::CHANGED;
+ }
+
+ /// See AbstractAttribute::getAsStr()
+ const std::string getAsStr() const override {
+ return getAssumed() ? "undefined-behavior" : "no-ub";
+ }
+
+ /// Note: The correctness of this analysis depends on the fact that the
+ /// following 2 sets will stop changing after some point.
+ /// "Change" here means that their size changes.
+ /// The size of each set is monotonically increasing
+ /// (we only add items to them) and it is upper bounded by the number of
+ /// instructions in the processed function (we can never save more
+ /// elements in either set than this number). Hence, at some point,
+ /// they will stop increasing.
+ /// Consequently, at some point, both sets will have stopped
+ /// changing, effectively making the analysis reach a fixpoint.
+
+ /// Note: These 2 sets are disjoint and an instruction can be considered
+ /// one of 3 things:
+ /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
+ /// the KnownUBInsts set.
+ /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
+ /// has a reason to assume it).
+ /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
+ /// could not find a reason to assume or prove that it can cause UB,
+ /// hence it assumes it doesn't. We have a set for these instructions
+ /// so that we don't reprocess them in every update.
+ /// Note however that instructions in this set may cause UB.
+
+protected:
+ /// A set of all live instructions _known_ to cause UB.
+ SmallPtrSet<Instruction *, 8> KnownUBInsts;
+
+private:
+ /// A set of all the (live) instructions that are assumed to _not_ cause UB.
+ SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
+
+ // Should be called on updates in which if we're processing an instruction
+ // \p I that depends on a value \p V, one of the following has to happen:
+ // - If the value is assumed, then stop.
+ // - If the value is known but undef, then consider it UB.
+ // - Otherwise, do specific processing with the simplified value.
+ // We return None in the first 2 cases to signify that an appropriate
+ // action was taken and the caller should stop.
+ // Otherwise, we return the simplified value that the caller should
+ // use for specific processing.
+ Optional<Value *> stopOnUndefOrAssumed(Attributor &A, const Value *V,
+ Instruction *I) {
+ const auto &ValueSimplifyAA =
+ A.getAAFor<AAValueSimplify>(*this, IRPosition::value(*V));
+ Optional<Value *> SimplifiedV =
+ ValueSimplifyAA.getAssumedSimplifiedValue(A);
+ if (!ValueSimplifyAA.isKnown()) {
+ // Don't depend on assumed values.
+ return llvm::None;
+ }
+ if (!SimplifiedV.hasValue()) {
+ // If it is known (which we tested above) but it doesn't have a value,
+ // then we can assume `undef` and hence the instruction is UB.
+ KnownUBInsts.insert(I);
+ return llvm::None;
+ }
+ Value *Val = SimplifiedV.getValue();
+ if (isa<UndefValue>(Val)) {
+ KnownUBInsts.insert(I);
+ return llvm::None;
+ }
+ return Val;
+ }
+};
+
+struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
+ AAUndefinedBehaviorFunction(const IRPosition &IRP)
+ : AAUndefinedBehaviorImpl(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECL(UndefinedBehaviorInstruction, Instruction,
+ "Number of instructions known to have UB");
+ BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
+ KnownUBInsts.size();
+ }
+};
+
+/// ------------------------ Will-Return Attributes ----------------------------
+
+// Helper function that checks whether a function has any cycle which we don't
+// know if it is bounded or not.
+// Loops with maximum trip count are considered bounded, any other cycle not.
+static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
+ ScalarEvolution *SE =
+ A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
+ LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
+ // If either SCEV or LoopInfo is not available for the function then we assume
+ // any cycle to be unbounded cycle.
+ // We use scc_iterator which uses Tarjan algorithm to find all the maximal
+ // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
+ if (!SE || !LI) {
+ for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
+ if (SCCI.hasCycle())
+ return true;
+ return false;
+ }
+
+ // If there's irreducible control, the function may contain non-loop cycles.
+ if (mayContainIrreducibleControl(F, LI))
+ return true;
+
+ // Any loop that does not have a max trip count is considered unbounded cycle.
+ for (auto *L : LI->getLoopsInPreorder()) {
+ if (!SE->getSmallConstantMaxTripCount(L))
+ return true;
+ }
+ return false;
+}
+
+struct AAWillReturnImpl : public AAWillReturn {
+ AAWillReturnImpl(const IRPosition &IRP) : AAWillReturn(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ AAWillReturn::initialize(A);
+
+ Function *F = getAnchorScope();
+ if (!F || !A.isFunctionIPOAmendable(*F) || mayContainUnboundedCycle(*F, A))
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ auto CheckForWillReturn = [&](Instruction &I) {
+ IRPosition IPos = IRPosition::callsite_function(ImmutableCallSite(&I));
+ const auto &WillReturnAA = A.getAAFor<AAWillReturn>(*this, IPos);
+ if (WillReturnAA.isKnownWillReturn())
+ return true;
+ if (!WillReturnAA.isAssumedWillReturn())
+ return false;
+ const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(*this, IPos);
+ return NoRecurseAA.isAssumedNoRecurse();
+ };
+
+ if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this))
+ return indicatePessimisticFixpoint();
+
+ return ChangeStatus::UNCHANGED;
+ }
+
+ /// See AbstractAttribute::getAsStr()
+ const std::string getAsStr() const override {
+ return getAssumed() ? "willreturn" : "may-noreturn";
+ }
+};
+
+struct AAWillReturnFunction final : AAWillReturnImpl {
+ AAWillReturnFunction(const IRPosition &IRP) : AAWillReturnImpl(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
+};
+
+/// WillReturn attribute deduction for a call sites.
+struct AAWillReturnCallSite final : AAWillReturnImpl {
+ AAWillReturnCallSite(const IRPosition &IRP) : AAWillReturnImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ AAWillReturnImpl::initialize(A);
+ Function *F = getAssociatedFunction();
+ if (!F)
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ // TODO: Once we have call site specific value information we can provide
+ // call site specific liveness information and then it makes
+ // sense to specialize attributes for call sites arguments instead of
+ // redirecting requests to the callee argument.
+ Function *F = getAssociatedFunction();
+ const IRPosition &FnPos = IRPosition::function(*F);
+ auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos);
+ return clampStateAndIndicateChange(
+ getState(),
+ static_cast<const AAWillReturn::StateType &>(FnAA.getState()));
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
+};
+
+/// -------------------AAReachability Attribute--------------------------
+
+struct AAReachabilityImpl : AAReachability {
+ AAReachabilityImpl(const IRPosition &IRP) : AAReachability(IRP) {}
+
+ const std::string getAsStr() const override {
+ // TODO: Return the number of reachable queries.
+ return "reachable";
+ }
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override { indicatePessimisticFixpoint(); }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ return indicatePessimisticFixpoint();
+ }
+};
+
+struct AAReachabilityFunction final : public AAReachabilityImpl {
+ AAReachabilityFunction(const IRPosition &IRP) : AAReachabilityImpl(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
+};
+
+/// ------------------------ NoAlias Argument Attribute ------------------------
+
+struct AANoAliasImpl : AANoAlias {
+ AANoAliasImpl(const IRPosition &IRP) : AANoAlias(IRP) {
+ assert(getAssociatedType()->isPointerTy() &&
+ "Noalias is a pointer attribute");
+ }
+
+ const std::string getAsStr() const override {
+ return getAssumed() ? "noalias" : "may-alias";
+ }
+};
+
+/// NoAlias attribute for a floating value.
+struct AANoAliasFloating final : AANoAliasImpl {
+ AANoAliasFloating(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ AANoAliasImpl::initialize(A);
+ Value *Val = &getAssociatedValue();
+ do {
+ CastInst *CI = dyn_cast<CastInst>(Val);
+ if (!CI)
+ break;
+ Value *Base = CI->getOperand(0);
+ if (Base->getNumUses() != 1)
+ break;
+ Val = Base;
+ } while (true);
+
+ if (!Val->getType()->isPointerTy()) {
+ indicatePessimisticFixpoint();
+ return;
+ }
+
+ if (isa<AllocaInst>(Val))
+ indicateOptimisticFixpoint();
+ else if (isa<ConstantPointerNull>(Val) &&
+ !NullPointerIsDefined(getAnchorScope(),
+ Val->getType()->getPointerAddressSpace()))
+ indicateOptimisticFixpoint();
+ else if (Val != &getAssociatedValue()) {
+ const auto &ValNoAliasAA =
+ A.getAAFor<AANoAlias>(*this, IRPosition::value(*Val));
+ if (ValNoAliasAA.isKnownNoAlias())
+ indicateOptimisticFixpoint();
+ }
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ // TODO: Implement this.
+ return indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_FLOATING_ATTR(noalias)
+ }
+};
+
+/// NoAlias attribute for an argument.
+struct AANoAliasArgument final
+ : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
+ using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
+ AANoAliasArgument(const IRPosition &IRP) : Base(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ Base::initialize(A);
+ // See callsite argument attribute and callee argument attribute.
+ if (hasAttr({Attribute::ByVal}))
+ indicateOptimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::update(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ // We have to make sure no-alias on the argument does not break
+ // synchronization when this is a callback argument, see also [1] below.
+ // If synchronization cannot be affected, we delegate to the base updateImpl
+ // function, otherwise we give up for now.
+
+ // If the function is no-sync, no-alias cannot break synchronization.
+ const auto &NoSyncAA = A.getAAFor<AANoSync>(
+ *this, IRPosition::function_scope(getIRPosition()));
+ if (NoSyncAA.isAssumedNoSync())
+ return Base::updateImpl(A);
+
+ // If the argument is read-only, no-alias cannot break synchronization.
+ const auto &MemBehaviorAA =
+ A.getAAFor<AAMemoryBehavior>(*this, getIRPosition());
+ if (MemBehaviorAA.isAssumedReadOnly())
+ return Base::updateImpl(A);
+
+ // If the argument is never passed through callbacks, no-alias cannot break
+ // synchronization.
+ bool AllCallSitesKnown;
+ if (A.checkForAllCallSites(
+ [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
+ true, AllCallSitesKnown))
+ return Base::updateImpl(A);
+
+ // TODO: add no-alias but make sure it doesn't break synchronization by
+ // introducing fake uses. See:
+ // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
+ // International Workshop on OpenMP 2018,
+ // http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
+
+ return indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
+};
+
+struct AANoAliasCallSiteArgument final : AANoAliasImpl {
+ AANoAliasCallSiteArgument(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ // See callsite argument attribute and callee argument attribute.
+ ImmutableCallSite ICS(&getAnchorValue());
+ if (ICS.paramHasAttr(getArgNo(), Attribute::NoAlias))
+ indicateOptimisticFixpoint();
+ Value &Val = getAssociatedValue();
+ if (isa<ConstantPointerNull>(Val) &&
+ !NullPointerIsDefined(getAnchorScope(),
+ Val.getType()->getPointerAddressSpace()))
+ indicateOptimisticFixpoint();
+ }
+
+ /// Determine if the underlying value may alias with the call site argument
+ /// \p OtherArgNo of \p ICS (= the underlying call site).
+ bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
+ const AAMemoryBehavior &MemBehaviorAA,
+ ImmutableCallSite ICS, unsigned OtherArgNo) {
+ // We do not need to worry about aliasing with the underlying IRP.
+ if (this->getArgNo() == (int)OtherArgNo)
+ return false;
+
+ // If it is not a pointer or pointer vector we do not alias.
+ const Value *ArgOp = ICS.getArgOperand(OtherArgNo);
+ if (!ArgOp->getType()->isPtrOrPtrVectorTy())
+ return false;
+
+ auto &ICSArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
+ *this, IRPosition::callsite_argument(ICS, OtherArgNo),
+ /* TrackDependence */ false);
+
+ // If the argument is readnone, there is no read-write aliasing.
+ if (ICSArgMemBehaviorAA.isAssumedReadNone()) {
+ A.recordDependence(ICSArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
+ return false;
+ }
+
+ // If the argument is readonly and the underlying value is readonly, there
+ // is no read-write aliasing.
+ bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
+ if (ICSArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
+ A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
+ A.recordDependence(ICSArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
+ return false;
+ }
+
+ // We have to utilize actual alias analysis queries so we need the object.
+ if (!AAR)
+ AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
+
+ // Try to rule it out at the call site.
+ bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
+ LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
+ "callsite arguments: "
+ << getAssociatedValue() << " " << *ArgOp << " => "
+ << (IsAliasing ? "" : "no-") << "alias \n");
+
+ return IsAliasing;
+ }
+
+ bool
+ isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
+ const AAMemoryBehavior &MemBehaviorAA,
+ const AANoAlias &NoAliasAA) {
+ // We can deduce "noalias" if the following conditions hold.
+ // (i) Associated value is assumed to be noalias in the definition.
+ // (ii) Associated value is assumed to be no-capture in all the uses
+ // possibly executed before this callsite.
+ // (iii) There is no other pointer argument which could alias with the
+ // value.
+
+ bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
+ if (!AssociatedValueIsNoAliasAtDef) {
+ LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
+ << " is not no-alias at the definition\n");
+ return false;
+ }
+
+ A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
+
+ const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
+ auto &NoCaptureAA =
+ A.getAAFor<AANoCapture>(*this, VIRP, /* TrackDependence */ false);
+ // Check whether the value is captured in the scope using AANoCapture.
+ // Look at CFG and check only uses possibly executed before this
+ // callsite.
+ auto UsePred = [&](const Use &U, bool &Follow) -> bool {
+ Instruction *UserI = cast<Instruction>(U.getUser());
+
+ // If user if curr instr and only use.
+ if ((UserI == getCtxI()) && (UserI->getNumUses() == 1))
+ return true;
+
+ const Function *ScopeFn = VIRP.getAnchorScope();
+ if (ScopeFn) {
+ const auto &ReachabilityAA =
+ A.getAAFor<AAReachability>(*this, IRPosition::function(*ScopeFn));
+
+ if (!ReachabilityAA.isAssumedReachable(UserI, getCtxI()))
+ return true;
+
+ if (auto *CB = dyn_cast<CallBase>(UserI)) {
+ if (CB->isArgOperand(&U)) {
+
+ unsigned ArgNo = CB->getArgOperandNo(&U);
+
+ const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
+ *this, IRPosition::callsite_argument(*CB, ArgNo));
+
+ if (NoCaptureAA.isAssumedNoCapture())
+ return true;
+ }
+ }
+ }
+
+ // For cases which can potentially have more users
+ if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
+ isa<SelectInst>(U)) {
+ Follow = true;
+ return true;
+ }
+
+ LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
+ return false;
+ };
+
+ if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
+ if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
+ LLVM_DEBUG(
+ dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
+ << " cannot be noalias as it is potentially captured\n");
+ return false;
+ }
+ }
+ A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
+
+ // Check there is no other pointer argument which could alias with the
+ // value passed at this call site.
+ // TODO: AbstractCallSite
+ ImmutableCallSite ICS(&getAnchorValue());
+ for (unsigned OtherArgNo = 0; OtherArgNo < ICS.getNumArgOperands();
+ OtherArgNo++)
+ if (mayAliasWithArgument(A, AAR, MemBehaviorAA, ICS, OtherArgNo))
+ return false;
+
+ return true;
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ // If the argument is readnone we are done as there are no accesses via the
+ // argument.
+ auto &MemBehaviorAA =
+ A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(),
+ /* TrackDependence */ false);
+ if (MemBehaviorAA.isAssumedReadNone()) {
+ A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
+ return ChangeStatus::UNCHANGED;
+ }
+
+ const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
+ const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, VIRP,
+ /* TrackDependence */ false);
+
+ AAResults *AAR = nullptr;
+ if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
+ NoAliasAA)) {
+ LLVM_DEBUG(
+ dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
+ return ChangeStatus::UNCHANGED;
+ }
+
+ return indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
+};
+
+/// NoAlias attribute for function return value.
+struct AANoAliasReturned final : AANoAliasImpl {
+ AANoAliasReturned(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
+
+ /// See AbstractAttribute::updateImpl(...).
+ virtual ChangeStatus updateImpl(Attributor &A) override {
+
+ auto CheckReturnValue = [&](Value &RV) -> bool {
+ if (Constant *C = dyn_cast<Constant>(&RV))
+ if (C->isNullValue() || isa<UndefValue>(C))
+ return true;
+
+ /// For now, we can only deduce noalias if we have call sites.
+ /// FIXME: add more support.
+ ImmutableCallSite ICS(&RV);
+ if (!ICS)
+ return false;
+
+ const IRPosition &RVPos = IRPosition::value(RV);
+ const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, RVPos);
+ if (!NoAliasAA.isAssumedNoAlias())
+ return false;
+
+ const auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, RVPos);
+ return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
+ };
+
+ if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
+ return indicatePessimisticFixpoint();
+
+ return ChangeStatus::UNCHANGED;
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
+};
+
+/// NoAlias attribute deduction for a call site return value.
+struct AANoAliasCallSiteReturned final : AANoAliasImpl {
+ AANoAliasCallSiteReturned(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ AANoAliasImpl::initialize(A);
+ Function *F = getAssociatedFunction();
+ if (!F)
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ // TODO: Once we have call site specific value information we can provide
+ // call site specific liveness information and then it makes
+ // sense to specialize attributes for call sites arguments instead of
+ // redirecting requests to the callee argument.
+ Function *F = getAssociatedFunction();
+ const IRPosition &FnPos = IRPosition::returned(*F);
+ auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos);
+ return clampStateAndIndicateChange(
+ getState(), static_cast<const AANoAlias::StateType &>(FnAA.getState()));
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
+};
+
+/// -------------------AAIsDead Function Attribute-----------------------
+
+struct AAIsDeadValueImpl : public AAIsDead {
+ AAIsDeadValueImpl(const IRPosition &IRP) : AAIsDead(IRP) {}
+
+ /// See AAIsDead::isAssumedDead().
+ bool isAssumedDead() const override { return getAssumed(); }
+
+ /// See AAIsDead::isKnownDead().
+ bool isKnownDead() const override { return getKnown(); }
+
+ /// See AAIsDead::isAssumedDead(BasicBlock *).
+ bool isAssumedDead(const BasicBlock *BB) const override { return false; }
+
+ /// See AAIsDead::isKnownDead(BasicBlock *).
+ bool isKnownDead(const BasicBlock *BB) const override { return false; }
+
+ /// See AAIsDead::isAssumedDead(Instruction *I).
+ bool isAssumedDead(const Instruction *I) const override {
+ return I == getCtxI() && isAssumedDead();
+ }
+
+ /// See AAIsDead::isKnownDead(Instruction *I).
+ bool isKnownDead(const Instruction *I) const override {
+ return isAssumedDead(I) && getKnown();
+ }
+
+ /// See AbstractAttribute::getAsStr().
+ const std::string getAsStr() const override {
+ return isAssumedDead() ? "assumed-dead" : "assumed-live";
+ }
+
+ /// Check if all uses are assumed dead.
+ bool areAllUsesAssumedDead(Attributor &A, Value &V) {
+ auto UsePred = [&](const Use &U, bool &Follow) { return false; };
+ // Explicitly set the dependence class to required because we want a long
+ // chain of N dependent instructions to be considered live as soon as one is
+ // without going through N update cycles. This is not required for
+ // correctness.
+ return A.checkForAllUses(UsePred, *this, V, DepClassTy::REQUIRED);
+ }
+
+ /// Determine if \p I is assumed to be side-effect free.
+ bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
+ if (!I || wouldInstructionBeTriviallyDead(I))
+ return true;
+
+ auto *CB = dyn_cast<CallBase>(I);
+ if (!CB || isa<IntrinsicInst>(CB))
+ return false;
+
+ const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
+ const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(*this, CallIRP);
+ if (!NoUnwindAA.isAssumedNoUnwind())
+ return false;
+
+ const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(*this, CallIRP);
+ if (!MemBehaviorAA.isAssumedReadOnly())
+ return false;
+
+ return true;
+ }
+};
+
+struct AAIsDeadFloating : public AAIsDeadValueImpl {
+ AAIsDeadFloating(const IRPosition &IRP) : AAIsDeadValueImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ if (isa<UndefValue>(getAssociatedValue())) {
+ indicatePessimisticFixpoint();
+ return;
+ }
+
+ Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
+ if (!isAssumedSideEffectFree(A, I))
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
+ if (!isAssumedSideEffectFree(A, I))
+ return indicatePessimisticFixpoint();
+
+ if (!areAllUsesAssumedDead(A, getAssociatedValue()))
+ return indicatePessimisticFixpoint();
+ return ChangeStatus::UNCHANGED;
+ }
+
+ /// See AbstractAttribute::manifest(...).
+ ChangeStatus manifest(Attributor &A) override {
+ Value &V = getAssociatedValue();
+ if (auto *I = dyn_cast<Instruction>(&V)) {
+ // If we get here we basically know the users are all dead. We check if
+ // isAssumedSideEffectFree returns true here again because it might not be
+ // the case and only the users are dead but the instruction (=call) is
+ // still needed.
+ if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I)) {
+ A.deleteAfterManifest(*I);
+ return ChangeStatus::CHANGED;
+ }
+ }
+ if (V.use_empty())
+ return ChangeStatus::UNCHANGED;
+
+ bool UsedAssumedInformation = false;
+ Optional<Constant *> C =
+ A.getAssumedConstant(V, *this, UsedAssumedInformation);
+ if (C.hasValue() && C.getValue())
+ return ChangeStatus::UNCHANGED;
+
+ UndefValue &UV = *UndefValue::get(V.getType());
+ bool AnyChange = A.changeValueAfterManifest(V, UV);
+ return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_FLOATING_ATTR(IsDead)
+ }
+};
+
+struct AAIsDeadArgument : public AAIsDeadFloating {
+ AAIsDeadArgument(const IRPosition &IRP) : AAIsDeadFloating(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ if (!A.isFunctionIPOAmendable(*getAnchorScope()))
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::manifest(...).
+ ChangeStatus manifest(Attributor &A) override {
+ ChangeStatus Changed = AAIsDeadFloating::manifest(A);
+ Argument &Arg = *getAssociatedArgument();
+ if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
+ if (A.registerFunctionSignatureRewrite(
+ Arg, /* ReplacementTypes */ {},
+ Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
+ Attributor::ArgumentReplacementInfo::ACSRepairCBTy{}))
+ return ChangeStatus::CHANGED;
+ return Changed;
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
+};
+
+struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
+ AAIsDeadCallSiteArgument(const IRPosition &IRP) : AAIsDeadValueImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ if (isa<UndefValue>(getAssociatedValue()))
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ // TODO: Once we have call site specific value information we can provide
+ // call site specific liveness information and then it makes
+ // sense to specialize attributes for call sites arguments instead of
+ // redirecting requests to the callee argument.
+ Argument *Arg = getAssociatedArgument();
+ if (!Arg)
+ return indicatePessimisticFixpoint();
+ const IRPosition &ArgPos = IRPosition::argument(*Arg);
+ auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos);
+ return clampStateAndIndicateChange(
+ getState(), static_cast<const AAIsDead::StateType &>(ArgAA.getState()));
+ }
+
+ /// See AbstractAttribute::manifest(...).
+ ChangeStatus manifest(Attributor &A) override {
+ CallBase &CB = cast<CallBase>(getAnchorValue());
+ Use &U = CB.getArgOperandUse(getArgNo());
+ assert(!isa<UndefValue>(U.get()) &&
+ "Expected undef values to be filtered out!");
+ UndefValue &UV = *UndefValue::get(U->getType());
+ if (A.changeUseAfterManifest(U, UV))
+ return ChangeStatus::CHANGED;
+ return ChangeStatus::UNCHANGED;
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
+};
+
+struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
+ AAIsDeadCallSiteReturned(const IRPosition &IRP)
+ : AAIsDeadFloating(IRP), IsAssumedSideEffectFree(true) {}
+
+ /// See AAIsDead::isAssumedDead().
+ bool isAssumedDead() const override {
+ return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
+ }
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ if (isa<UndefValue>(getAssociatedValue())) {
+ indicatePessimisticFixpoint();
+ return;
+ }
+
+ // We track this separately as a secondary state.
+ IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ ChangeStatus Changed = ChangeStatus::UNCHANGED;
+ if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
+ IsAssumedSideEffectFree = false;
+ Changed = ChangeStatus::CHANGED;
+ }
+
+ if (!areAllUsesAssumedDead(A, getAssociatedValue()))
+ return indicatePessimisticFixpoint();
+ return Changed;
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ if (IsAssumedSideEffectFree)
+ STATS_DECLTRACK_CSRET_ATTR(IsDead)
+ else
+ STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
+ }
+
+ /// See AbstractAttribute::getAsStr().
+ const std::string getAsStr() const override {
+ return isAssumedDead()
+ ? "assumed-dead"
+ : (getAssumed() ? "assumed-dead-users" : "assumed-live");
+ }
+
+private:
+ bool IsAssumedSideEffectFree;
+};
+
+struct AAIsDeadReturned : public AAIsDeadValueImpl {
+ AAIsDeadReturned(const IRPosition &IRP) : AAIsDeadValueImpl(IRP) {}
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+
+ A.checkForAllInstructions([](Instruction &) { return true; }, *this,
+ {Instruction::Ret});
+
+ auto PredForCallSite = [&](AbstractCallSite ACS) {
+ if (ACS.isCallbackCall() || !ACS.getInstruction())
+ return false;
+ return areAllUsesAssumedDead(A, *ACS.getInstruction());
+ };
+
+ bool AllCallSitesKnown;
+ if (!A.checkForAllCallSites(PredForCallSite, *this, true,
+ AllCallSitesKnown))
+ return indicatePessimisticFixpoint();
+
+ return ChangeStatus::UNCHANGED;
+ }
+
+ /// See AbstractAttribute::manifest(...).
+ ChangeStatus manifest(Attributor &A) override {
+ // TODO: Rewrite the signature to return void?
+ bool AnyChange = false;
+ UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
+ auto RetInstPred = [&](Instruction &I) {
+ ReturnInst &RI = cast<ReturnInst>(I);
+ if (!isa<UndefValue>(RI.getReturnValue()))
+ AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
+ return true;
+ };
+ A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret});
+ return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
+};
+
+struct AAIsDeadFunction : public AAIsDead {
+ AAIsDeadFunction(const IRPosition &IRP) : AAIsDead(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ const Function *F = getAnchorScope();
+ if (F && !F->isDeclaration()) {
+ ToBeExploredFrom.insert(&F->getEntryBlock().front());
+ assumeLive(A, F->getEntryBlock());
+ }
+ }
+
+ /// See AbstractAttribute::getAsStr().
+ const std::string getAsStr() const override {
+ return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
+ std::to_string(getAnchorScope()->size()) + "][#TBEP " +
+ std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
+ std::to_string(KnownDeadEnds.size()) + "]";
+ }
+
+ /// See AbstractAttribute::manifest(...).
+ ChangeStatus manifest(Attributor &A) override {
+ assert(getState().isValidState() &&
+ "Attempted to manifest an invalid state!");
+
+ ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
+ Function &F = *getAnchorScope();
+
+ if (AssumedLiveBlocks.empty()) {
+ A.deleteAfterManifest(F);
+ return ChangeStatus::CHANGED;
+ }
+
+ // Flag to determine if we can change an invoke to a call assuming the
+ // callee is nounwind. This is not possible if the personality of the
+ // function allows to catch asynchronous exceptions.
+ bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
+
+ KnownDeadEnds.set_union(ToBeExploredFrom);
+ for (const Instruction *DeadEndI : KnownDeadEnds) {
+ auto *CB = dyn_cast<CallBase>(DeadEndI);
+ if (!CB)
+ continue;
+ const auto &NoReturnAA =
+ A.getAAFor<AANoReturn>(*this, IRPosition::callsite_function(*CB));
+ bool MayReturn = !NoReturnAA.isAssumedNoReturn();
+ if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
+ continue;
+
+ if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
+ A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
+ else
+ A.changeToUnreachableAfterManifest(
+ const_cast<Instruction *>(DeadEndI->getNextNode()));
+ HasChanged = ChangeStatus::CHANGED;
+ }
+
+ STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
+ for (BasicBlock &BB : F)
+ if (!AssumedLiveBlocks.count(&BB)) {
+ A.deleteAfterManifest(BB);
+ ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
+ }
+
+ return HasChanged;
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override;
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {}
+
+ /// Returns true if the function is assumed dead.
+ bool isAssumedDead() const override { return false; }
+
+ /// See AAIsDead::isKnownDead().
+ bool isKnownDead() const override { return false; }
+
+ /// See AAIsDead::isAssumedDead(BasicBlock *).
+ bool isAssumedDead(const BasicBlock *BB) const override {
+ assert(BB->getParent() == getAnchorScope() &&
+ "BB must be in the same anchor scope function.");
+
+ if (!getAssumed())
+ return false;
+ return !AssumedLiveBlocks.count(BB);
+ }
+
+ /// See AAIsDead::isKnownDead(BasicBlock *).
+ bool isKnownDead(const BasicBlock *BB) const override {
+ return getKnown() && isAssumedDead(BB);
+ }
+
+ /// See AAIsDead::isAssumed(Instruction *I).
+ bool isAssumedDead(const Instruction *I) const override {
+ assert(I->getParent()->getParent() == getAnchorScope() &&
+ "Instruction must be in the same anchor scope function.");
+
+ if (!getAssumed())
+ return false;
+
+ // If it is not in AssumedLiveBlocks then it for sure dead.
+ // Otherwise, it can still be after noreturn call in a live block.
+ if (!AssumedLiveBlocks.count(I->getParent()))
+ return true;
+
+ // If it is not after a liveness barrier it is live.
+ const Instruction *PrevI = I->getPrevNode();
+ while (PrevI) {
+ if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
+ return true;
+ PrevI = PrevI->getPrevNode();
+ }
+ return false;
+ }
+
+ /// See AAIsDead::isKnownDead(Instruction *I).
+ bool isKnownDead(const Instruction *I) const override {
+ return getKnown() && isAssumedDead(I);
+ }
+
+ /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
+ /// that internal function called from \p BB should now be looked at.
+ bool assumeLive(Attributor &A, const BasicBlock &BB) {
+ if (!AssumedLiveBlocks.insert(&BB).second)
+ return false;
+
+ // We assume that all of BB is (probably) live now and if there are calls to
+ // internal functions we will assume that those are now live as well. This
+ // is a performance optimization for blocks with calls to a lot of internal
+ // functions. It can however cause dead functions to be treated as live.
+ for (const Instruction &I : BB)
+ if (ImmutableCallSite ICS = ImmutableCallSite(&I))
+ if (const Function *F = ICS.getCalledFunction())
+ if (F->hasLocalLinkage())
+ A.markLiveInternalFunction(*F);
+ return true;
+ }
+
+ /// Collection of instructions that need to be explored again, e.g., we
+ /// did assume they do not transfer control to (one of their) successors.
+ SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
+
+ /// Collection of instructions that are known to not transfer control.
+ SmallSetVector<const Instruction *, 8> KnownDeadEnds;
+
+ /// Collection of all assumed live BasicBlocks.
+ DenseSet<const BasicBlock *> AssumedLiveBlocks;
+};
+
+static bool
+identifyAliveSuccessors(Attributor &A, const CallBase &CB,
+ AbstractAttribute &AA,
+ SmallVectorImpl<const Instruction *> &AliveSuccessors) {
+ const IRPosition &IPos = IRPosition::callsite_function(CB);
+
+ const auto &NoReturnAA = A.getAAFor<AANoReturn>(AA, IPos);
+ if (NoReturnAA.isAssumedNoReturn())
+ return !NoReturnAA.isKnownNoReturn();
+ if (CB.isTerminator())
+ AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
+ else
+ AliveSuccessors.push_back(CB.getNextNode());
+ return false;
+}
+
+static bool
+identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
+ AbstractAttribute &AA,
+ SmallVectorImpl<const Instruction *> &AliveSuccessors) {
+ bool UsedAssumedInformation =
+ identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
+
+ // First, determine if we can change an invoke to a call assuming the
+ // callee is nounwind. This is not possible if the personality of the
+ // function allows to catch asynchronous exceptions.
+ if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
+ AliveSuccessors.push_back(&II.getUnwindDest()->front());
+ } else {
+ const IRPosition &IPos = IRPosition::callsite_function(II);
+ const auto &AANoUnw = A.getAAFor<AANoUnwind>(AA, IPos);
+ if (AANoUnw.isAssumedNoUnwind()) {
+ UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
+ } else {
+ AliveSuccessors.push_back(&II.getUnwindDest()->front());
+ }
+ }
+ return UsedAssumedInformation;
+}
+
+static bool
+identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
+ AbstractAttribute &AA,
+ SmallVectorImpl<const Instruction *> &AliveSuccessors) {
+ bool UsedAssumedInformation = false;
+ if (BI.getNumSuccessors() == 1) {
+ AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
+ } else {
+ Optional<ConstantInt *> CI = getAssumedConstantInt(
+ A, *BI.getCondition(), AA, UsedAssumedInformation);
+ if (!CI.hasValue()) {
+ // No value yet, assume both edges are dead.
+ } else if (CI.getValue()) {
+ const BasicBlock *SuccBB =
+ BI.getSuccessor(1 - CI.getValue()->getZExtValue());
+ AliveSuccessors.push_back(&SuccBB->front());
+ } else {
+ AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
+ AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
+ UsedAssumedInformation = false;
+ }
+ }
+ return UsedAssumedInformation;
+}
+
+static bool
+identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
+ AbstractAttribute &AA,
+ SmallVectorImpl<const Instruction *> &AliveSuccessors) {
+ bool UsedAssumedInformation = false;
+ Optional<ConstantInt *> CI =
+ getAssumedConstantInt(A, *SI.getCondition(), AA, UsedAssumedInformation);
+ if (!CI.hasValue()) {
+ // No value yet, assume all edges are dead.
+ } else if (CI.getValue()) {
+ for (auto &CaseIt : SI.cases()) {
+ if (CaseIt.getCaseValue() == CI.getValue()) {
+ AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
+ return UsedAssumedInformation;
+ }
+ }
+ AliveSuccessors.push_back(&SI.getDefaultDest()->front());
+ return UsedAssumedInformation;
+ } else {
+ for (const BasicBlock *SuccBB : successors(SI.getParent()))
+ AliveSuccessors.push_back(&SuccBB->front());
+ }
+ return UsedAssumedInformation;
+}
+
+ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
+ ChangeStatus Change = ChangeStatus::UNCHANGED;
+
+ LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
+ << getAnchorScope()->size() << "] BBs and "
+ << ToBeExploredFrom.size() << " exploration points and "
+ << KnownDeadEnds.size() << " known dead ends\n");
+
+ // Copy and clear the list of instructions we need to explore from. It is
+ // refilled with instructions the next update has to look at.
+ SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
+ ToBeExploredFrom.end());
+ decltype(ToBeExploredFrom) NewToBeExploredFrom;
+
+ SmallVector<const Instruction *, 8> AliveSuccessors;
+ while (!Worklist.empty()) {
+ const Instruction *I = Worklist.pop_back_val();
+ LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
+
+ AliveSuccessors.clear();
+
+ bool UsedAssumedInformation = false;
+ switch (I->getOpcode()) {
+ // TODO: look for (assumed) UB to backwards propagate "deadness".
+ default:
+ if (I->isTerminator()) {
+ for (const BasicBlock *SuccBB : successors(I->getParent()))
+ AliveSuccessors.push_back(&SuccBB->front());
+ } else {
+ AliveSuccessors.push_back(I->getNextNode());
+ }
+ break;
+ case Instruction::Call:
+ UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
+ *this, AliveSuccessors);
+ break;
+ case Instruction::Invoke:
+ UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
+ *this, AliveSuccessors);
+ break;
+ case Instruction::Br:
+ UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
+ *this, AliveSuccessors);
+ break;
+ case Instruction::Switch:
+ UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
+ *this, AliveSuccessors);
+ break;
+ }
+
+ if (UsedAssumedInformation) {
+ NewToBeExploredFrom.insert(I);
+ } else {
+ Change = ChangeStatus::CHANGED;
+ if (AliveSuccessors.empty() ||
+ (I->isTerminator() && AliveSuccessors.size() < I->getNumSuccessors()))
+ KnownDeadEnds.insert(I);
+ }
+
+ LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
+ << AliveSuccessors.size() << " UsedAssumedInformation: "
+ << UsedAssumedInformation << "\n");
+
+ for (const Instruction *AliveSuccessor : AliveSuccessors) {
+ if (!I->isTerminator()) {
+ assert(AliveSuccessors.size() == 1 &&
+ "Non-terminator expected to have a single successor!");
+ Worklist.push_back(AliveSuccessor);
+ } else {
+ if (assumeLive(A, *AliveSuccessor->getParent()))
+ Worklist.push_back(AliveSuccessor);
+ }
+ }
+ }
+
+ ToBeExploredFrom = std::move(NewToBeExploredFrom);
+
+ // If we know everything is live there is no need to query for liveness.
+ // Instead, indicating a pessimistic fixpoint will cause the state to be
+ // "invalid" and all queries to be answered conservatively without lookups.
+ // To be in this state we have to (1) finished the exploration and (3) not
+ // discovered any non-trivial dead end and (2) not ruled unreachable code
+ // dead.
+ if (ToBeExploredFrom.empty() &&
+ getAnchorScope()->size() == AssumedLiveBlocks.size() &&
+ llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
+ return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
+ }))
+ return indicatePessimisticFixpoint();
+ return Change;
+}
+
+/// Liveness information for a call sites.
+struct AAIsDeadCallSite final : AAIsDeadFunction {
+ AAIsDeadCallSite(const IRPosition &IRP) : AAIsDeadFunction(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ // TODO: Once we have call site specific value information we can provide
+ // call site specific liveness information and then it makes
+ // sense to specialize attributes for call sites instead of
+ // redirecting requests to the callee.
+ llvm_unreachable("Abstract attributes for liveness are not "
+ "supported for call sites yet!");
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ return indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {}
+};
+
+/// -------------------- Dereferenceable Argument Attribute --------------------
+
+template <>
+ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
+ const DerefState &R) {
+ ChangeStatus CS0 =
+ clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
+ ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
+ return CS0 | CS1;
+}
+
+struct AADereferenceableImpl : AADereferenceable {
+ AADereferenceableImpl(const IRPosition &IRP) : AADereferenceable(IRP) {}
+ using StateType = DerefState;
+
+ void initialize(Attributor &A) override {
+ SmallVector<Attribute, 4> Attrs;
+ getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
+ Attrs, /* IgnoreSubsumingPositions */ false, &A);
+ for (const Attribute &Attr : Attrs)
+ takeKnownDerefBytesMaximum(Attr.getValueAsInt());
+
+ NonNullAA = &A.getAAFor<AANonNull>(*this, getIRPosition(),
+ /* TrackDependence */ false);
+
+ const IRPosition &IRP = this->getIRPosition();
+ bool IsFnInterface = IRP.isFnInterfaceKind();
+ Function *FnScope = IRP.getAnchorScope();
+ if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope)))
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::getState()
+ /// {
+ StateType &getState() override { return *this; }
+ const StateType &getState() const override { return *this; }
+ /// }
+
+ /// Helper function for collecting accessed bytes in must-be-executed-context
+ void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
+ DerefState &State) {
+ const Value *UseV = U->get();
+ if (!UseV->getType()->isPointerTy())
+ return;
+
+ Type *PtrTy = UseV->getType();
+ const DataLayout &DL = A.getDataLayout();
+ int64_t Offset;
+ if (const Value *Base = getBasePointerOfAccessPointerOperand(
+ I, Offset, DL, /*AllowNonInbounds*/ true)) {
+ if (Base == &getAssociatedValue() &&
+ getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
+ uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType());
+ State.addAccessedBytes(Offset, Size);
+ }
+ }
+ return;
+ }
+
+ /// See AAFromMustBeExecutedContext
+ bool followUse(Attributor &A, const Use *U, const Instruction *I,
+ AADereferenceable::StateType &State) {
+ bool IsNonNull = false;
+ bool TrackUse = false;
+ int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
+ A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
+
+ addAccessedBytesForUse(A, U, I, State);
+ State.takeKnownDerefBytesMaximum(DerefBytes);
+ return TrackUse;
+ }
+
+ /// See AbstractAttribute::manifest(...).
+ ChangeStatus manifest(Attributor &A) override {
+ ChangeStatus Change = AADereferenceable::manifest(A);
+ if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
+ removeAttrs({Attribute::DereferenceableOrNull});
+ return ChangeStatus::CHANGED;
+ }
+ return Change;
+ }
+
+ void getDeducedAttributes(LLVMContext &Ctx,
+ SmallVectorImpl<Attribute> &Attrs) const override {
+ // TODO: Add *_globally support
+ if (isAssumedNonNull())
+ Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
+ Ctx, getAssumedDereferenceableBytes()));
+ else
+ Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
+ Ctx, getAssumedDereferenceableBytes()));
+ }
+
+ /// See AbstractAttribute::getAsStr().
+ const std::string getAsStr() const override {
+ if (!getAssumedDereferenceableBytes())
+ return "unknown-dereferenceable";
+ return std::string("dereferenceable") +
+ (isAssumedNonNull() ? "" : "_or_null") +
+ (isAssumedGlobal() ? "_globally" : "") + "<" +
+ std::to_string(getKnownDereferenceableBytes()) + "-" +
+ std::to_string(getAssumedDereferenceableBytes()) + ">";
+ }
+};
+
+/// Dereferenceable attribute for a floating value.
+struct AADereferenceableFloating
+ : AAFromMustBeExecutedContext<AADereferenceable, AADereferenceableImpl> {
+ using Base =
+ AAFromMustBeExecutedContext<AADereferenceable, AADereferenceableImpl>;
+ AADereferenceableFloating(const IRPosition &IRP) : Base(IRP) {}
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ ChangeStatus Change = Base::updateImpl(A);
+
+ const DataLayout &DL = A.getDataLayout();
+
+ auto VisitValueCB = [&](Value &V, const Instruction *, DerefState &T,
+ bool Stripped) -> bool {
+ unsigned IdxWidth =
+ DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
+ APInt Offset(IdxWidth, 0);
+ const Value *Base =
+ V.stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
+
+ const auto &AA =
+ A.getAAFor<AADereferenceable>(*this, IRPosition::value(*Base));
+ int64_t DerefBytes = 0;
+ if (!Stripped && this == &AA) {
+ // Use IR information if we did not strip anything.
+ // TODO: track globally.
+ bool CanBeNull;
+ DerefBytes = Base->getPointerDereferenceableBytes(DL, CanBeNull);
+ T.GlobalState.indicatePessimisticFixpoint();
+ } else {
+ const DerefState &DS = static_cast<const DerefState &>(AA.getState());
+ DerefBytes = DS.DerefBytesState.getAssumed();
+ T.GlobalState &= DS.GlobalState;
+ }
+
+ // TODO: Use `AAConstantRange` to infer dereferenceable bytes.
+
+ // For now we do not try to "increase" dereferenceability due to negative
+ // indices as we first have to come up with code to deal with loops and
+ // for overflows of the dereferenceable bytes.
+ int64_t OffsetSExt = Offset.getSExtValue();
+ if (OffsetSExt < 0)
+ OffsetSExt = 0;
+
+ T.takeAssumedDerefBytesMinimum(
+ std::max(int64_t(0), DerefBytes - OffsetSExt));
+
+ if (this == &AA) {
+ if (!Stripped) {
+ // If nothing was stripped IR information is all we got.
+ T.takeKnownDerefBytesMaximum(
+ std::max(int64_t(0), DerefBytes - OffsetSExt));
+ T.indicatePessimisticFixpoint();
+ } else if (OffsetSExt > 0) {
+ // If something was stripped but there is circular reasoning we look
+ // for the offset. If it is positive we basically decrease the
+ // dereferenceable bytes in a circluar loop now, which will simply
+ // drive them down to the known value in a very slow way which we
+ // can accelerate.
+ T.indicatePessimisticFixpoint();
+ }
+ }
+
+ return T.isValidState();
+ };
+
+ DerefState T;
+ if (!genericValueTraversal<AADereferenceable, DerefState>(
+ A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
+ return indicatePessimisticFixpoint();
+
+ return Change | clampStateAndIndicateChange(getState(), T);
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
+ }
+};
+
+/// Dereferenceable attribute for a return value.
+struct AADereferenceableReturned final
+ : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
+ AADereferenceableReturned(const IRPosition &IRP)
+ : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
+ IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
+ }
+};
+
+/// Dereferenceable attribute for an argument
+struct AADereferenceableArgument final
+ : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<
+ AADereferenceable, AADereferenceableImpl> {
+ using Base = AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<
+ AADereferenceable, AADereferenceableImpl>;
+ AADereferenceableArgument(const IRPosition &IRP) : Base(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_ARG_ATTR(dereferenceable)
+ }
+};
+
+/// Dereferenceable attribute for a call site argument.
+struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
+ AADereferenceableCallSiteArgument(const IRPosition &IRP)
+ : AADereferenceableFloating(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
+ }
+};
+
+/// Dereferenceable attribute deduction for a call site return value.
+struct AADereferenceableCallSiteReturned final
+ : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<
+ AADereferenceable, AADereferenceableImpl> {
+ using Base = AACallSiteReturnedFromReturnedAndMustBeExecutedContext<
+ AADereferenceable, AADereferenceableImpl>;
+ AADereferenceableCallSiteReturned(const IRPosition &IRP) : Base(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_CS_ATTR(dereferenceable);
+ }
+};
+
+// ------------------------ Align Argument Attribute ------------------------
+
+/// \p Ptr is accessed so we can get alignment information if the ABI requires
+/// the element type to be aligned.
+static MaybeAlign getKnownAlignmentFromAccessedPtr(const Value *Ptr,
+ const DataLayout &DL) {
+ MaybeAlign KnownAlignment = Ptr->getPointerAlignment(DL);
+ Type *ElementTy = Ptr->getType()->getPointerElementType();
+ if (ElementTy->isSized())
+ KnownAlignment = max(KnownAlignment, DL.getABITypeAlign(ElementTy));
+ return KnownAlignment;
+}
+
+static unsigned getKnownAlignForUse(Attributor &A,
+ AbstractAttribute &QueryingAA,
+ Value &AssociatedValue, const Use *U,
+ const Instruction *I, bool &TrackUse) {
+ // We need to follow common pointer manipulation uses to the accesses they
+ // feed into.
+ if (isa<CastInst>(I)) {
+ // Follow all but ptr2int casts.
+ TrackUse = !isa<PtrToIntInst>(I);
+ return 0;
+ }
+ if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
+ if (GEP->hasAllConstantIndices()) {
+ TrackUse = true;
+ return 0;
+ }
+ }
+
+ MaybeAlign MA;
+ if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
+ if (ICS.isBundleOperand(U) || ICS.isCallee(U))
+ return 0;
+
+ unsigned ArgNo = ICS.getArgumentNo(U);
+ IRPosition IRP = IRPosition::callsite_argument(ICS, ArgNo);
+ // As long as we only use known information there is no need to track
+ // dependences here.
+ auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP,
+ /* TrackDependence */ false);
+ MA = MaybeAlign(AlignAA.getKnownAlign());
+ }
+
+ const DataLayout &DL = A.getDataLayout();
+ const Value *UseV = U->get();
+ if (auto *SI = dyn_cast<StoreInst>(I)) {
+ if (SI->getPointerOperand() == UseV) {
+ if (unsigned SIAlign = SI->getAlignment())
+ MA = MaybeAlign(SIAlign);
+ else
+ MA = getKnownAlignmentFromAccessedPtr(UseV, DL);
+ }
+ } else if (auto *LI = dyn_cast<LoadInst>(I)) {
+ if (LI->getPointerOperand() == UseV) {
+ if (unsigned LIAlign = LI->getAlignment())
+ MA = MaybeAlign(LIAlign);
+ else
+ MA = getKnownAlignmentFromAccessedPtr(UseV, DL);
+ }
+ }
+
+ if (!MA.hasValue() || MA <= 1)
+ return 0;
+
+ unsigned Alignment = MA->value();
+ int64_t Offset;
+
+ if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
+ if (Base == &AssociatedValue) {
+ // BasePointerAddr + Offset = Alignment * Q for some integer Q.
+ // So we can say that the maximum power of two which is a divisor of
+ // gcd(Offset, Alignment) is an alignment.
+
+ uint32_t gcd =
+ greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
+ Alignment = llvm::PowerOf2Floor(gcd);
+ }
+ }
+
+ return Alignment;
+}
+
+struct AAAlignImpl : AAAlign {
+ AAAlignImpl(const IRPosition &IRP) : AAAlign(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ SmallVector<Attribute, 4> Attrs;
+ getAttrs({Attribute::Alignment}, Attrs);
+ for (const Attribute &Attr : Attrs)
+ takeKnownMaximum(Attr.getValueAsInt());
+
+ if (getIRPosition().isFnInterfaceKind() &&
+ (!getAnchorScope() ||
+ !A.isFunctionIPOAmendable(*getAssociatedFunction())))
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::manifest(...).
+ ChangeStatus manifest(Attributor &A) override {
+ ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
+
+ // Check for users that allow alignment annotations.
+ Value &AssociatedValue = getAssociatedValue();
+ for (const Use &U : AssociatedValue.uses()) {
+ if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
+ if (SI->getPointerOperand() == &AssociatedValue)
+ if (SI->getAlignment() < getAssumedAlign()) {
+ STATS_DECLTRACK(AAAlign, Store,
+ "Number of times alignment added to a store");
+ SI->setAlignment(Align(getAssumedAlign()));
+ LoadStoreChanged = ChangeStatus::CHANGED;
+ }
+ } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
+ if (LI->getPointerOperand() == &AssociatedValue)
+ if (LI->getAlignment() < getAssumedAlign()) {
+ LI->setAlignment(Align(getAssumedAlign()));
+ STATS_DECLTRACK(AAAlign, Load,
+ "Number of times alignment added to a load");
+ LoadStoreChanged = ChangeStatus::CHANGED;
+ }
+ }
+ }
+
+ ChangeStatus Changed = AAAlign::manifest(A);
+
+ MaybeAlign InheritAlign =
+ getAssociatedValue().getPointerAlignment(A.getDataLayout());
+ if (InheritAlign.valueOrOne() >= getAssumedAlign())
+ return LoadStoreChanged;
+ return Changed | LoadStoreChanged;
+ }
+
+ // TODO: Provide a helper to determine the implied ABI alignment and check in
+ // the existing manifest method and a new one for AAAlignImpl that value
+ // to avoid making the alignment explicit if it did not improve.
+
+ /// See AbstractAttribute::getDeducedAttributes
+ virtual void
+ getDeducedAttributes(LLVMContext &Ctx,
+ SmallVectorImpl<Attribute> &Attrs) const override {
+ if (getAssumedAlign() > 1)
+ Attrs.emplace_back(
+ Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
+ }
+ /// See AAFromMustBeExecutedContext
+ bool followUse(Attributor &A, const Use *U, const Instruction *I,
+ AAAlign::StateType &State) {
+ bool TrackUse = false;
+
+ unsigned int KnownAlign =
+ getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
+ State.takeKnownMaximum(KnownAlign);
+
+ return TrackUse;
+ }
+
+ /// See AbstractAttribute::getAsStr().
+ const std::string getAsStr() const override {
+ return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
+ "-" + std::to_string(getAssumedAlign()) + ">")
+ : "unknown-align";
+ }
+};
+
+/// Align attribute for a floating value.
+struct AAAlignFloating : AAFromMustBeExecutedContext<AAAlign, AAAlignImpl> {
+ using Base = AAFromMustBeExecutedContext<AAAlign, AAAlignImpl>;
+ AAAlignFloating(const IRPosition &IRP) : Base(IRP) {}
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ Base::updateImpl(A);
+
+ const DataLayout &DL = A.getDataLayout();
+
+ auto VisitValueCB = [&](Value &V, const Instruction *,
+ AAAlign::StateType &T, bool Stripped) -> bool {
+ const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V));
+ if (!Stripped && this == &AA) {
+ // Use only IR information if we did not strip anything.
+ const MaybeAlign PA = V.getPointerAlignment(DL);
+ T.takeKnownMaximum(PA ? PA->value() : 0);
+ T.indicatePessimisticFixpoint();
+ } else {
+ // Use abstract attribute information.
+ const AAAlign::StateType &DS =
+ static_cast<const AAAlign::StateType &>(AA.getState());
+ T ^= DS;
+ }
+ return T.isValidState();
+ };
+
+ StateType T;
+ if (!genericValueTraversal<AAAlign, StateType>(A, getIRPosition(), *this, T,
+ VisitValueCB, getCtxI()))
+ return indicatePessimisticFixpoint();
+
+ // TODO: If we know we visited all incoming values, thus no are assumed
+ // dead, we can take the known information from the state T.
+ return clampStateAndIndicateChange(getState(), T);
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
+};
+
+/// Align attribute for function return value.
+struct AAAlignReturned final
+ : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
+ AAAlignReturned(const IRPosition &IRP)
+ : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
+};
+
+/// Align attribute for function argument.
+struct AAAlignArgument final
+ : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AAAlign,
+ AAAlignImpl> {
+ using Base =
+ AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AAAlign,
+ AAAlignImpl>;
+ AAAlignArgument(const IRPosition &IRP) : Base(IRP) {}
+
+ /// See AbstractAttribute::manifest(...).
+ ChangeStatus manifest(Attributor &A) override {
+ // If the associated argument is involved in a must-tail call we give up
+ // because we would need to keep the argument alignments of caller and
+ // callee in-sync. Just does not seem worth the trouble right now.
+ if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
+ return ChangeStatus::UNCHANGED;
+ return Base::manifest(A);
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
+};
+
+struct AAAlignCallSiteArgument final : AAAlignFloating {
+ AAAlignCallSiteArgument(const IRPosition &IRP) : AAAlignFloating(IRP) {}
+
+ /// See AbstractAttribute::manifest(...).
+ ChangeStatus manifest(Attributor &A) override {
+ // If the associated argument is involved in a must-tail call we give up
+ // because we would need to keep the argument alignments of caller and
+ // callee in-sync. Just does not seem worth the trouble right now.
+ if (Argument *Arg = getAssociatedArgument())
+ if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
+ return ChangeStatus::UNCHANGED;
+ ChangeStatus Changed = AAAlignImpl::manifest(A);
+ MaybeAlign InheritAlign =
+ getAssociatedValue().getPointerAlignment(A.getDataLayout());
+ if (InheritAlign.valueOrOne() >= getAssumedAlign())
+ Changed = ChangeStatus::UNCHANGED;
+ return Changed;
+ }
+
+ /// See AbstractAttribute::updateImpl(Attributor &A).
+ ChangeStatus updateImpl(Attributor &A) override {
+ ChangeStatus Changed = AAAlignFloating::updateImpl(A);
+ if (Argument *Arg = getAssociatedArgument()) {
+ // We only take known information from the argument
+ // so we do not need to track a dependence.
+ const auto &ArgAlignAA = A.getAAFor<AAAlign>(
+ *this, IRPosition::argument(*Arg), /* TrackDependence */ false);
+ takeKnownMaximum(ArgAlignAA.getKnownAlign());
+ }
+ return Changed;
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
+};
+
+/// Align attribute deduction for a call site return value.
+struct AAAlignCallSiteReturned final
+ : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AAAlign,
+ AAAlignImpl> {
+ using Base =
+ AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AAAlign,
+ AAAlignImpl>;
+ AAAlignCallSiteReturned(const IRPosition &IRP) : Base(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ Base::initialize(A);
+ Function *F = getAssociatedFunction();
+ if (!F)
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
+};
+
+/// ------------------ Function No-Return Attribute ----------------------------
+struct AANoReturnImpl : public AANoReturn {
+ AANoReturnImpl(const IRPosition &IRP) : AANoReturn(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ AANoReturn::initialize(A);
+ Function *F = getAssociatedFunction();
+ if (!F)
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::getAsStr().
+ const std::string getAsStr() const override {
+ return getAssumed() ? "noreturn" : "may-return";
+ }
+
+ /// See AbstractAttribute::updateImpl(Attributor &A).
+ virtual ChangeStatus updateImpl(Attributor &A) override {
+ auto CheckForNoReturn = [](Instruction &) { return false; };
+ if (!A.checkForAllInstructions(CheckForNoReturn, *this,
+ {(unsigned)Instruction::Ret}))
+ return indicatePessimisticFixpoint();
+ return ChangeStatus::UNCHANGED;
+ }
+};
+
+struct AANoReturnFunction final : AANoReturnImpl {
+ AANoReturnFunction(const IRPosition &IRP) : AANoReturnImpl(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
+};
+
+/// NoReturn attribute deduction for a call sites.
+struct AANoReturnCallSite final : AANoReturnImpl {
+ AANoReturnCallSite(const IRPosition &IRP) : AANoReturnImpl(IRP) {}
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ // TODO: Once we have call site specific value information we can provide
+ // call site specific liveness information and then it makes
+ // sense to specialize attributes for call sites arguments instead of
+ // redirecting requests to the callee argument.
+ Function *F = getAssociatedFunction();
+ const IRPosition &FnPos = IRPosition::function(*F);
+ auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos);
+ return clampStateAndIndicateChange(
+ getState(),
+ static_cast<const AANoReturn::StateType &>(FnAA.getState()));
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
+};
+
+/// ----------------------- Variable Capturing ---------------------------------
+
+/// A class to hold the state of for no-capture attributes.
+struct AANoCaptureImpl : public AANoCapture {
+ AANoCaptureImpl(const IRPosition &IRP) : AANoCapture(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
+ indicateOptimisticFixpoint();
+ return;
+ }
+ Function *AnchorScope = getAnchorScope();
+ if (isFnInterfaceKind() &&
+ (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
+ indicatePessimisticFixpoint();
+ return;
+ }
+
+ // You cannot "capture" null in the default address space.
+ if (isa<ConstantPointerNull>(getAssociatedValue()) &&
+ getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
+ indicateOptimisticFixpoint();
+ return;
+ }
+
+ const Function *F = getArgNo() >= 0 ? getAssociatedFunction() : AnchorScope;
+
+ // Check what state the associated function can actually capture.
+ if (F)
+ determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
+ else
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override;
+
+ /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
+ virtual void
+ getDeducedAttributes(LLVMContext &Ctx,
+ SmallVectorImpl<Attribute> &Attrs) const override {
+ if (!isAssumedNoCaptureMaybeReturned())
+ return;
+
+ if (getArgNo() >= 0) {
+ if (isAssumedNoCapture())
+ Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
+ else if (ManifestInternal)
+ Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
+ }
+ }
+
+ /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
+ /// depending on the ability of the function associated with \p IRP to capture
+ /// state in memory and through "returning/throwing", respectively.
+ static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
+ const Function &F,
+ BitIntegerState &State) {
+ // TODO: Once we have memory behavior attributes we should use them here.
+
+ // If we know we cannot communicate or write to memory, we do not care about
+ // ptr2int anymore.
+ if (F.onlyReadsMemory() && F.doesNotThrow() &&
+ F.getReturnType()->isVoidTy()) {
+ State.addKnownBits(NO_CAPTURE);
+ return;
+ }
+
+ // A function cannot capture state in memory if it only reads memory, it can
+ // however return/throw state and the state might be influenced by the
+ // pointer value, e.g., loading from a returned pointer might reveal a bit.
+ if (F.onlyReadsMemory())
+ State.addKnownBits(NOT_CAPTURED_IN_MEM);
+
+ // A function cannot communicate state back if it does not through
+ // exceptions and doesn not return values.
+ if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
+ State.addKnownBits(NOT_CAPTURED_IN_RET);
+
+ // Check existing "returned" attributes.
+ int ArgNo = IRP.getArgNo();
+ if (F.doesNotThrow() && ArgNo >= 0) {
+ for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
+ if (F.hasParamAttribute(u, Attribute::Returned)) {
+ if (u == unsigned(ArgNo))
+ State.removeAssumedBits(NOT_CAPTURED_IN_RET);
+ else if (F.onlyReadsMemory())
+ State.addKnownBits(NO_CAPTURE);
+ else
+ State.addKnownBits(NOT_CAPTURED_IN_RET);
+ break;
+ }
+ }
+ }
+
+ /// See AbstractState::getAsStr().
+ const std::string getAsStr() const override {
+ if (isKnownNoCapture())
+ return "known not-captured";
+ if (isAssumedNoCapture())
+ return "assumed not-captured";
+ if (isKnownNoCaptureMaybeReturned())
+ return "known not-captured-maybe-returned";
+ if (isAssumedNoCaptureMaybeReturned())
+ return "assumed not-captured-maybe-returned";
+ return "assumed-captured";
+ }
+};
+
+/// Attributor-aware capture tracker.
+struct AACaptureUseTracker final : public CaptureTracker {
+
+ /// Create a capture tracker that can lookup in-flight abstract attributes
+ /// through the Attributor \p A.
+ ///
+ /// If a use leads to a potential capture, \p CapturedInMemory is set and the
+ /// search is stopped. If a use leads to a return instruction,
+ /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
+ /// If a use leads to a ptr2int which may capture the value,
+ /// \p CapturedInInteger is set. If a use is found that is currently assumed
+ /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
+ /// set. All values in \p PotentialCopies are later tracked as well. For every
+ /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
+ /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
+ /// conservatively set to true.
+ AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
+ const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
+ SmallVectorImpl<const Value *> &PotentialCopies,
+ unsigned &RemainingUsesToExplore)
+ : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
+ PotentialCopies(PotentialCopies),
+ RemainingUsesToExplore(RemainingUsesToExplore) {}
+
+ /// Determine if \p V maybe captured. *Also updates the state!*
+ bool valueMayBeCaptured(const Value *V) {
+ if (V->getType()->isPointerTy()) {
+ PointerMayBeCaptured(V, this);
+ } else {
+ State.indicatePessimisticFixpoint();
+ }
+ return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
+ }
+
+ /// See CaptureTracker::tooManyUses().
+ void tooManyUses() override {
+ State.removeAssumedBits(AANoCapture::NO_CAPTURE);
+ }
+
+ bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
+ if (CaptureTracker::isDereferenceableOrNull(O, DL))
+ return true;
+ const auto &DerefAA = A.getAAFor<AADereferenceable>(
+ NoCaptureAA, IRPosition::value(*O), /* TrackDependence */ true,
+ DepClassTy::OPTIONAL);
+ return DerefAA.getAssumedDereferenceableBytes();
+ }
+
+ /// See CaptureTracker::captured(...).
+ bool captured(const Use *U) override {
+ Instruction *UInst = cast<Instruction>(U->getUser());
+ LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
+ << "\n");
+
+ // Because we may reuse the tracker multiple times we keep track of the
+ // number of explored uses ourselves as well.
+ if (RemainingUsesToExplore-- == 0) {
+ LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
+ return isCapturedIn(/* Memory */ true, /* Integer */ true,
+ /* Return */ true);
+ }
+
+ // Deal with ptr2int by following uses.
+ if (isa<PtrToIntInst>(UInst)) {
+ LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
+ return valueMayBeCaptured(UInst);
+ }
+
+ // Explicitly catch return instructions.
+ if (isa<ReturnInst>(UInst))
+ return isCapturedIn(/* Memory */ false, /* Integer */ false,
+ /* Return */ true);
+
+ // For now we only use special logic for call sites. However, the tracker
+ // itself knows about a lot of other non-capturing cases already.
+ CallSite CS(UInst);
+ if (!CS || !CS.isArgOperand(U))
+ return isCapturedIn(/* Memory */ true, /* Integer */ true,
+ /* Return */ true);
+
+ unsigned ArgNo = CS.getArgumentNo(U);
+ const IRPosition &CSArgPos = IRPosition::callsite_argument(CS, ArgNo);
+ // If we have a abstract no-capture attribute for the argument we can use
+ // it to justify a non-capture attribute here. This allows recursion!
+ auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos);
+ if (ArgNoCaptureAA.isAssumedNoCapture())
+ return isCapturedIn(/* Memory */ false, /* Integer */ false,
+ /* Return */ false);
+ if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
+ addPotentialCopy(CS);
+ return isCapturedIn(/* Memory */ false, /* Integer */ false,
+ /* Return */ false);
+ }
+
+ // Lastly, we could not find a reason no-capture can be assumed so we don't.
+ return isCapturedIn(/* Memory */ true, /* Integer */ true,
+ /* Return */ true);
+ }
+
+ /// Register \p CS as potential copy of the value we are checking.
+ void addPotentialCopy(CallSite CS) {
+ PotentialCopies.push_back(CS.getInstruction());
+ }
+
+ /// See CaptureTracker::shouldExplore(...).
+ bool shouldExplore(const Use *U) override {
+ // Check liveness and ignore droppable users.
+ return !U->getUser()->isDroppable() &&
+ !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA);
+ }
+
+ /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
+ /// \p CapturedInRet, then return the appropriate value for use in the
+ /// CaptureTracker::captured() interface.
+ bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
+ bool CapturedInRet) {
+ LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
+ << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
+ if (CapturedInMem)
+ State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
+ if (CapturedInInt)
+ State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
+ if (CapturedInRet)
+ State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
+ return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
+ }
+
+private:
+ /// The attributor providing in-flight abstract attributes.
+ Attributor &A;
+
+ /// The abstract attribute currently updated.
+ AANoCapture &NoCaptureAA;
+
+ /// The abstract liveness state.
+ const AAIsDead &IsDeadAA;
+
+ /// The state currently updated.
+ AANoCapture::StateType &State;
+
+ /// Set of potential copies of the tracked value.
+ SmallVectorImpl<const Value *> &PotentialCopies;
+
+ /// Global counter to limit the number of explored uses.
+ unsigned &RemainingUsesToExplore;
+};
+
+ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
+ const IRPosition &IRP = getIRPosition();
+ const Value *V =
+ getArgNo() >= 0 ? IRP.getAssociatedArgument() : &IRP.getAssociatedValue();
+ if (!V)
+ return indicatePessimisticFixpoint();
+
+ const Function *F =
+ getArgNo() >= 0 ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
+ assert(F && "Expected a function!");
+ const IRPosition &FnPos = IRPosition::function(*F);
+ const auto &IsDeadAA =
+ A.getAAFor<AAIsDead>(*this, FnPos, /* TrackDependence */ false);
+
+ AANoCapture::StateType T;
+
+ // Readonly means we cannot capture through memory.
+ const auto &FnMemAA = A.getAAFor<AAMemoryBehavior>(
+ *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
+ if (FnMemAA.isAssumedReadOnly()) {
+ T.addKnownBits(NOT_CAPTURED_IN_MEM);
+ if (FnMemAA.isKnownReadOnly())
+ addKnownBits(NOT_CAPTURED_IN_MEM);
+ }
+
+ // Make sure all returned values are different than the underlying value.
+ // TODO: we could do this in a more sophisticated way inside
+ // AAReturnedValues, e.g., track all values that escape through returns
+ // directly somehow.
+ auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
+ bool SeenConstant = false;
+ for (auto &It : RVAA.returned_values()) {
+ if (isa<Constant>(It.first)) {
+ if (SeenConstant)
+ return false;
+ SeenConstant = true;
+ } else if (!isa<Argument>(It.first) ||
+ It.first == getAssociatedArgument())
+ return false;
+ }
+ return true;
+ };
+
+ const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
+ *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
+ if (NoUnwindAA.isAssumedNoUnwind()) {
+ bool IsVoidTy = F->getReturnType()->isVoidTy();
+ const AAReturnedValues *RVAA =
+ IsVoidTy ? nullptr
+ : &A.getAAFor<AAReturnedValues>(*this, FnPos,
+ /* TrackDependence */ true,
+ DepClassTy::OPTIONAL);
+ if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
+ T.addKnownBits(NOT_CAPTURED_IN_RET);
+ if (T.isKnown(NOT_CAPTURED_IN_MEM))
+ return ChangeStatus::UNCHANGED;
+ if (NoUnwindAA.isKnownNoUnwind() &&
+ (IsVoidTy || RVAA->getState().isAtFixpoint())) {
+ addKnownBits(NOT_CAPTURED_IN_RET);
+ if (isKnown(NOT_CAPTURED_IN_MEM))
+ return indicateOptimisticFixpoint();
+ }
+ }
+ }
+
+ // Use the CaptureTracker interface and logic with the specialized tracker,
+ // defined in AACaptureUseTracker, that can look at in-flight abstract
+ // attributes and directly updates the assumed state.
+ SmallVector<const Value *, 4> PotentialCopies;
+ unsigned RemainingUsesToExplore = DefaultMaxUsesToExplore;
+ AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
+ RemainingUsesToExplore);
+
+ // Check all potential copies of the associated value until we can assume
+ // none will be captured or we have to assume at least one might be.
+ unsigned Idx = 0;
+ PotentialCopies.push_back(V);
+ while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
+ Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
+
+ AANoCapture::StateType &S = getState();
+ auto Assumed = S.getAssumed();
+ S.intersectAssumedBits(T.getAssumed());
+ if (!isAssumedNoCaptureMaybeReturned())
+ return indicatePessimisticFixpoint();
+ return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
+ : ChangeStatus::CHANGED;
+}
+
+/// NoCapture attribute for function arguments.
+struct AANoCaptureArgument final : AANoCaptureImpl {
+ AANoCaptureArgument(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
+};
+
+/// NoCapture attribute for call site arguments.
+struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
+ AANoCaptureCallSiteArgument(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ if (Argument *Arg = getAssociatedArgument())
+ if (Arg->hasByValAttr())
+ indicateOptimisticFixpoint();
+ AANoCaptureImpl::initialize(A);
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ // TODO: Once we have call site specific value information we can provide
+ // call site specific liveness information and then it makes
+ // sense to specialize attributes for call sites arguments instead of
+ // redirecting requests to the callee argument.
+ Argument *Arg = getAssociatedArgument();
+ if (!Arg)
+ return indicatePessimisticFixpoint();
+ const IRPosition &ArgPos = IRPosition::argument(*Arg);
+ auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos);
+ return clampStateAndIndicateChange(
+ getState(),
+ static_cast<const AANoCapture::StateType &>(ArgAA.getState()));
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
+};
+
+/// NoCapture attribute for floating values.
+struct AANoCaptureFloating final : AANoCaptureImpl {
+ AANoCaptureFloating(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_FLOATING_ATTR(nocapture)
+ }
+};
+
+/// NoCapture attribute for function return value.
+struct AANoCaptureReturned final : AANoCaptureImpl {
+ AANoCaptureReturned(const IRPosition &IRP) : AANoCaptureImpl(IRP) {
+ llvm_unreachable("NoCapture is not applicable to function returns!");
+ }
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ llvm_unreachable("NoCapture is not applicable to function returns!");
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ llvm_unreachable("NoCapture is not applicable to function returns!");
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {}
+};
+
+/// NoCapture attribute deduction for a call site return value.
+struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
+ AANoCaptureCallSiteReturned(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_CSRET_ATTR(nocapture)
+ }
+};
+
+/// ------------------ Value Simplify Attribute ----------------------------
+struct AAValueSimplifyImpl : AAValueSimplify {
+ AAValueSimplifyImpl(const IRPosition &IRP) : AAValueSimplify(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ if (getAssociatedValue().getType()->isVoidTy())
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::getAsStr().
+ const std::string getAsStr() const override {
+ return getAssumed() ? (getKnown() ? "simplified" : "maybe-simple")
+ : "not-simple";
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {}
+
+ /// See AAValueSimplify::getAssumedSimplifiedValue()
+ Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
+ if (!getAssumed())
+ return const_cast<Value *>(&getAssociatedValue());
+ return SimplifiedAssociatedValue;
+ }
+
+ /// Helper function for querying AAValueSimplify and updating candicate.
+ /// \param QueryingValue Value trying to unify with SimplifiedValue
+ /// \param AccumulatedSimplifiedValue Current simplification result.
+ static bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
+ Value &QueryingValue,
+ Optional<Value *> &AccumulatedSimplifiedValue) {
+ // FIXME: Add a typecast support.
+
+ auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>(
+ QueryingAA, IRPosition::value(QueryingValue));
+
+ Optional<Value *> QueryingValueSimplified =
+ ValueSimplifyAA.getAssumedSimplifiedValue(A);
+
+ if (!QueryingValueSimplified.hasValue())
+ return true;
+
+ if (!QueryingValueSimplified.getValue())
+ return false;
+
+ Value &QueryingValueSimplifiedUnwrapped =
+ *QueryingValueSimplified.getValue();
+
+ if (AccumulatedSimplifiedValue.hasValue() &&
+ !isa<UndefValue>(AccumulatedSimplifiedValue.getValue()) &&
+ !isa<UndefValue>(QueryingValueSimplifiedUnwrapped))
+ return AccumulatedSimplifiedValue == QueryingValueSimplified;
+ if (AccumulatedSimplifiedValue.hasValue() &&
+ isa<UndefValue>(QueryingValueSimplifiedUnwrapped))
+ return true;
+
+ LLVM_DEBUG(dbgs() << "[ValueSimplify] " << QueryingValue
+ << " is assumed to be "
+ << QueryingValueSimplifiedUnwrapped << "\n");
+
+ AccumulatedSimplifiedValue = QueryingValueSimplified;
+ return true;
+ }
+
+ bool askSimplifiedValueForAAValueConstantRange(Attributor &A) {
+ if (!getAssociatedValue().getType()->isIntegerTy())
+ return false;
+
+ const auto &ValueConstantRangeAA =
+ A.getAAFor<AAValueConstantRange>(*this, getIRPosition());
+
+ Optional<ConstantInt *> COpt =
+ ValueConstantRangeAA.getAssumedConstantInt(A);
+ if (COpt.hasValue()) {
+ if (auto *C = COpt.getValue())
+ SimplifiedAssociatedValue = C;
+ else
+ return false;
+ } else {
+ SimplifiedAssociatedValue = llvm::None;
+ }
+ return true;
+ }
+
+ /// See AbstractAttribute::manifest(...).
+ ChangeStatus manifest(Attributor &A) override {
+ ChangeStatus Changed = ChangeStatus::UNCHANGED;
+
+ if (SimplifiedAssociatedValue.hasValue() &&
+ !SimplifiedAssociatedValue.getValue())
+ return Changed;
+
+ Value &V = getAssociatedValue();
+ auto *C = SimplifiedAssociatedValue.hasValue()
+ ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
+ : UndefValue::get(V.getType());
+ if (C) {
+ // We can replace the AssociatedValue with the constant.
+ if (!V.user_empty() && &V != C && V.getType() == C->getType()) {
+ LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *C
+ << " :: " << *this << "\n");
+ if (A.changeValueAfterManifest(V, *C))
+ Changed = ChangeStatus::CHANGED;
+ }
+ }
+
+ return Changed | AAValueSimplify::manifest(A);
+ }
+
+ /// See AbstractState::indicatePessimisticFixpoint(...).
+ ChangeStatus indicatePessimisticFixpoint() override {
+ // NOTE: Associated value will be returned in a pessimistic fixpoint and is
+ // regarded as known. That's why`indicateOptimisticFixpoint` is called.
+ SimplifiedAssociatedValue = &getAssociatedValue();
+ indicateOptimisticFixpoint();
+ return ChangeStatus::CHANGED;
+ }
+
+protected:
+ // An assumed simplified value. Initially, it is set to Optional::None, which
+ // means that the value is not clear under current assumption. If in the
+ // pessimistic state, getAssumedSimplifiedValue doesn't return this value but
+ // returns orignal associated value.
+ Optional<Value *> SimplifiedAssociatedValue;
+};
+
+struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
+ AAValueSimplifyArgument(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {}
+
+ void initialize(Attributor &A) override {
+ AAValueSimplifyImpl::initialize(A);
+ if (!getAnchorScope() || getAnchorScope()->isDeclaration())
+ indicatePessimisticFixpoint();
+ if (hasAttr({Attribute::InAlloca, Attribute::StructRet, Attribute::Nest},
+ /* IgnoreSubsumingPositions */ true))
+ indicatePessimisticFixpoint();
+
+ // FIXME: This is a hack to prevent us from propagating function poiner in
+ // the new pass manager CGSCC pass as it creates call edges the
+ // CallGraphUpdater cannot handle yet.
+ Value &V = getAssociatedValue();
+ if (V.getType()->isPointerTy() &&
+ V.getType()->getPointerElementType()->isFunctionTy() &&
+ !A.isModulePass())
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ // Byval is only replacable if it is readonly otherwise we would write into
+ // the replaced value and not the copy that byval creates implicitly.
+ Argument *Arg = getAssociatedArgument();
+ if (Arg->hasByValAttr()) {
+ // TODO: We probably need to verify synchronization is not an issue, e.g.,
+ // there is no race by not copying a constant byval.
+ const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition());
+ if (!MemAA.isAssumedReadOnly())
+ return indicatePessimisticFixpoint();
+ }
+
+ bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
+
+ auto PredForCallSite = [&](AbstractCallSite ACS) {
+ const IRPosition &ACSArgPos =
+ IRPosition::callsite_argument(ACS, getArgNo());
+ // Check if a coresponding argument was found or if it is on not
+ // associated (which can happen for callback calls).
+ if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
+ return false;
+
+ // We can only propagate thread independent values through callbacks.
+ // This is different to direct/indirect call sites because for them we
+ // know the thread executing the caller and callee is the same. For
+ // callbacks this is not guaranteed, thus a thread dependent value could
+ // be different for the caller and callee, making it invalid to propagate.
+ Value &ArgOp = ACSArgPos.getAssociatedValue();
+ if (ACS.isCallbackCall())
+ if (auto *C = dyn_cast<Constant>(&ArgOp))
+ if (C->isThreadDependent())
+ return false;
+ return checkAndUpdate(A, *this, ArgOp, SimplifiedAssociatedValue);
+ };
+
+ bool AllCallSitesKnown;
+ if (!A.checkForAllCallSites(PredForCallSite, *this, true,
+ AllCallSitesKnown))
+ if (!askSimplifiedValueForAAValueConstantRange(A))
+ return indicatePessimisticFixpoint();
+
+ // If a candicate was found in this update, return CHANGED.
+ return HasValueBefore == SimplifiedAssociatedValue.hasValue()
+ ? ChangeStatus::UNCHANGED
+ : ChangeStatus ::CHANGED;
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_ARG_ATTR(value_simplify)
+ }
+};
+
+struct AAValueSimplifyReturned : AAValueSimplifyImpl {
+ AAValueSimplifyReturned(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {}
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
+
+ auto PredForReturned = [&](Value &V) {
+ return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
+ };
+
+ if (!A.checkForAllReturnedValues(PredForReturned, *this))
+ if (!askSimplifiedValueForAAValueConstantRange(A))
+ return indicatePessimisticFixpoint();
+
+ // If a candicate was found in this update, return CHANGED.
+ return HasValueBefore == SimplifiedAssociatedValue.hasValue()
+ ? ChangeStatus::UNCHANGED
+ : ChangeStatus ::CHANGED;
+ }
+
+ ChangeStatus manifest(Attributor &A) override {
+ ChangeStatus Changed = ChangeStatus::UNCHANGED;
+
+ if (SimplifiedAssociatedValue.hasValue() &&
+ !SimplifiedAssociatedValue.getValue())
+ return Changed;
+
+ Value &V = getAssociatedValue();
+ auto *C = SimplifiedAssociatedValue.hasValue()
+ ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
+ : UndefValue::get(V.getType());
+ if (C) {
+ auto PredForReturned =
+ [&](Value &V, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
+ // We can replace the AssociatedValue with the constant.
+ if (&V == C || V.getType() != C->getType() || isa<UndefValue>(V))
+ return true;
+
+ for (ReturnInst *RI : RetInsts) {
+ if (RI->getFunction() != getAnchorScope())
+ continue;
+ LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *C
+ << " in " << *RI << " :: " << *this << "\n");
+ if (A.changeUseAfterManifest(RI->getOperandUse(0), *C))
+ Changed = ChangeStatus::CHANGED;
+ }
+ return true;
+ };
+ A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
+ }
+
+ return Changed | AAValueSimplify::manifest(A);
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_FNRET_ATTR(value_simplify)
+ }
+};
+
+struct AAValueSimplifyFloating : AAValueSimplifyImpl {
+ AAValueSimplifyFloating(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ // FIXME: This might have exposed a SCC iterator update bug in the old PM.
+ // Needs investigation.
+ // AAValueSimplifyImpl::initialize(A);
+ Value &V = getAnchorValue();
+
+ // TODO: add other stuffs
+ if (isa<Constant>(V))
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
+
+ auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
+ bool Stripped) -> bool {
+ auto &AA = A.getAAFor<AAValueSimplify>(*this, IRPosition::value(V));
+ if (!Stripped && this == &AA) {
+ // TODO: Look the instruction and check recursively.
+
+ LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
+ << "\n");
+ return false;
+ }
+ return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
+ };
+
+ bool Dummy = false;
+ if (!genericValueTraversal<AAValueSimplify, bool>(
+ A, getIRPosition(), *this, Dummy, VisitValueCB, getCtxI()))
+ if (!askSimplifiedValueForAAValueConstantRange(A))
+ return indicatePessimisticFixpoint();
+
+ // If a candicate was found in this update, return CHANGED.
+
+ return HasValueBefore == SimplifiedAssociatedValue.hasValue()
+ ? ChangeStatus::UNCHANGED
+ : ChangeStatus ::CHANGED;
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
+ }
+};
+
+struct AAValueSimplifyFunction : AAValueSimplifyImpl {
+ AAValueSimplifyFunction(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ SimplifiedAssociatedValue = &getAnchorValue();
+ indicateOptimisticFixpoint();
+ }
+ /// See AbstractAttribute::initialize(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ llvm_unreachable(
+ "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
+ }
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_FN_ATTR(value_simplify)
+ }
+};
+
+struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
+ AAValueSimplifyCallSite(const IRPosition &IRP)
+ : AAValueSimplifyFunction(IRP) {}
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_CS_ATTR(value_simplify)
+ }
+};
+
+struct AAValueSimplifyCallSiteReturned : AAValueSimplifyReturned {
+ AAValueSimplifyCallSiteReturned(const IRPosition &IRP)
+ : AAValueSimplifyReturned(IRP) {}
+
+ /// See AbstractAttribute::manifest(...).
+ ChangeStatus manifest(Attributor &A) override {
+ return AAValueSimplifyImpl::manifest(A);
+ }
+
+ void trackStatistics() const override {
+ STATS_DECLTRACK_CSRET_ATTR(value_simplify)
+ }
+};
+struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
+ AAValueSimplifyCallSiteArgument(const IRPosition &IRP)
+ : AAValueSimplifyFloating(IRP) {}
+
+ void trackStatistics() const override {
+ STATS_DECLTRACK_CSARG_ATTR(value_simplify)
+ }
+};
+
+/// ----------------------- Heap-To-Stack Conversion ---------------------------
+struct AAHeapToStackImpl : public AAHeapToStack {
+ AAHeapToStackImpl(const IRPosition &IRP) : AAHeapToStack(IRP) {}
+
+ const std::string getAsStr() const override {
+ return "[H2S] Mallocs: " + std::to_string(MallocCalls.size());
+ }
+
+ ChangeStatus manifest(Attributor &A) override {
+ assert(getState().isValidState() &&
+ "Attempted to manifest an invalid state!");
+
+ ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
+ Function *F = getAnchorScope();
+ const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
+
+ for (Instruction *MallocCall : MallocCalls) {
+ // This malloc cannot be replaced.
+ if (BadMallocCalls.count(MallocCall))
+ continue;
+
+ for (Instruction *FreeCall : FreesForMalloc[MallocCall]) {
+ LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
+ A.deleteAfterManifest(*FreeCall);
+ HasChanged = ChangeStatus::CHANGED;
+ }
+
+ LLVM_DEBUG(dbgs() << "H2S: Removing malloc call: " << *MallocCall
+ << "\n");
+
+ MaybeAlign Alignment;
+ Constant *Size;
+ if (isCallocLikeFn(MallocCall, TLI)) {
+ auto *Num = cast<ConstantInt>(MallocCall->getOperand(0));
+ auto *SizeT = cast<ConstantInt>(MallocCall->getOperand(1));
+ APInt TotalSize = SizeT->getValue() * Num->getValue();
+ Size =
+ ConstantInt::get(MallocCall->getOperand(0)->getType(), TotalSize);
+ } else if (isAlignedAllocLikeFn(MallocCall, TLI)) {
+ Size = cast<ConstantInt>(MallocCall->getOperand(1));
+ Alignment = MaybeAlign(cast<ConstantInt>(MallocCall->getOperand(0))
+ ->getValue()
+ .getZExtValue());
+ } else {
+ Size = cast<ConstantInt>(MallocCall->getOperand(0));
+ }
+
+ unsigned AS = cast<PointerType>(MallocCall->getType())->getAddressSpace();
+ Instruction *AI =
+ new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
+ "", MallocCall->getNextNode());
+
+ if (AI->getType() != MallocCall->getType())
+ AI = new BitCastInst(AI, MallocCall->getType(), "malloc_bc",
+ AI->getNextNode());
+
+ A.changeValueAfterManifest(*MallocCall, *AI);
+
+ if (auto *II = dyn_cast<InvokeInst>(MallocCall)) {
+ auto *NBB = II->getNormalDest();
+ BranchInst::Create(NBB, MallocCall->getParent());
+ A.deleteAfterManifest(*MallocCall);
+ } else {
+ A.deleteAfterManifest(*MallocCall);
+ }
+
+ // Zero out the allocated memory if it was a calloc.
+ if (isCallocLikeFn(MallocCall, TLI)) {
+ auto *BI = new BitCastInst(AI, MallocCall->getType(), "calloc_bc",
+ AI->getNextNode());
+ Value *Ops[] = {
+ BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size,
+ ConstantInt::get(Type::getInt1Ty(F->getContext()), false)};
+
+ Type *Tys[] = {BI->getType(), MallocCall->getOperand(0)->getType()};
+ Module *M = F->getParent();
+ Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
+ CallInst::Create(Fn, Ops, "", BI->getNextNode());
+ }
+ HasChanged = ChangeStatus::CHANGED;
+ }
+
+ return HasChanged;
+ }
+
+ /// Collection of all malloc calls in a function.
+ SmallSetVector<Instruction *, 4> MallocCalls;
+
+ /// Collection of malloc calls that cannot be converted.
+ DenseSet<const Instruction *> BadMallocCalls;
+
+ /// A map for each malloc call to the set of associated free calls.
+ DenseMap<Instruction *, SmallPtrSet<Instruction *, 4>> FreesForMalloc;
+
+ ChangeStatus updateImpl(Attributor &A) override;
+};
+
+ChangeStatus AAHeapToStackImpl::updateImpl(Attributor &A) {
+ const Function *F = getAnchorScope();
+ const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
+
+ MustBeExecutedContextExplorer &Explorer =
+ A.getInfoCache().getMustBeExecutedContextExplorer();
+
+ auto FreeCheck = [&](Instruction &I) {
+ const auto &Frees = FreesForMalloc.lookup(&I);
+ if (Frees.size() != 1)
+ return false;
+ Instruction *UniqueFree = *Frees.begin();
+ return Explorer.findInContextOf(UniqueFree, I.getNextNode());
+ };
+
+ auto UsesCheck = [&](Instruction &I) {
+ bool ValidUsesOnly = true;
+ bool MustUse = true;
+ auto Pred = [&](const Use &U, bool &Follow) -> bool {
+ Instruction *UserI = cast<Instruction>(U.getUser());
+ if (isa<LoadInst>(UserI))
+ return true;
+ if (auto *SI = dyn_cast<StoreInst>(UserI)) {
+ if (SI->getValueOperand() == U.get()) {
+ LLVM_DEBUG(dbgs()
+ << "[H2S] escaping store to memory: " << *UserI << "\n");
+ ValidUsesOnly = false;
+ } else {
+ // A store into the malloc'ed memory is fine.
+ }
+ return true;
+ }
+ if (auto *CB = dyn_cast<CallBase>(UserI)) {
+ if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
+ return true;
+ // Record malloc.
+ if (isFreeCall(UserI, TLI)) {
+ if (MustUse) {
+ FreesForMalloc[&I].insert(UserI);
+ } else {
+ LLVM_DEBUG(dbgs() << "[H2S] free potentially on different mallocs: "
+ << *UserI << "\n");
+ ValidUsesOnly = false;
+ }
+ return true;
+ }
+
+ unsigned ArgNo = CB->getArgOperandNo(&U);
+
+ const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
+ *this, IRPosition::callsite_argument(*CB, ArgNo));
+
+ // If a callsite argument use is nofree, we are fine.
+ const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
+ *this, IRPosition::callsite_argument(*CB, ArgNo));
+
+ if (!NoCaptureAA.isAssumedNoCapture() ||
+ !ArgNoFreeAA.isAssumedNoFree()) {
+ LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
+ ValidUsesOnly = false;
+ }
+ return true;
+ }
+
+ if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
+ isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
+ MustUse &= !(isa<PHINode>(UserI) || isa<SelectInst>(UserI));
+ Follow = true;
+ return true;
+ }
+ // Unknown user for which we can not track uses further (in a way that
+ // makes sense).
+ LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
+ ValidUsesOnly = false;
+ return true;
+ };
+ A.checkForAllUses(Pred, *this, I);
+ return ValidUsesOnly;
+ };
+
+ auto MallocCallocCheck = [&](Instruction &I) {
+ if (BadMallocCalls.count(&I))
+ return true;
+
+ bool IsMalloc = isMallocLikeFn(&I, TLI);
+ bool IsAlignedAllocLike = isAlignedAllocLikeFn(&I, TLI);
+ bool IsCalloc = !IsMalloc && isCallocLikeFn(&I, TLI);
+ if (!IsMalloc && !IsAlignedAllocLike && !IsCalloc) {
+ BadMallocCalls.insert(&I);
+ return true;
+ }
+
+ if (IsMalloc) {
+ if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(0)))
+ if (Size->getValue().ule(MaxHeapToStackSize))
+ if (UsesCheck(I) || FreeCheck(I)) {
+ MallocCalls.insert(&I);
+ return true;
+ }
+ } else if (IsAlignedAllocLike && isa<ConstantInt>(I.getOperand(0))) {
+ // Only if the alignment and sizes are constant.
+ if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1)))
+ if (Size->getValue().ule(MaxHeapToStackSize))
+ if (UsesCheck(I) || FreeCheck(I)) {
+ MallocCalls.insert(&I);
+ return true;
+ }
+ } else if (IsCalloc) {
+ bool Overflow = false;
+ if (auto *Num = dyn_cast<ConstantInt>(I.getOperand(0)))
+ if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1)))
+ if ((Size->getValue().umul_ov(Num->getValue(), Overflow))
+ .ule(MaxHeapToStackSize))
+ if (!Overflow && (UsesCheck(I) || FreeCheck(I))) {
+ MallocCalls.insert(&I);
+ return true;
+ }
+ }
+
+ BadMallocCalls.insert(&I);
+ return true;
+ };
+
+ size_t NumBadMallocs = BadMallocCalls.size();
+
+ A.checkForAllCallLikeInstructions(MallocCallocCheck, *this);
+
+ if (NumBadMallocs != BadMallocCalls.size())
+ return ChangeStatus::CHANGED;
+
+ return ChangeStatus::UNCHANGED;
+}
+
+struct AAHeapToStackFunction final : public AAHeapToStackImpl {
+ AAHeapToStackFunction(const IRPosition &IRP) : AAHeapToStackImpl(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics().
+ void trackStatistics() const override {
+ STATS_DECL(
+ MallocCalls, Function,
+ "Number of malloc/calloc/aligned_alloc calls converted to allocas");
+ for (auto *C : MallocCalls)
+ if (!BadMallocCalls.count(C))
+ ++BUILD_STAT_NAME(MallocCalls, Function);
+ }
+};
+
+/// ----------------------- Privatizable Pointers ------------------------------
+struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
+ AAPrivatizablePtrImpl(const IRPosition &IRP)
+ : AAPrivatizablePtr(IRP), PrivatizableType(llvm::None) {}
+
+ ChangeStatus indicatePessimisticFixpoint() override {
+ AAPrivatizablePtr::indicatePessimisticFixpoint();
+ PrivatizableType = nullptr;
+ return ChangeStatus::CHANGED;
+ }
+
+ /// Identify the type we can chose for a private copy of the underlying
+ /// argument. None means it is not clear yet, nullptr means there is none.
+ virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
+
+ /// Return a privatizable type that encloses both T0 and T1.
+ /// TODO: This is merely a stub for now as we should manage a mapping as well.
+ Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
+ if (!T0.hasValue())
+ return T1;
+ if (!T1.hasValue())
+ return T0;
+ if (T0 == T1)
+ return T0;
+ return nullptr;
+ }
+
+ Optional<Type *> getPrivatizableType() const override {
+ return PrivatizableType;
+ }
+
+ const std::string getAsStr() const override {
+ return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
+ }
+
+protected:
+ Optional<Type *> PrivatizableType;
+};
+
+// TODO: Do this for call site arguments (probably also other values) as well.
+
+struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
+ AAPrivatizablePtrArgument(const IRPosition &IRP)
+ : AAPrivatizablePtrImpl(IRP) {}
+
+ /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
+ Optional<Type *> identifyPrivatizableType(Attributor &A) override {
+ // If this is a byval argument and we know all the call sites (so we can
+ // rewrite them), there is no need to check them explicitly.
+ bool AllCallSitesKnown;
+ if (getIRPosition().hasAttr(Attribute::ByVal) &&
+ A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
+ true, AllCallSitesKnown))
+ return getAssociatedValue().getType()->getPointerElementType();
+
+ Optional<Type *> Ty;
+ unsigned ArgNo = getIRPosition().getArgNo();
+
+ // Make sure the associated call site argument has the same type at all call
+ // sites and it is an allocation we know is safe to privatize, for now that
+ // means we only allow alloca instructions.
+ // TODO: We can additionally analyze the accesses in the callee to create
+ // the type from that information instead. That is a little more
+ // involved and will be done in a follow up patch.
+ auto CallSiteCheck = [&](AbstractCallSite ACS) {
+ IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
+ // Check if a coresponding argument was found or if it is one not
+ // associated (which can happen for callback calls).
+ if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
+ return false;
+
+ // Check that all call sites agree on a type.
+ auto &PrivCSArgAA = A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos);
+ Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
+
+ LLVM_DEBUG({
+ dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
+ if (CSTy.hasValue() && CSTy.getValue())
+ CSTy.getValue()->print(dbgs());
+ else if (CSTy.hasValue())
+ dbgs() << "<nullptr>";
+ else
+ dbgs() << "<none>";
+ });
+
+ Ty = combineTypes(Ty, CSTy);
+
+ LLVM_DEBUG({
+ dbgs() << " : New Type: ";
+ if (Ty.hasValue() && Ty.getValue())
+ Ty.getValue()->print(dbgs());
+ else if (Ty.hasValue())
+ dbgs() << "<nullptr>";
+ else
+ dbgs() << "<none>";
+ dbgs() << "\n";
+ });
+
+ return !Ty.hasValue() || Ty.getValue();
+ };
+
+ if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown))
+ return nullptr;
+ return Ty;
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ PrivatizableType = identifyPrivatizableType(A);
+ if (!PrivatizableType.hasValue())
+ return ChangeStatus::UNCHANGED;
+ if (!PrivatizableType.getValue())
+ return indicatePessimisticFixpoint();
+
+ // Avoid arguments with padding for now.
+ if (!getIRPosition().hasAttr(Attribute::ByVal) &&
+ !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
+ A.getInfoCache().getDL())) {
+ LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
+ return indicatePessimisticFixpoint();
+ }
+
+ // Verify callee and caller agree on how the promoted argument would be
+ // passed.
+ // TODO: The use of the ArgumentPromotion interface here is ugly, we need a
+ // specialized form of TargetTransformInfo::areFunctionArgsABICompatible
+ // which doesn't require the arguments ArgumentPromotion wanted to pass.
+ Function &Fn = *getIRPosition().getAnchorScope();
+ SmallPtrSet<Argument *, 1> ArgsToPromote, Dummy;
+ ArgsToPromote.insert(getAssociatedArgument());
+ const auto *TTI =
+ A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
+ if (!TTI ||
+ !ArgumentPromotionPass::areFunctionArgsABICompatible(
+ Fn, *TTI, ArgsToPromote, Dummy) ||
+ ArgsToPromote.empty()) {
+ LLVM_DEBUG(
+ dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
+ << Fn.getName() << "\n");
+ return indicatePessimisticFixpoint();
+ }
+
+ // Collect the types that will replace the privatizable type in the function
+ // signature.
+ SmallVector<Type *, 16> ReplacementTypes;
+ identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
+
+ // Register a rewrite of the argument.
+ Argument *Arg = getAssociatedArgument();
+ if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
+ LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
+ return indicatePessimisticFixpoint();
+ }
+
+ unsigned ArgNo = Arg->getArgNo();
+
+ // Helper to check if for the given call site the associated argument is
+ // passed to a callback where the privatization would be different.
+ auto IsCompatiblePrivArgOfCallback = [&](CallSite CS) {
+ SmallVector<const Use *, 4> CBUses;
+ AbstractCallSite::getCallbackUses(CS, CBUses);
+ for (const Use *U : CBUses) {
+ AbstractCallSite CBACS(U);
+ assert(CBACS && CBACS.isCallbackCall());
+ for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
+ int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
+
+ LLVM_DEBUG({
+ dbgs()
+ << "[AAPrivatizablePtr] Argument " << *Arg
+ << "check if can be privatized in the context of its parent ("
+ << Arg->getParent()->getName()
+ << ")\n[AAPrivatizablePtr] because it is an argument in a "
+ "callback ("
+ << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
+ << ")\n[AAPrivatizablePtr] " << CBArg << " : "
+ << CBACS.getCallArgOperand(CBArg) << " vs "
+ << CS.getArgOperand(ArgNo) << "\n"
+ << "[AAPrivatizablePtr] " << CBArg << " : "
+ << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
+ });
+
+ if (CBArgNo != int(ArgNo))
+ continue;
+ const auto &CBArgPrivAA =
+ A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(CBArg));
+ if (CBArgPrivAA.isValidState()) {
+ auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
+ if (!CBArgPrivTy.hasValue())
+ continue;
+ if (CBArgPrivTy.getValue() == PrivatizableType)
+ continue;
+ }
+
+ LLVM_DEBUG({
+ dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
+ << " cannot be privatized in the context of its parent ("
+ << Arg->getParent()->getName()
+ << ")\n[AAPrivatizablePtr] because it is an argument in a "
+ "callback ("
+ << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
+ << ").\n[AAPrivatizablePtr] for which the argument "
+ "privatization is not compatible.\n";
+ });
+ return false;
+ }
+ }
+ return true;
+ };
+
+ // Helper to check if for the given call site the associated argument is
+ // passed to a direct call where the privatization would be different.
+ auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
+ CallBase *DC = cast<CallBase>(ACS.getInstruction());
+ int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
+ assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->getNumArgOperands() &&
+ "Expected a direct call operand for callback call operand");
+
+ LLVM_DEBUG({
+ dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
+ << " check if be privatized in the context of its parent ("
+ << Arg->getParent()->getName()
+ << ")\n[AAPrivatizablePtr] because it is an argument in a "
+ "direct call of ("
+ << DCArgNo << "@" << DC->getCalledFunction()->getName()
+ << ").\n";
+ });
+
+ Function *DCCallee = DC->getCalledFunction();
+ if (unsigned(DCArgNo) < DCCallee->arg_size()) {
+ const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
+ *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)));
+ if (DCArgPrivAA.isValidState()) {
+ auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
+ if (!DCArgPrivTy.hasValue())
+ return true;
+ if (DCArgPrivTy.getValue() == PrivatizableType)
+ return true;
+ }
+ }
+
+ LLVM_DEBUG({
+ dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
+ << " cannot be privatized in the context of its parent ("
+ << Arg->getParent()->getName()
+ << ")\n[AAPrivatizablePtr] because it is an argument in a "
+ "direct call of ("
+ << ACS.getCallSite().getCalledFunction()->getName()
+ << ").\n[AAPrivatizablePtr] for which the argument "
+ "privatization is not compatible.\n";
+ });
+ return false;
+ };
+
+ // Helper to check if the associated argument is used at the given abstract
+ // call site in a way that is incompatible with the privatization assumed
+ // here.
+ auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
+ if (ACS.isDirectCall())
+ return IsCompatiblePrivArgOfCallback(ACS.getCallSite());
+ if (ACS.isCallbackCall())
+ return IsCompatiblePrivArgOfDirectCS(ACS);
+ return false;
+ };
+
+ bool AllCallSitesKnown;
+ if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
+ AllCallSitesKnown))
+ return indicatePessimisticFixpoint();
+
+ return ChangeStatus::UNCHANGED;
+ }
+
+ /// Given a type to private \p PrivType, collect the constituates (which are
+ /// used) in \p ReplacementTypes.
+ static void
+ identifyReplacementTypes(Type *PrivType,
+ SmallVectorImpl<Type *> &ReplacementTypes) {
+ // TODO: For now we expand the privatization type to the fullest which can
+ // lead to dead arguments that need to be removed later.
+ assert(PrivType && "Expected privatizable type!");
+
+ // Traverse the type, extract constituate types on the outermost level.
+ if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
+ for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
+ ReplacementTypes.push_back(PrivStructType->getElementType(u));
+ } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
+ ReplacementTypes.append(PrivArrayType->getNumElements(),
+ PrivArrayType->getElementType());
+ } else {
+ ReplacementTypes.push_back(PrivType);
+ }
+ }
+
+ /// Initialize \p Base according to the type \p PrivType at position \p IP.
+ /// The values needed are taken from the arguments of \p F starting at
+ /// position \p ArgNo.
+ static void createInitialization(Type *PrivType, Value &Base, Function &F,
+ unsigned ArgNo, Instruction &IP) {
+ assert(PrivType && "Expected privatizable type!");
+
+ IRBuilder<NoFolder> IRB(&IP);
+ const DataLayout &DL = F.getParent()->getDataLayout();
+
+ // Traverse the type, build GEPs and stores.
+ if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
+ const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
+ for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
+ Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
+ Value *Ptr = constructPointer(
+ PointeeTy, &Base, PrivStructLayout->getElementOffset(u), IRB, DL);
+ new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
+ }
+ } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
+ Type *PointeePtrTy = PrivArrayType->getElementType()->getPointerTo();
+ uint64_t PointeeTySize = DL.getTypeStoreSize(PointeePtrTy);
+ for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
+ Value *Ptr =
+ constructPointer(PointeePtrTy, &Base, u * PointeeTySize, IRB, DL);
+ new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
+ }
+ } else {
+ new StoreInst(F.getArg(ArgNo), &Base, &IP);
+ }
+ }
+
+ /// Extract values from \p Base according to the type \p PrivType at the
+ /// call position \p ACS. The values are appended to \p ReplacementValues.
+ void createReplacementValues(Type *PrivType, AbstractCallSite ACS,
+ Value *Base,
+ SmallVectorImpl<Value *> &ReplacementValues) {
+ assert(Base && "Expected base value!");
+ assert(PrivType && "Expected privatizable type!");
+ Instruction *IP = ACS.getInstruction();
+
+ IRBuilder<NoFolder> IRB(IP);
+ const DataLayout &DL = IP->getModule()->getDataLayout();
+
+ if (Base->getType()->getPointerElementType() != PrivType)
+ Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(),
+ "", ACS.getInstruction());
+
+ // TODO: Improve the alignment of the loads.
+ // Traverse the type, build GEPs and loads.
+ if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
+ const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
+ for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
+ Type *PointeeTy = PrivStructType->getElementType(u);
+ Value *Ptr =
+ constructPointer(PointeeTy->getPointerTo(), Base,
+ PrivStructLayout->getElementOffset(u), IRB, DL);
+ LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
+ L->setAlignment(Align(1));
+ ReplacementValues.push_back(L);
+ }
+ } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
+ Type *PointeeTy = PrivArrayType->getElementType();
+ uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
+ Type *PointeePtrTy = PointeeTy->getPointerTo();
+ for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
+ Value *Ptr =
+ constructPointer(PointeePtrTy, Base, u * PointeeTySize, IRB, DL);
+ LoadInst *L = new LoadInst(PointeePtrTy, Ptr, "", IP);
+ L->setAlignment(Align(1));
+ ReplacementValues.push_back(L);
+ }
+ } else {
+ LoadInst *L = new LoadInst(PrivType, Base, "", IP);
+ L->setAlignment(Align(1));
+ ReplacementValues.push_back(L);
+ }
+ }
+
+ /// See AbstractAttribute::manifest(...)
+ ChangeStatus manifest(Attributor &A) override {
+ if (!PrivatizableType.hasValue())
+ return ChangeStatus::UNCHANGED;
+ assert(PrivatizableType.getValue() && "Expected privatizable type!");
+
+ // Collect all tail calls in the function as we cannot allow new allocas to
+ // escape into tail recursion.
+ // TODO: Be smarter about new allocas escaping into tail calls.
+ SmallVector<CallInst *, 16> TailCalls;
+ if (!A.checkForAllInstructions(
+ [&](Instruction &I) {
+ CallInst &CI = cast<CallInst>(I);
+ if (CI.isTailCall())
+ TailCalls.push_back(&CI);
+ return true;
+ },
+ *this, {Instruction::Call}))
+ return ChangeStatus::UNCHANGED;
+
+ Argument *Arg = getAssociatedArgument();
+
+ // Callback to repair the associated function. A new alloca is placed at the
+ // beginning and initialized with the values passed through arguments. The
+ // new alloca replaces the use of the old pointer argument.
+ Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
+ [=](const Attributor::ArgumentReplacementInfo &ARI,
+ Function &ReplacementFn, Function::arg_iterator ArgIt) {
+ BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
+ Instruction *IP = &*EntryBB.getFirstInsertionPt();
+ auto *AI = new AllocaInst(PrivatizableType.getValue(), 0,
+ Arg->getName() + ".priv", IP);
+ createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
+ ArgIt->getArgNo(), *IP);
+ Arg->replaceAllUsesWith(AI);
+
+ for (CallInst *CI : TailCalls)
+ CI->setTailCall(false);
+ };
+
+ // Callback to repair a call site of the associated function. The elements
+ // of the privatizable type are loaded prior to the call and passed to the
+ // new function version.
+ Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
+ [=](const Attributor::ArgumentReplacementInfo &ARI,
+ AbstractCallSite ACS, SmallVectorImpl<Value *> &NewArgOperands) {
+ createReplacementValues(
+ PrivatizableType.getValue(), ACS,
+ ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
+ NewArgOperands);
+ };
+
+ // Collect the types that will replace the privatizable type in the function
+ // signature.
+ SmallVector<Type *, 16> ReplacementTypes;
+ identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
+
+ // Register a rewrite of the argument.
+ if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
+ std::move(FnRepairCB),
+ std::move(ACSRepairCB)))
+ return ChangeStatus::CHANGED;
+ return ChangeStatus::UNCHANGED;
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
+ }
+};
+
+struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
+ AAPrivatizablePtrFloating(const IRPosition &IRP)
+ : AAPrivatizablePtrImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ virtual void initialize(Attributor &A) override {
+ // TODO: We can privatize more than arguments.
+ indicatePessimisticFixpoint();
+ }
+
+ ChangeStatus updateImpl(Attributor &A) override {
+ llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
+ "updateImpl will not be called");
+ }
+
+ /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
+ Optional<Type *> identifyPrivatizableType(Attributor &A) override {
+ Value *Obj =
+ GetUnderlyingObject(&getAssociatedValue(), A.getInfoCache().getDL());
+ if (!Obj) {
+ LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
+ return nullptr;
+ }
+
+ if (auto *AI = dyn_cast<AllocaInst>(Obj))
+ if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
+ if (CI->isOne())
+ return Obj->getType()->getPointerElementType();
+ if (auto *Arg = dyn_cast<Argument>(Obj)) {
+ auto &PrivArgAA =
+ A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(*Arg));
+ if (PrivArgAA.isAssumedPrivatizablePtr())
+ return Obj->getType()->getPointerElementType();
+ }
+
+ LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
+ "alloca nor privatizable argument: "
+ << *Obj << "!\n");
+ return nullptr;
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
+ }
+};
+
+struct AAPrivatizablePtrCallSiteArgument final
+ : public AAPrivatizablePtrFloating {
+ AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP)
+ : AAPrivatizablePtrFloating(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ if (getIRPosition().hasAttr(Attribute::ByVal))
+ indicateOptimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ PrivatizableType = identifyPrivatizableType(A);
+ if (!PrivatizableType.hasValue())
+ return ChangeStatus::UNCHANGED;
+ if (!PrivatizableType.getValue())
+ return indicatePessimisticFixpoint();
+
+ const IRPosition &IRP = getIRPosition();
+ auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, IRP);
+ if (!NoCaptureAA.isAssumedNoCapture()) {
+ LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
+ return indicatePessimisticFixpoint();
+ }
+
+ auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP);
+ if (!NoAliasAA.isAssumedNoAlias()) {
+ LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
+ return indicatePessimisticFixpoint();
+ }
+
+ const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(*this, IRP);
+ if (!MemBehaviorAA.isAssumedReadOnly()) {
+ LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
+ return indicatePessimisticFixpoint();
+ }
+
+ return ChangeStatus::UNCHANGED;
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
+ }
+};
+
+struct AAPrivatizablePtrCallSiteReturned final
+ : public AAPrivatizablePtrFloating {
+ AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP)
+ : AAPrivatizablePtrFloating(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ // TODO: We can privatize more than arguments.
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
+ }
+};
+
+struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
+ AAPrivatizablePtrReturned(const IRPosition &IRP)
+ : AAPrivatizablePtrFloating(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ // TODO: We can privatize more than arguments.
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
+ }
+};
+
+/// -------------------- Memory Behavior Attributes ----------------------------
+/// Includes read-none, read-only, and write-only.
+/// ----------------------------------------------------------------------------
+struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
+ AAMemoryBehaviorImpl(const IRPosition &IRP) : AAMemoryBehavior(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ intersectAssumedBits(BEST_STATE);
+ getKnownStateFromValue(getIRPosition(), getState());
+ IRAttribute::initialize(A);
+ }
+
+ /// Return the memory behavior information encoded in the IR for \p IRP.
+ static void getKnownStateFromValue(const IRPosition &IRP,
+ BitIntegerState &State,
+ bool IgnoreSubsumingPositions = false) {
+ SmallVector<Attribute, 2> Attrs;
+ IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
+ for (const Attribute &Attr : Attrs) {
+ switch (Attr.getKindAsEnum()) {
+ case Attribute::ReadNone:
+ State.addKnownBits(NO_ACCESSES);
+ break;
+ case Attribute::ReadOnly:
+ State.addKnownBits(NO_WRITES);
+ break;
+ case Attribute::WriteOnly:
+ State.addKnownBits(NO_READS);
+ break;
+ default:
+ llvm_unreachable("Unexpected attribute!");
+ }
+ }
+
+ if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
+ if (!I->mayReadFromMemory())
+ State.addKnownBits(NO_READS);
+ if (!I->mayWriteToMemory())
+ State.addKnownBits(NO_WRITES);
+ }
+ }
+
+ /// See AbstractAttribute::getDeducedAttributes(...).
+ void getDeducedAttributes(LLVMContext &Ctx,
+ SmallVectorImpl<Attribute> &Attrs) const override {
+ assert(Attrs.size() == 0);
+ if (isAssumedReadNone())
+ Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
+ else if (isAssumedReadOnly())
+ Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
+ else if (isAssumedWriteOnly())
+ Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
+ assert(Attrs.size() <= 1);
+ }
+
+ /// See AbstractAttribute::manifest(...).
+ ChangeStatus manifest(Attributor &A) override {
+ if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
+ return ChangeStatus::UNCHANGED;
+
+ const IRPosition &IRP = getIRPosition();
+
+ // Check if we would improve the existing attributes first.
+ SmallVector<Attribute, 4> DeducedAttrs;
+ getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
+ if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
+ return IRP.hasAttr(Attr.getKindAsEnum(),
+ /* IgnoreSubsumingPositions */ true);
+ }))
+ return ChangeStatus::UNCHANGED;
+
+ // Clear existing attributes.
+ IRP.removeAttrs(AttrKinds);
+
+ // Use the generic manifest method.
+ return IRAttribute::manifest(A);
+ }
+
+ /// See AbstractState::getAsStr().
+ const std::string getAsStr() const override {
+ if (isAssumedReadNone())
+ return "readnone";
+ if (isAssumedReadOnly())
+ return "readonly";
+ if (isAssumedWriteOnly())
+ return "writeonly";
+ return "may-read/write";
+ }
+
+ /// The set of IR attributes AAMemoryBehavior deals with.
+ static const Attribute::AttrKind AttrKinds[3];
+};
+
+const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
+ Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
+
+/// Memory behavior attribute for a floating value.
+struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
+ AAMemoryBehaviorFloating(const IRPosition &IRP) : AAMemoryBehaviorImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ AAMemoryBehaviorImpl::initialize(A);
+ // Initialize the use vector with all direct uses of the associated value.
+ for (const Use &U : getAssociatedValue().uses())
+ Uses.insert(&U);
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override;
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ if (isAssumedReadNone())
+ STATS_DECLTRACK_FLOATING_ATTR(readnone)
+ else if (isAssumedReadOnly())
+ STATS_DECLTRACK_FLOATING_ATTR(readonly)
+ else if (isAssumedWriteOnly())
+ STATS_DECLTRACK_FLOATING_ATTR(writeonly)
+ }
+
+private:
+ /// Return true if users of \p UserI might access the underlying
+ /// variable/location described by \p U and should therefore be analyzed.
+ bool followUsersOfUseIn(Attributor &A, const Use *U,
+ const Instruction *UserI);
+
+ /// Update the state according to the effect of use \p U in \p UserI.
+ void analyzeUseIn(Attributor &A, const Use *U, const Instruction *UserI);
+
+protected:
+ /// Container for (transitive) uses of the associated argument.
+ SetVector<const Use *> Uses;
+};
+
+/// Memory behavior attribute for function argument.
+struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
+ AAMemoryBehaviorArgument(const IRPosition &IRP)
+ : AAMemoryBehaviorFloating(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ intersectAssumedBits(BEST_STATE);
+ const IRPosition &IRP = getIRPosition();
+ // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
+ // can query it when we use has/getAttr. That would allow us to reuse the
+ // initialize of the base class here.
+ bool HasByVal =
+ IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
+ getKnownStateFromValue(IRP, getState(),
+ /* IgnoreSubsumingPositions */ HasByVal);
+
+ // Initialize the use vector with all direct uses of the associated value.
+ Argument *Arg = getAssociatedArgument();
+ if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent()))) {
+ indicatePessimisticFixpoint();
+ } else {
+ // Initialize the use vector with all direct uses of the associated value.
+ for (const Use &U : Arg->uses())
+ Uses.insert(&U);
+ }
+ }
+
+ ChangeStatus manifest(Attributor &A) override {
+ // TODO: Pointer arguments are not supported on vectors of pointers yet.
+ if (!getAssociatedValue().getType()->isPointerTy())
+ return ChangeStatus::UNCHANGED;
+
+ // TODO: From readattrs.ll: "inalloca parameters are always
+ // considered written"
+ if (hasAttr({Attribute::InAlloca})) {
+ removeKnownBits(NO_WRITES);
+ removeAssumedBits(NO_WRITES);
+ }
+ return AAMemoryBehaviorFloating::manifest(A);
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ if (isAssumedReadNone())
+ STATS_DECLTRACK_ARG_ATTR(readnone)
+ else if (isAssumedReadOnly())
+ STATS_DECLTRACK_ARG_ATTR(readonly)
+ else if (isAssumedWriteOnly())
+ STATS_DECLTRACK_ARG_ATTR(writeonly)
+ }
+};
+
+struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
+ AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP)
+ : AAMemoryBehaviorArgument(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ if (Argument *Arg = getAssociatedArgument()) {
+ if (Arg->hasByValAttr()) {
+ addKnownBits(NO_WRITES);
+ removeKnownBits(NO_READS);
+ removeAssumedBits(NO_READS);
+ }
+ } else {
+ }
+ AAMemoryBehaviorArgument::initialize(A);
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ // TODO: Once we have call site specific value information we can provide
+ // call site specific liveness liveness information and then it makes
+ // sense to specialize attributes for call sites arguments instead of
+ // redirecting requests to the callee argument.
+ Argument *Arg = getAssociatedArgument();
+ const IRPosition &ArgPos = IRPosition::argument(*Arg);
+ auto &ArgAA = A.getAAFor<AAMemoryBehavior>(*this, ArgPos);
+ return clampStateAndIndicateChange(
+ getState(),
+ static_cast<const AAMemoryBehavior::StateType &>(ArgAA.getState()));
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ if (isAssumedReadNone())
+ STATS_DECLTRACK_CSARG_ATTR(readnone)
+ else if (isAssumedReadOnly())
+ STATS_DECLTRACK_CSARG_ATTR(readonly)
+ else if (isAssumedWriteOnly())
+ STATS_DECLTRACK_CSARG_ATTR(writeonly)
+ }
+};
+
+/// Memory behavior attribute for a call site return position.
+struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
+ AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP)
+ : AAMemoryBehaviorFloating(IRP) {}
+
+ /// See AbstractAttribute::manifest(...).
+ ChangeStatus manifest(Attributor &A) override {
+ // We do not annotate returned values.
+ return ChangeStatus::UNCHANGED;
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {}
+};
+
+/// An AA to represent the memory behavior function attributes.
+struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
+ AAMemoryBehaviorFunction(const IRPosition &IRP) : AAMemoryBehaviorImpl(IRP) {}
+
+ /// See AbstractAttribute::updateImpl(Attributor &A).
+ virtual ChangeStatus updateImpl(Attributor &A) override;
+
+ /// See AbstractAttribute::manifest(...).
+ ChangeStatus manifest(Attributor &A) override {
+ Function &F = cast<Function>(getAnchorValue());
+ if (isAssumedReadNone()) {
+ F.removeFnAttr(Attribute::ArgMemOnly);
+ F.removeFnAttr(Attribute::InaccessibleMemOnly);
+ F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
+ }
+ return AAMemoryBehaviorImpl::manifest(A);
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ if (isAssumedReadNone())
+ STATS_DECLTRACK_FN_ATTR(readnone)
+ else if (isAssumedReadOnly())
+ STATS_DECLTRACK_FN_ATTR(readonly)
+ else if (isAssumedWriteOnly())
+ STATS_DECLTRACK_FN_ATTR(writeonly)
+ }
+};
+
+/// AAMemoryBehavior attribute for call sites.
+struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
+ AAMemoryBehaviorCallSite(const IRPosition &IRP) : AAMemoryBehaviorImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ AAMemoryBehaviorImpl::initialize(A);
+ Function *F = getAssociatedFunction();
+ if (!F || !A.isFunctionIPOAmendable(*F))
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ // TODO: Once we have call site specific value information we can provide
+ // call site specific liveness liveness information and then it makes
+ // sense to specialize attributes for call sites arguments instead of
+ // redirecting requests to the callee argument.
+ Function *F = getAssociatedFunction();
+ const IRPosition &FnPos = IRPosition::function(*F);
+ auto &FnAA = A.getAAFor<AAMemoryBehavior>(*this, FnPos);
+ return clampStateAndIndicateChange(
+ getState(),
+ static_cast<const AAMemoryBehavior::StateType &>(FnAA.getState()));
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ if (isAssumedReadNone())
+ STATS_DECLTRACK_CS_ATTR(readnone)
+ else if (isAssumedReadOnly())
+ STATS_DECLTRACK_CS_ATTR(readonly)
+ else if (isAssumedWriteOnly())
+ STATS_DECLTRACK_CS_ATTR(writeonly)
+ }
+};
+
+ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
+
+ // The current assumed state used to determine a change.
+ auto AssumedState = getAssumed();
+
+ auto CheckRWInst = [&](Instruction &I) {
+ // If the instruction has an own memory behavior state, use it to restrict
+ // the local state. No further analysis is required as the other memory
+ // state is as optimistic as it gets.
+ if (ImmutableCallSite ICS = ImmutableCallSite(&I)) {
+ const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
+ *this, IRPosition::callsite_function(ICS));
+ intersectAssumedBits(MemBehaviorAA.getAssumed());
+ return !isAtFixpoint();
+ }
+
+ // Remove access kind modifiers if necessary.
+ if (I.mayReadFromMemory())
+ removeAssumedBits(NO_READS);
+ if (I.mayWriteToMemory())
+ removeAssumedBits(NO_WRITES);
+ return !isAtFixpoint();
+ };
+
+ if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this))
+ return indicatePessimisticFixpoint();
+
+ return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
+ : ChangeStatus::UNCHANGED;
+}
+
+ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
+
+ const IRPosition &IRP = getIRPosition();
+ const IRPosition &FnPos = IRPosition::function_scope(IRP);
+ AAMemoryBehavior::StateType &S = getState();
+
+ // First, check the function scope. We take the known information and we avoid
+ // work if the assumed information implies the current assumed information for
+ // this attribute. This is a valid for all but byval arguments.
+ Argument *Arg = IRP.getAssociatedArgument();
+ AAMemoryBehavior::base_t FnMemAssumedState =
+ AAMemoryBehavior::StateType::getWorstState();
+ if (!Arg || !Arg->hasByValAttr()) {
+ const auto &FnMemAA = A.getAAFor<AAMemoryBehavior>(
+ *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
+ FnMemAssumedState = FnMemAA.getAssumed();
+ S.addKnownBits(FnMemAA.getKnown());
+ if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
+ return ChangeStatus::UNCHANGED;
+ }
+
+ // Make sure the value is not captured (except through "return"), if
+ // it is, any information derived would be irrelevant anyway as we cannot
+ // check the potential aliases introduced by the capture. However, no need
+ // to fall back to anythign less optimistic than the function state.
+ const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
+ *this, IRP, /* TrackDependence */ true, DepClassTy::OPTIONAL);
+ if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
+ S.intersectAssumedBits(FnMemAssumedState);
+ return ChangeStatus::CHANGED;
+ }
+
+ // The current assumed state used to determine a change.
+ auto AssumedState = S.getAssumed();
+
+ // Liveness information to exclude dead users.
+ // TODO: Take the FnPos once we have call site specific liveness information.
+ const auto &LivenessAA = A.getAAFor<AAIsDead>(
+ *this, IRPosition::function(*IRP.getAssociatedFunction()),
+ /* TrackDependence */ false);
+
+ // Visit and expand uses until all are analyzed or a fixpoint is reached.
+ for (unsigned i = 0; i < Uses.size() && !isAtFixpoint(); i++) {
+ const Use *U = Uses[i];
+ Instruction *UserI = cast<Instruction>(U->getUser());
+ LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << **U << " in " << *UserI
+ << " [Dead: " << (A.isAssumedDead(*U, this, &LivenessAA))
+ << "]\n");
+ if (A.isAssumedDead(*U, this, &LivenessAA))
+ continue;
+
+ // Droppable users, e.g., llvm::assume does not actually perform any action.
+ if (UserI->isDroppable())
+ continue;
+
+ // Check if the users of UserI should also be visited.
+ if (followUsersOfUseIn(A, U, UserI))
+ for (const Use &UserIUse : UserI->uses())
+ Uses.insert(&UserIUse);
+
+ // If UserI might touch memory we analyze the use in detail.
+ if (UserI->mayReadOrWriteMemory())
+ analyzeUseIn(A, U, UserI);
+ }
+
+ return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
+ : ChangeStatus::UNCHANGED;
+}
+
+bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use *U,
+ const Instruction *UserI) {
+ // The loaded value is unrelated to the pointer argument, no need to
+ // follow the users of the load.
+ if (isa<LoadInst>(UserI))
+ return false;
+
+ // By default we follow all uses assuming UserI might leak information on U,
+ // we have special handling for call sites operands though.
+ ImmutableCallSite ICS(UserI);
+ if (!ICS || !ICS.isArgOperand(U))
+ return true;
+
+ // If the use is a call argument known not to be captured, the users of
+ // the call do not need to be visited because they have to be unrelated to
+ // the input. Note that this check is not trivial even though we disallow
+ // general capturing of the underlying argument. The reason is that the
+ // call might the argument "through return", which we allow and for which we
+ // need to check call users.
+ if (U->get()->getType()->isPointerTy()) {
+ unsigned ArgNo = ICS.getArgumentNo(U);
+ const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
+ *this, IRPosition::callsite_argument(ICS, ArgNo),
+ /* TrackDependence */ true, DepClassTy::OPTIONAL);
+ return !ArgNoCaptureAA.isAssumedNoCapture();
+ }
+
+ return true;
+}
+
+void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use *U,
+ const Instruction *UserI) {
+ assert(UserI->mayReadOrWriteMemory());
+
+ switch (UserI->getOpcode()) {
+ default:
+ // TODO: Handle all atomics and other side-effect operations we know of.
+ break;
+ case Instruction::Load:
+ // Loads cause the NO_READS property to disappear.
+ removeAssumedBits(NO_READS);
+ return;
+
+ case Instruction::Store:
+ // Stores cause the NO_WRITES property to disappear if the use is the
+ // pointer operand. Note that we do assume that capturing was taken care of
+ // somewhere else.
+ if (cast<StoreInst>(UserI)->getPointerOperand() == U->get())
+ removeAssumedBits(NO_WRITES);
+ return;
+
+ case Instruction::Call:
+ case Instruction::CallBr:
+ case Instruction::Invoke: {
+ // For call sites we look at the argument memory behavior attribute (this
+ // could be recursive!) in order to restrict our own state.
+ ImmutableCallSite ICS(UserI);
+
+ // Give up on operand bundles.
+ if (ICS.isBundleOperand(U)) {
+ indicatePessimisticFixpoint();
+ return;
+ }
+
+ // Calling a function does read the function pointer, maybe write it if the
+ // function is self-modifying.
+ if (ICS.isCallee(U)) {
+ removeAssumedBits(NO_READS);
+ break;
+ }
+
+ // Adjust the possible access behavior based on the information on the
+ // argument.
+ IRPosition Pos;
+ if (U->get()->getType()->isPointerTy())
+ Pos = IRPosition::callsite_argument(ICS, ICS.getArgumentNo(U));
+ else
+ Pos = IRPosition::callsite_function(ICS);
+ const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
+ *this, Pos,
+ /* TrackDependence */ true, DepClassTy::OPTIONAL);
+ // "assumed" has at most the same bits as the MemBehaviorAA assumed
+ // and at least "known".
+ intersectAssumedBits(MemBehaviorAA.getAssumed());
+ return;
+ }
+ };
+
+ // Generally, look at the "may-properties" and adjust the assumed state if we
+ // did not trigger special handling before.
+ if (UserI->mayReadFromMemory())
+ removeAssumedBits(NO_READS);
+ if (UserI->mayWriteToMemory())
+ removeAssumedBits(NO_WRITES);
+}
+
+} // namespace
+
+/// -------------------- Memory Locations Attributes ---------------------------
+/// Includes read-none, argmemonly, inaccessiblememonly,
+/// inaccessiblememorargmemonly
+/// ----------------------------------------------------------------------------
+
+std::string AAMemoryLocation::getMemoryLocationsAsStr(
+ AAMemoryLocation::MemoryLocationsKind MLK) {
+ if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
+ return "all memory";
+ if (MLK == AAMemoryLocation::NO_LOCATIONS)
+ return "no memory";
+ std::string S = "memory:";
+ if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
+ S += "stack,";
+ if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
+ S += "constant,";
+ if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
+ S += "internal global,";
+ if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
+ S += "external global,";
+ if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
+ S += "argument,";
+ if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
+ S += "inaccessible,";
+ if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
+ S += "malloced,";
+ if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
+ S += "unknown,";
+ S.pop_back();
+ return S;
+}
+
+struct AAMemoryLocationImpl : public AAMemoryLocation {
+
+ AAMemoryLocationImpl(const IRPosition &IRP) : AAMemoryLocation(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ intersectAssumedBits(BEST_STATE);
+ getKnownStateFromValue(getIRPosition(), getState());
+ IRAttribute::initialize(A);
+ }
+
+ /// Return the memory behavior information encoded in the IR for \p IRP.
+ static void getKnownStateFromValue(const IRPosition &IRP,
+ BitIntegerState &State,
+ bool IgnoreSubsumingPositions = false) {
+ SmallVector<Attribute, 2> Attrs;
+ IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
+ for (const Attribute &Attr : Attrs) {
+ switch (Attr.getKindAsEnum()) {
+ case Attribute::ReadNone:
+ State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
+ break;
+ case Attribute::InaccessibleMemOnly:
+ State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
+ break;
+ case Attribute::ArgMemOnly:
+ State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
+ break;
+ case Attribute::InaccessibleMemOrArgMemOnly:
+ State.addKnownBits(
+ inverseLocation(NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
+ break;
+ default:
+ llvm_unreachable("Unexpected attribute!");
+ }
+ }
+ }
+
+ /// See AbstractAttribute::getDeducedAttributes(...).
+ void getDeducedAttributes(LLVMContext &Ctx,
+ SmallVectorImpl<Attribute> &Attrs) const override {
+ assert(Attrs.size() == 0);
+ if (isAssumedReadNone()) {
+ Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
+ } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
+ if (isAssumedInaccessibleMemOnly())
+ Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
+ else if (isAssumedArgMemOnly())
+ Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
+ else if (isAssumedInaccessibleOrArgMemOnly())
+ Attrs.push_back(
+ Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
+ }
+ assert(Attrs.size() <= 1);
+ }
+
+ /// See AbstractAttribute::manifest(...).
+ ChangeStatus manifest(Attributor &A) override {
+ const IRPosition &IRP = getIRPosition();
+
+ // Check if we would improve the existing attributes first.
+ SmallVector<Attribute, 4> DeducedAttrs;
+ getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
+ if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
+ return IRP.hasAttr(Attr.getKindAsEnum(),
+ /* IgnoreSubsumingPositions */ true);
+ }))
+ return ChangeStatus::UNCHANGED;
+
+ // Clear existing attributes.
+ IRP.removeAttrs(AttrKinds);
+ if (isAssumedReadNone())
+ IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
+
+ // Use the generic manifest method.
+ return IRAttribute::manifest(A);
+ }
+
+ /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
+ bool checkForAllAccessesToMemoryKind(
+ function_ref<bool(const Instruction *, const Value *, AccessKind,
+ MemoryLocationsKind)>
+ Pred,
+ MemoryLocationsKind RequestedMLK) const override {
+ if (!isValidState())
+ return false;
+
+ MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
+ if (AssumedMLK == NO_LOCATIONS)
+ return true;
+
+ for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
+ if (CurMLK & RequestedMLK)
+ continue;
+
+ const auto &Accesses = AccessKindAccessesMap.lookup(CurMLK);
+ for (const AccessInfo &AI : Accesses) {
+ if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ ChangeStatus indicatePessimisticFixpoint() override {
+ // If we give up and indicate a pessimistic fixpoint this instruction will
+ // become an access for all potential access kinds:
+ // TODO: Add pointers for argmemonly and globals to improve the results of
+ // checkForAllAccessesToMemoryKind.
+ bool Changed = false;
+ MemoryLocationsKind KnownMLK = getKnown();
+ Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
+ for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
+ if (!(CurMLK & KnownMLK))
+ updateStateAndAccessesMap(getState(), AccessKindAccessesMap, CurMLK, I,
+ nullptr, Changed);
+ return AAMemoryLocation::indicatePessimisticFixpoint();
+ }
+
+protected:
+ /// Helper struct to tie together an instruction that has a read or write
+ /// effect with the pointer it accesses (if any).
+ struct AccessInfo {
+
+ /// The instruction that caused the access.
+ const Instruction *I;
+
+ /// The base pointer that is accessed, or null if unknown.
+ const Value *Ptr;
+
+ /// The kind of access (read/write/read+write).
+ AccessKind Kind;
+
+ bool operator==(const AccessInfo &RHS) const {
+ return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
+ }
+ bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
+ if (LHS.I != RHS.I)
+ return LHS.I < RHS.I;
+ if (LHS.Ptr != RHS.Ptr)
+ return LHS.Ptr < RHS.Ptr;
+ if (LHS.Kind != RHS.Kind)
+ return LHS.Kind < RHS.Kind;
+ return false;
+ }
+ };
+
+ /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
+ /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
+ using AccessKindAccessesMapTy =
+ DenseMap<unsigned, SmallSet<AccessInfo, 8, AccessInfo>>;
+ AccessKindAccessesMapTy AccessKindAccessesMap;
+
+ /// Return the kind(s) of location that may be accessed by \p V.
+ AAMemoryLocation::MemoryLocationsKind
+ categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
+
+ /// Update the state \p State and the AccessKindAccessesMap given that \p I is
+ /// an access to a \p MLK memory location with the access pointer \p Ptr.
+ static void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
+ AccessKindAccessesMapTy &AccessMap,
+ MemoryLocationsKind MLK,
+ const Instruction *I, const Value *Ptr,
+ bool &Changed) {
+ // TODO: The kind should be determined at the call sites based on the
+ // information we have there.
+ AccessKind Kind = READ_WRITE;
+ if (I) {
+ Kind = I->mayReadFromMemory() ? READ : NONE;
+ Kind = AccessKind(Kind | (I->mayWriteToMemory() ? WRITE : NONE));
+ }
+
+ assert(isPowerOf2_32(MLK) && "Expected a single location set!");
+ Changed |= AccessMap[MLK].insert(AccessInfo{I, Ptr, Kind}).second;
+ State.removeAssumedBits(MLK);
+ }
+
+ /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
+ /// arguments, and update the state and access map accordingly.
+ void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
+ AAMemoryLocation::StateType &State, bool &Changed);
+
+ /// The set of IR attributes AAMemoryLocation deals with.
+ static const Attribute::AttrKind AttrKinds[4];
+};
+
+const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
+ Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
+ Attribute::InaccessibleMemOrArgMemOnly};
+
+void AAMemoryLocationImpl::categorizePtrValue(
+ Attributor &A, const Instruction &I, const Value &Ptr,
+ AAMemoryLocation::StateType &State, bool &Changed) {
+ LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
+ << Ptr << " ["
+ << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
+
+ auto StripGEPCB = [](Value *V) -> Value * {
+ auto *GEP = dyn_cast<GEPOperator>(V);
+ while (GEP) {
+ V = GEP->getPointerOperand();
+ GEP = dyn_cast<GEPOperator>(V);
+ }
+ return V;
+ };
+
+ auto VisitValueCB = [&](Value &V, const Instruction *,
+ AAMemoryLocation::StateType &T,
+ bool Stripped) -> bool {
+ assert(!isa<GEPOperator>(V) && "GEPs should have been stripped.");
+ if (isa<UndefValue>(V))
+ return true;
+ if (auto *Arg = dyn_cast<Argument>(&V)) {
+ if (Arg->hasByValAttr())
+ updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_LOCAL_MEM, &I,
+ &V, Changed);
+ else
+ updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_ARGUMENT_MEM, &I,
+ &V, Changed);
+ return true;
+ }
+ if (auto *GV = dyn_cast<GlobalValue>(&V)) {
+ if (GV->hasLocalLinkage())
+ updateStateAndAccessesMap(T, AccessKindAccessesMap,
+ NO_GLOBAL_INTERNAL_MEM, &I, &V, Changed);
+ else
+ updateStateAndAccessesMap(T, AccessKindAccessesMap,
+ NO_GLOBAL_EXTERNAL_MEM, &I, &V, Changed);
+ return true;
+ }
+ if (isa<AllocaInst>(V)) {
+ updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_LOCAL_MEM, &I, &V,
+ Changed);
+ return true;
+ }
+ if (ImmutableCallSite ICS = ImmutableCallSite(&V)) {
+ const auto &NoAliasAA =
+ A.getAAFor<AANoAlias>(*this, IRPosition::callsite_returned(ICS));
+ if (NoAliasAA.isAssumedNoAlias()) {
+ updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_MALLOCED_MEM, &I,
+ &V, Changed);
+ return true;
+ }
+ }
+
+ updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_UNKOWN_MEM, &I, &V,
+ Changed);
+ LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value cannot be categorized: "
+ << V << " -> " << getMemoryLocationsAsStr(T.getAssumed())
+ << "\n");
+ return true;
+ };
+
+ if (!genericValueTraversal<AAMemoryLocation, AAMemoryLocation::StateType>(
+ A, IRPosition::value(Ptr), *this, State, VisitValueCB, getCtxI(),
+ /* MaxValues */ 32, StripGEPCB)) {
+ LLVM_DEBUG(
+ dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
+ updateStateAndAccessesMap(State, AccessKindAccessesMap, NO_UNKOWN_MEM, &I,
+ nullptr, Changed);
+ } else {
+ LLVM_DEBUG(
+ dbgs()
+ << "[AAMemoryLocation] Accessed locations with pointer locations: "
+ << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
+ }
+}
+
+AAMemoryLocation::MemoryLocationsKind
+AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
+ bool &Changed) {
+ LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
+ << I << "\n");
+
+ AAMemoryLocation::StateType AccessedLocs;
+ AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
+
+ if (ImmutableCallSite ICS = ImmutableCallSite(&I)) {
+
+ // First check if we assume any memory is access is visible.
+ const auto &ICSMemLocationAA =
+ A.getAAFor<AAMemoryLocation>(*this, IRPosition::callsite_function(ICS));
+ LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
+ << " [" << ICSMemLocationAA << "]\n");
+
+ if (ICSMemLocationAA.isAssumedReadNone())
+ return NO_LOCATIONS;
+
+ if (ICSMemLocationAA.isAssumedInaccessibleMemOnly()) {
+ updateStateAndAccessesMap(AccessedLocs, AccessKindAccessesMap,
+ NO_INACCESSIBLE_MEM, &I, nullptr, Changed);
+ return AccessedLocs.getAssumed();
+ }
+
+ uint32_t ICSAssumedNotAccessedLocs =
+ ICSMemLocationAA.getAssumedNotAccessedLocation();
+
+ // Set the argmemonly and global bit as we handle them separately below.
+ uint32_t ICSAssumedNotAccessedLocsNoArgMem =
+ ICSAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
+
+ for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
+ if (ICSAssumedNotAccessedLocsNoArgMem & CurMLK)
+ continue;
+ updateStateAndAccessesMap(AccessedLocs, AccessKindAccessesMap, CurMLK, &I,
+ nullptr, Changed);
+ }
+
+ // Now handle global memory if it might be accessed.
+ bool HasGlobalAccesses = !(ICSAssumedNotAccessedLocs & NO_GLOBAL_MEM);
+ if (HasGlobalAccesses) {
+ auto AccessPred = [&](const Instruction *, const Value *Ptr,
+ AccessKind Kind, MemoryLocationsKind MLK) {
+ updateStateAndAccessesMap(AccessedLocs, AccessKindAccessesMap, MLK, &I,
+ Ptr, Changed);
+ return true;
+ };
+ if (!ICSMemLocationAA.checkForAllAccessesToMemoryKind(
+ AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
+ return AccessedLocs.getWorstState();
+ }
+
+ LLVM_DEBUG(
+ dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
+ << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
+
+ // Now handle argument memory if it might be accessed.
+ bool HasArgAccesses = !(ICSAssumedNotAccessedLocs & NO_ARGUMENT_MEM);
+ if (HasArgAccesses) {
+ for (unsigned ArgNo = 0, e = ICS.getNumArgOperands(); ArgNo < e;
+ ++ArgNo) {
+
+ // Skip non-pointer arguments.
+ const Value *ArgOp = ICS.getArgOperand(ArgNo);
+ if (!ArgOp->getType()->isPtrOrPtrVectorTy())
+ continue;
+
+ // Skip readnone arguments.
+ const IRPosition &ArgOpIRP = IRPosition::callsite_argument(ICS, ArgNo);
+ const auto &ArgOpMemLocationAA = A.getAAFor<AAMemoryBehavior>(
+ *this, ArgOpIRP, /* TrackDependence */ true, DepClassTy::OPTIONAL);
+
+ if (ArgOpMemLocationAA.isAssumedReadNone())
+ continue;
+
+ // Categorize potentially accessed pointer arguments as if there was an
+ // access instruction with them as pointer.
+ categorizePtrValue(A, I, *ArgOp, AccessedLocs, Changed);
+ }
+ }
+
+ LLVM_DEBUG(
+ dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
+ << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
+
+ return AccessedLocs.getAssumed();
+ }
+
+ if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
+ LLVM_DEBUG(
+ dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
+ << I << " [" << *Ptr << "]\n");
+ categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
+ return AccessedLocs.getAssumed();
+ }
+
+ LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
+ << I << "\n");
+ updateStateAndAccessesMap(AccessedLocs, AccessKindAccessesMap, NO_UNKOWN_MEM,
+ &I, nullptr, Changed);
+ return AccessedLocs.getAssumed();
+}
+
+/// An AA to represent the memory behavior function attributes.
+struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
+ AAMemoryLocationFunction(const IRPosition &IRP) : AAMemoryLocationImpl(IRP) {}
+
+ /// See AbstractAttribute::updateImpl(Attributor &A).
+ virtual ChangeStatus updateImpl(Attributor &A) override {
+
+ const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
+ *this, getIRPosition(), /* TrackDependence */ false);
+ if (MemBehaviorAA.isAssumedReadNone()) {
+ if (MemBehaviorAA.isKnownReadNone())
+ return indicateOptimisticFixpoint();
+ assert(isAssumedReadNone() &&
+ "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
+ A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
+ return ChangeStatus::UNCHANGED;
+ }
+
+ // The current assumed state used to determine a change.
+ auto AssumedState = getAssumed();
+ bool Changed = false;
+
+ auto CheckRWInst = [&](Instruction &I) {
+ MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
+ LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
+ << ": " << getMemoryLocationsAsStr(MLK) << "\n");
+ removeAssumedBits(inverseLocation(MLK, false, false));
+ return true;
+ };
+
+ if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this))
+ return indicatePessimisticFixpoint();
+
+ Changed |= AssumedState != getAssumed();
+ return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ if (isAssumedReadNone())
+ STATS_DECLTRACK_FN_ATTR(readnone)
+ else if (isAssumedArgMemOnly())
+ STATS_DECLTRACK_FN_ATTR(argmemonly)
+ else if (isAssumedInaccessibleMemOnly())
+ STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
+ else if (isAssumedInaccessibleOrArgMemOnly())
+ STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
+ }
+};
+
+/// AAMemoryLocation attribute for call sites.
+struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
+ AAMemoryLocationCallSite(const IRPosition &IRP) : AAMemoryLocationImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ AAMemoryLocationImpl::initialize(A);
+ Function *F = getAssociatedFunction();
+ if (!F || !A.isFunctionIPOAmendable(*F))
+ indicatePessimisticFixpoint();
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ // TODO: Once we have call site specific value information we can provide
+ // call site specific liveness liveness information and then it makes
+ // sense to specialize attributes for call sites arguments instead of
+ // redirecting requests to the callee argument.
+ Function *F = getAssociatedFunction();
+ const IRPosition &FnPos = IRPosition::function(*F);
+ auto &FnAA = A.getAAFor<AAMemoryLocation>(*this, FnPos);
+ bool Changed = false;
+ auto AccessPred = [&](const Instruction *I, const Value *Ptr,
+ AccessKind Kind, MemoryLocationsKind MLK) {
+ updateStateAndAccessesMap(getState(), AccessKindAccessesMap, MLK, I, Ptr,
+ Changed);
+ return true;
+ };
+ if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
+ return indicatePessimisticFixpoint();
+ return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ if (isAssumedReadNone())
+ STATS_DECLTRACK_CS_ATTR(readnone)
+ }
+};
+
+/// ------------------ Value Constant Range Attribute -------------------------
+
+struct AAValueConstantRangeImpl : AAValueConstantRange {
+ using StateType = IntegerRangeState;
+ AAValueConstantRangeImpl(const IRPosition &IRP) : AAValueConstantRange(IRP) {}
+
+ /// See AbstractAttribute::getAsStr().
+ const std::string getAsStr() const override {
+ std::string Str;
+ llvm::raw_string_ostream OS(Str);
+ OS << "range(" << getBitWidth() << ")<";
+ getKnown().print(OS);
+ OS << " / ";
+ getAssumed().print(OS);
+ OS << ">";
+ return OS.str();
+ }
+
+ /// Helper function to get a SCEV expr for the associated value at program
+ /// point \p I.
+ const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
+ if (!getAnchorScope())
+ return nullptr;
+
+ ScalarEvolution *SE =
+ A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
+ *getAnchorScope());
+
+ LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
+ *getAnchorScope());
+
+ if (!SE || !LI)
+ return nullptr;
+
+ const SCEV *S = SE->getSCEV(&getAssociatedValue());
+ if (!I)
+ return S;
+
+ return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
+ }
+
+ /// Helper function to get a range from SCEV for the associated value at
+ /// program point \p I.
+ ConstantRange getConstantRangeFromSCEV(Attributor &A,
+ const Instruction *I = nullptr) const {
+ if (!getAnchorScope())
+ return getWorstState(getBitWidth());
+
+ ScalarEvolution *SE =
+ A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
+ *getAnchorScope());
+
+ const SCEV *S = getSCEV(A, I);
+ if (!SE || !S)
+ return getWorstState(getBitWidth());
+
+ return SE->getUnsignedRange(S);
+ }
+
+ /// Helper function to get a range from LVI for the associated value at
+ /// program point \p I.
+ ConstantRange
+ getConstantRangeFromLVI(Attributor &A,
+ const Instruction *CtxI = nullptr) const {
+ if (!getAnchorScope())
+ return getWorstState(getBitWidth());
+
+ LazyValueInfo *LVI =
+ A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
+ *getAnchorScope());
+
+ if (!LVI || !CtxI)
+ return getWorstState(getBitWidth());
+ return LVI->getConstantRange(&getAssociatedValue(),
+ const_cast<BasicBlock *>(CtxI->getParent()),
+ const_cast<Instruction *>(CtxI));
+ }
+
+ /// See AAValueConstantRange::getKnownConstantRange(..).
+ ConstantRange
+ getKnownConstantRange(Attributor &A,
+ const Instruction *CtxI = nullptr) const override {
+ if (!CtxI || CtxI == getCtxI())
+ return getKnown();
+
+ ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
+ ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
+ return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
+ }
+
+ /// See AAValueConstantRange::getAssumedConstantRange(..).
+ ConstantRange
+ getAssumedConstantRange(Attributor &A,
+ const Instruction *CtxI = nullptr) const override {
+ // TODO: Make SCEV use Attributor assumption.
+ // We may be able to bound a variable range via assumptions in
+ // Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
+ // evolve to x^2 + x, then we can say that y is in [2, 12].
+
+ if (!CtxI || CtxI == getCtxI())
+ return getAssumed();
+
+ ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
+ ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
+ return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
+ }
+
+ /// See AbstractAttribute::initialize(..).
+ void initialize(Attributor &A) override {
+ // Intersect a range given by SCEV.
+ intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
+
+ // Intersect a range given by LVI.
+ intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
+ }
+
+ /// Helper function to create MDNode for range metadata.
+ static MDNode *
+ getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
+ const ConstantRange &AssumedConstantRange) {
+ Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
+ Ty, AssumedConstantRange.getLower())),
+ ConstantAsMetadata::get(ConstantInt::get(
+ Ty, AssumedConstantRange.getUpper()))};
+ return MDNode::get(Ctx, LowAndHigh);
+ }
+
+ /// Return true if \p Assumed is included in \p KnownRanges.
+ static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
+
+ if (Assumed.isFullSet())
+ return false;
+
+ if (!KnownRanges)
+ return true;
+
+ // If multiple ranges are annotated in IR, we give up to annotate assumed
+ // range for now.
+
+ // TODO: If there exists a known range which containts assumed range, we
+ // can say assumed range is better.
+ if (KnownRanges->getNumOperands() > 2)
+ return false;
+
+ ConstantInt *Lower =
+ mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
+ ConstantInt *Upper =
+ mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
+
+ ConstantRange Known(Lower->getValue(), Upper->getValue());
+ return Known.contains(Assumed) && Known != Assumed;
+ }
+
+ /// Helper function to set range metadata.
+ static bool
+ setRangeMetadataIfisBetterRange(Instruction *I,
+ const ConstantRange &AssumedConstantRange) {
+ auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
+ if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
+ if (!AssumedConstantRange.isEmptySet()) {
+ I->setMetadata(LLVMContext::MD_range,
+ getMDNodeForConstantRange(I->getType(), I->getContext(),
+ AssumedConstantRange));
+ return true;
+ }
+ }
+ return false;
+ }
+
+ /// See AbstractAttribute::manifest()
+ ChangeStatus manifest(Attributor &A) override {
+ ChangeStatus Changed = ChangeStatus::UNCHANGED;
+ ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
+ assert(!AssumedConstantRange.isFullSet() && "Invalid state");
+
+ auto &V = getAssociatedValue();
+ if (!AssumedConstantRange.isEmptySet() &&
+ !AssumedConstantRange.isSingleElement()) {
+ if (Instruction *I = dyn_cast<Instruction>(&V))
+ if (isa<CallInst>(I) || isa<LoadInst>(I))
+ if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
+ Changed = ChangeStatus::CHANGED;
+ }
+
+ return Changed;
+ }
+};
+
+struct AAValueConstantRangeArgument final
+ : AAArgumentFromCallSiteArguments<
+ AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState> {
+ using Base = AAArgumentFromCallSiteArguments<
+ AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState>;
+ AAValueConstantRangeArgument(const IRPosition &IRP) : Base(IRP) {}
+
+ /// See AbstractAttribute::initialize(..).
+ void initialize(Attributor &A) override {
+ if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
+ indicatePessimisticFixpoint();
+ } else {
+ Base::initialize(A);
+ }
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_ARG_ATTR(value_range)
+ }
+};
+
+struct AAValueConstantRangeReturned
+ : AAReturnedFromReturnedValues<AAValueConstantRange,
+ AAValueConstantRangeImpl> {
+ using Base = AAReturnedFromReturnedValues<AAValueConstantRange,
+ AAValueConstantRangeImpl>;
+ AAValueConstantRangeReturned(const IRPosition &IRP) : Base(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_FNRET_ATTR(value_range)
+ }
+};
+
+struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
+ AAValueConstantRangeFloating(const IRPosition &IRP)
+ : AAValueConstantRangeImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ AAValueConstantRangeImpl::initialize(A);
+ Value &V = getAssociatedValue();
+
+ if (auto *C = dyn_cast<ConstantInt>(&V)) {
+ unionAssumed(ConstantRange(C->getValue()));
+ indicateOptimisticFixpoint();
+ return;
+ }
+
+ if (isa<UndefValue>(&V)) {
+ // Collapse the undef state to 0.
+ unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
+ indicateOptimisticFixpoint();
+ return;
+ }
+
+ if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
+ return;
+ // If it is a load instruction with range metadata, use it.
+ if (LoadInst *LI = dyn_cast<LoadInst>(&V))
+ if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
+ intersectKnown(getConstantRangeFromMetadata(*RangeMD));
+ return;
+ }
+
+ // We can work with PHI and select instruction as we traverse their operands
+ // during update.
+ if (isa<SelectInst>(V) || isa<PHINode>(V))
+ return;
+
+ // Otherwise we give up.
+ indicatePessimisticFixpoint();
+
+ LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
+ << getAssociatedValue() << "\n");
+ }
+
+ bool calculateBinaryOperator(
+ Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
+ const Instruction *CtxI,
+ SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
+ Value *LHS = BinOp->getOperand(0);
+ Value *RHS = BinOp->getOperand(1);
+ // TODO: Allow non integers as well.
+ if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
+ return false;
+
+ auto &LHSAA =
+ A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS));
+ QuerriedAAs.push_back(&LHSAA);
+ auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
+
+ auto &RHSAA =
+ A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS));
+ QuerriedAAs.push_back(&RHSAA);
+ auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
+
+ auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
+
+ T.unionAssumed(AssumedRange);
+
+ // TODO: Track a known state too.
+
+ return T.isValidState();
+ }
+
+ bool calculateCastInst(
+ Attributor &A, CastInst *CastI, IntegerRangeState &T,
+ const Instruction *CtxI,
+ SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
+ assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
+ // TODO: Allow non integers as well.
+ Value &OpV = *CastI->getOperand(0);
+ if (!OpV.getType()->isIntegerTy())
+ return false;
+
+ auto &OpAA =
+ A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(OpV));
+ QuerriedAAs.push_back(&OpAA);
+ T.unionAssumed(
+ OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
+ return T.isValidState();
+ }
+
+ bool
+ calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
+ const Instruction *CtxI,
+ SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
+ Value *LHS = CmpI->getOperand(0);
+ Value *RHS = CmpI->getOperand(1);
+ // TODO: Allow non integers as well.
+ if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
+ return false;
+
+ auto &LHSAA =
+ A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS));
+ QuerriedAAs.push_back(&LHSAA);
+ auto &RHSAA =
+ A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS));
+ QuerriedAAs.push_back(&RHSAA);
+
+ auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
+ auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
+
+ // If one of them is empty set, we can't decide.
+ if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
+ return true;
+
+ bool MustTrue = false, MustFalse = false;
+
+ auto AllowedRegion =
+ ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
+
+ auto SatisfyingRegion = ConstantRange::makeSatisfyingICmpRegion(
+ CmpI->getPredicate(), RHSAARange);
+
+ if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
+ MustFalse = true;
+
+ if (SatisfyingRegion.contains(LHSAARange))
+ MustTrue = true;
+
+ assert((!MustTrue || !MustFalse) &&
+ "Either MustTrue or MustFalse should be false!");
+
+ if (MustTrue)
+ T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
+ else if (MustFalse)
+ T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
+ else
+ T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
+
+ LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
+ << " " << RHSAA << "\n");
+
+ // TODO: Track a known state too.
+ return T.isValidState();
+ }
+
+ /// See AbstractAttribute::updateImpl(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
+ IntegerRangeState &T, bool Stripped) -> bool {
+ Instruction *I = dyn_cast<Instruction>(&V);
+ if (!I || isa<CallBase>(I)) {
+
+ // If the value is not instruction, we query AA to Attributor.
+ const auto &AA =
+ A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(V));
+
+ // Clamp operator is not used to utilize a program point CtxI.
+ T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
+
+ return T.isValidState();
+ }
+
+ SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
+ if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
+ if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
+ return false;
+ } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
+ if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
+ return false;
+ } else if (auto *CastI = dyn_cast<CastInst>(I)) {
+ if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
+ return false;
+ } else {
+ // Give up with other instructions.
+ // TODO: Add other instructions
+
+ T.indicatePessimisticFixpoint();
+ return false;
+ }
+
+ // Catch circular reasoning in a pessimistic way for now.
+ // TODO: Check how the range evolves and if we stripped anything, see also
+ // AADereferenceable or AAAlign for similar situations.
+ for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
+ if (QueriedAA != this)
+ continue;
+ // If we are in a stady state we do not need to worry.
+ if (T.getAssumed() == getState().getAssumed())
+ continue;
+ T.indicatePessimisticFixpoint();
+ }
+
+ return T.isValidState();
+ };
+
+ IntegerRangeState T(getBitWidth());
+
+ if (!genericValueTraversal<AAValueConstantRange, IntegerRangeState>(
+ A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
+ return indicatePessimisticFixpoint();
+
+ return clampStateAndIndicateChange(getState(), T);
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_FLOATING_ATTR(value_range)
+ }
+};
+
+struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
+ AAValueConstantRangeFunction(const IRPosition &IRP)
+ : AAValueConstantRangeImpl(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ ChangeStatus updateImpl(Attributor &A) override {
+ llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
+ "not be called");
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
+};
+
+struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
+ AAValueConstantRangeCallSite(const IRPosition &IRP)
+ : AAValueConstantRangeFunction(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
+};
+
+struct AAValueConstantRangeCallSiteReturned
+ : AACallSiteReturnedFromReturned<AAValueConstantRange,
+ AAValueConstantRangeImpl> {
+ AAValueConstantRangeCallSiteReturned(const IRPosition &IRP)
+ : AACallSiteReturnedFromReturned<AAValueConstantRange,
+ AAValueConstantRangeImpl>(IRP) {}
+
+ /// See AbstractAttribute::initialize(...).
+ void initialize(Attributor &A) override {
+ // If it is a load instruction with range metadata, use the metadata.
+ if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
+ if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
+ intersectKnown(getConstantRangeFromMetadata(*RangeMD));
+
+ AAValueConstantRangeImpl::initialize(A);
+ }
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_CSRET_ATTR(value_range)
+ }
+};
+struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
+ AAValueConstantRangeCallSiteArgument(const IRPosition &IRP)
+ : AAValueConstantRangeFloating(IRP) {}
+
+ /// See AbstractAttribute::trackStatistics()
+ void trackStatistics() const override {
+ STATS_DECLTRACK_CSARG_ATTR(value_range)
+ }
+};
+
+const char AAReturnedValues::ID = 0;
+const char AANoUnwind::ID = 0;
+const char AANoSync::ID = 0;
+const char AANoFree::ID = 0;
+const char AANonNull::ID = 0;
+const char AANoRecurse::ID = 0;
+const char AAWillReturn::ID = 0;
+const char AAUndefinedBehavior::ID = 0;
+const char AANoAlias::ID = 0;
+const char AAReachability::ID = 0;
+const char AANoReturn::ID = 0;
+const char AAIsDead::ID = 0;
+const char AADereferenceable::ID = 0;
+const char AAAlign::ID = 0;
+const char AANoCapture::ID = 0;
+const char AAValueSimplify::ID = 0;
+const char AAHeapToStack::ID = 0;
+const char AAPrivatizablePtr::ID = 0;
+const char AAMemoryBehavior::ID = 0;
+const char AAMemoryLocation::ID = 0;
+const char AAValueConstantRange::ID = 0;
+
+// Macro magic to create the static generator function for attributes that
+// follow the naming scheme.
+
+#define SWITCH_PK_INV(CLASS, PK, POS_NAME) \
+ case IRPosition::PK: \
+ llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
+
+#define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX) \
+ case IRPosition::PK: \
+ AA = new (A.Allocator) CLASS##SUFFIX(IRP); \
+ break;
+
+#define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
+ CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
+ CLASS *AA = nullptr; \
+ switch (IRP.getPositionKind()) { \
+ SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
+ SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \
+ SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \
+ SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
+ SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \
+ SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
+ } \
+ return *AA; \
+ }
+
+#define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
+ CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
+ CLASS *AA = nullptr; \
+ switch (IRP.getPositionKind()) { \
+ SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
+ SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function") \
+ SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
+ } \
+ return *AA; \
+ }
+
+#define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
+ CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
+ CLASS *AA = nullptr; \
+ switch (IRP.getPositionKind()) { \
+ SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
+ } \
+ return *AA; \
+ }
+
+#define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
+ CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
+ CLASS *AA = nullptr; \
+ switch (IRP.getPositionKind()) { \
+ SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
+ SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \
+ SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \
+ SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
+ SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \
+ SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \
+ SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
+ } \
+ return *AA; \
+ }
+
+#define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
+ CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
+ CLASS *AA = nullptr; \
+ switch (IRP.getPositionKind()) { \
+ SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
+ SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
+ SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
+ } \
+ return *AA; \
+ }
+
+CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
+CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
+CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
+CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
+CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
+CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
+CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
+
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
+CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
+
+CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
+CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
+CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
+
+CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
+CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
+CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
+
+CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
+
+#undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
+#undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
+#undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
+#undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
+#undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
+#undef SWITCH_PK_CREATE
+#undef SWITCH_PK_INV