}
// Store the arguments object. This must happen after context
- // initialization because the arguments object may be stored in the
- // context.
- if (scope()->arguments() != NULL) {
- Comment cmnt(masm_, "[ allocate arguments object");
- ASSERT(scope()->arguments_shadow() != NULL);
- Variable* arguments = scope()->arguments()->var();
- Variable* shadow = scope()->arguments_shadow()->var();
- ASSERT(arguments != NULL && arguments->slot() != NULL);
- ASSERT(shadow != NULL && shadow->slot() != NULL);
- ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
- __ ldr(r2, frame_->Function());
- // The receiver is below the arguments, the return address, and the
- // frame pointer on the stack.
- const int kReceiverDisplacement = 2 + scope()->num_parameters();
- __ add(r1, fp, Operand(kReceiverDisplacement * kPointerSize));
- __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters())));
- frame_->Adjust(3);
- __ stm(db_w, sp, r0.bit() | r1.bit() | r2.bit());
- frame_->CallStub(&stub, 3);
- frame_->EmitPush(r0);
- StoreToSlot(arguments->slot(), NOT_CONST_INIT);
- StoreToSlot(shadow->slot(), NOT_CONST_INIT);
- frame_->Drop(); // Value is no longer needed.
+ // initialization because the arguments object may be stored in
+ // the context.
+ if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) {
+ StoreArgumentsObject(true);
}
// Initialize ThisFunction reference if present.
}
+ArgumentsAllocationMode CodeGenerator::ArgumentsMode() {
+ if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION;
+ ASSERT(scope()->arguments_shadow() != NULL);
+ // We don't want to do lazy arguments allocation for functions that
+ // have heap-allocated contexts, because it interfers with the
+ // uninitialized const tracking in the context objects.
+ return (scope()->num_heap_slots() > 0)
+ ? EAGER_ARGUMENTS_ALLOCATION
+ : LAZY_ARGUMENTS_ALLOCATION;
+}
+
+
+void CodeGenerator::StoreArgumentsObject(bool initial) {
+ VirtualFrame::SpilledScope spilled_scope(frame_);
+
+ ArgumentsAllocationMode mode = ArgumentsMode();
+ ASSERT(mode != NO_ARGUMENTS_ALLOCATION);
+
+ Comment cmnt(masm_, "[ store arguments object");
+ if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) {
+ // When using lazy arguments allocation, we store the hole value
+ // as a sentinel indicating that the arguments object hasn't been
+ // allocated yet.
+ __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+ frame_->EmitPush(ip);
+ } else {
+ ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
+ __ ldr(r2, frame_->Function());
+ // The receiver is below the arguments, the return address, and the
+ // frame pointer on the stack.
+ const int kReceiverDisplacement = 2 + scope()->num_parameters();
+ __ add(r1, fp, Operand(kReceiverDisplacement * kPointerSize));
+ __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters())));
+ frame_->Adjust(3);
+ __ stm(db_w, sp, r0.bit() | r1.bit() | r2.bit());
+ frame_->CallStub(&stub, 3);
+ frame_->EmitPush(r0);
+ }
+
+ Variable* arguments = scope()->arguments()->var();
+ Variable* shadow = scope()->arguments_shadow()->var();
+ ASSERT(arguments != NULL && arguments->slot() != NULL);
+ ASSERT(shadow != NULL && shadow->slot() != NULL);
+ JumpTarget done;
+ if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) {
+ // We have to skip storing into the arguments slot if it has
+ // already been written to. This can happen if the a function
+ // has a local variable named 'arguments'.
+ LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF);
+ frame_->EmitPop(r0);
+ __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+ __ cmp(r0, ip);
+ done.Branch(ne);
+ }
+ StoreToSlot(arguments->slot(), NOT_CONST_INIT);
+ if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind();
+ StoreToSlot(shadow->slot(), NOT_CONST_INIT);
+}
+
+
void CodeGenerator::LoadTypeofExpression(Expression* expr) {
// Special handling of identifiers as subexpressions of typeof.
VirtualFrame::SpilledScope spilled_scope(frame_);
} else if (variable != NULL && variable->slot() != NULL) {
// For a variable that rewrites to a slot, we signal it is the immediate
// subexpression of a typeof.
- LoadFromSlot(variable->slot(), INSIDE_TYPEOF);
+ LoadFromSlotCheckForArguments(variable->slot(), INSIDE_TYPEOF);
frame_->SpillAll();
} else {
// Anything else can be handled normally.
}
+void CodeGenerator::CallApplyLazy(Expression* applicand,
+ Expression* receiver,
+ VariableProxy* arguments,
+ int position) {
+ // An optimized implementation of expressions of the form
+ // x.apply(y, arguments).
+ // If the arguments object of the scope has not been allocated,
+ // and x.apply is Function.prototype.apply, this optimization
+ // just copies y and the arguments of the current function on the
+ // stack, as receiver and arguments, and calls x.
+ // In the implementation comments, we call x the applicand
+ // and y the receiver.
+ VirtualFrame::SpilledScope spilled_scope(frame_);
+
+ ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION);
+ ASSERT(arguments->IsArguments());
+
+ // Load applicand.apply onto the stack. This will usually
+ // give us a megamorphic load site. Not super, but it works.
+ LoadAndSpill(applicand);
+ Handle<String> name = Factory::LookupAsciiSymbol("apply");
+ __ mov(r2, Operand(name));
+ frame_->CallLoadIC(RelocInfo::CODE_TARGET);
+ frame_->EmitPush(r0);
+
+ // Load the receiver and the existing arguments object onto the
+ // expression stack. Avoid allocating the arguments object here.
+ LoadAndSpill(receiver);
+ LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF);
+
+ // Emit the source position information after having loaded the
+ // receiver and the arguments.
+ CodeForSourcePosition(position);
+ // Contents of the stack at this point:
+ // sp[0]: arguments object of the current function or the hole.
+ // sp[1]: receiver
+ // sp[2]: applicand.apply
+ // sp[3]: applicand.
+
+ // Check if the arguments object has been lazily allocated
+ // already. If so, just use that instead of copying the arguments
+ // from the stack. This also deals with cases where a local variable
+ // named 'arguments' has been introduced.
+ __ ldr(r0, MemOperand(sp, 0));
+
+ Label slow, done;
+ __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+ __ cmp(ip, r0);
+ __ b(ne, &slow);
+
+ Label build_args;
+ // Get rid of the arguments object probe.
+ frame_->Drop();
+ // Stack now has 3 elements on it.
+ // Contents of stack at this point:
+ // sp[0]: receiver
+ // sp[1]: applicand.apply
+ // sp[2]: applicand.
+
+ // Check that the receiver really is a JavaScript object.
+ __ ldr(r0, MemOperand(sp, 0));
+ __ BranchOnSmi(r0, &build_args);
+ // We allow all JSObjects including JSFunctions. As long as
+ // JS_FUNCTION_TYPE is the last instance type and it is right
+ // after LAST_JS_OBJECT_TYPE, we do not have to check the upper
+ // bound.
+ ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
+ ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
+ __ CompareObjectType(r0, r1, r2, FIRST_JS_OBJECT_TYPE);
+ __ b(lt, &build_args);
+
+ // Check that applicand.apply is Function.prototype.apply.
+ __ ldr(r0, MemOperand(sp, kPointerSize));
+ __ BranchOnSmi(r0, &build_args);
+ __ CompareObjectType(r0, r1, r2, JS_FUNCTION_TYPE);
+ __ b(ne, &build_args);
+ __ ldr(r0, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
+ Handle<Code> apply_code(Builtins::builtin(Builtins::FunctionApply));
+ __ ldr(r1, FieldMemOperand(r0, SharedFunctionInfo::kCodeOffset));
+ __ cmp(r1, Operand(apply_code));
+ __ b(ne, &build_args);
+
+ // Check that applicand is a function.
+ __ ldr(r1, MemOperand(sp, 2 * kPointerSize));
+ __ BranchOnSmi(r1, &build_args);
+ __ CompareObjectType(r1, r2, r3, JS_FUNCTION_TYPE);
+ __ b(ne, &build_args);
+
+ // Copy the arguments to this function possibly from the
+ // adaptor frame below it.
+ Label invoke, adapted;
+ __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
+ __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ b(eq, &adapted);
+
+ // No arguments adaptor frame. Copy fixed number of arguments.
+ __ mov(r0, Operand(scope()->num_parameters()));
+ for (int i = 0; i < scope()->num_parameters(); i++) {
+ __ ldr(r2, frame_->ParameterAt(i));
+ __ push(r2);
+ }
+ __ jmp(&invoke);
+
+ // Arguments adaptor frame present. Copy arguments from there, but
+ // avoid copying too many arguments to avoid stack overflows.
+ __ bind(&adapted);
+ static const uint32_t kArgumentsLimit = 1 * KB;
+ __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ mov(r0, Operand(r0, LSR, kSmiTagSize));
+ __ mov(r3, r0);
+ __ cmp(r0, Operand(kArgumentsLimit));
+ __ b(gt, &build_args);
+
+ // Loop through the arguments pushing them onto the execution
+ // stack. We don't inform the virtual frame of the push, so we don't
+ // have to worry about getting rid of the elements from the virtual
+ // frame.
+ Label loop;
+ // r3 is a small non-negative integer, due to the test above.
+ __ cmp(r3, Operand(0));
+ __ b(eq, &invoke);
+ // Compute the address of the first argument.
+ __ add(r2, r2, Operand(r3, LSL, kPointerSizeLog2));
+ __ add(r2, r2, Operand(kPointerSize));
+ __ bind(&loop);
+ // Post-decrement argument address by kPointerSize on each iteration.
+ __ ldr(r4, MemOperand(r2, kPointerSize, NegPostIndex));
+ __ push(r4);
+ __ sub(r3, r3, Operand(1), SetCC);
+ __ b(gt, &loop);
+
+ // Invoke the function.
+ __ bind(&invoke);
+ ParameterCount actual(r0);
+ __ InvokeFunction(r1, actual, CALL_FUNCTION);
+ // Drop applicand.apply and applicand from the stack, and push
+ // the result of the function call, but leave the spilled frame
+ // unchanged, with 3 elements, so it is correct when we compile the
+ // slow-case code.
+ __ add(sp, sp, Operand(2 * kPointerSize));
+ __ push(r0);
+ // Stack now has 1 element:
+ // sp[0]: result
+ __ jmp(&done);
+
+ // Slow-case: Allocate the arguments object since we know it isn't
+ // there, and fall-through to the slow-case where we call
+ // applicand.apply.
+ __ bind(&build_args);
+ // Stack now has 3 elements, because we have jumped from where:
+ // sp[0]: receiver
+ // sp[1]: applicand.apply
+ // sp[2]: applicand.
+ StoreArgumentsObject(false);
+
+ // Stack and frame now have 4 elements.
+ __ bind(&slow);
+
+ // Generic computation of x.apply(y, args) with no special optimization.
+ // Flip applicand.apply and applicand on the stack, so
+ // applicand looks like the receiver of the applicand.apply call.
+ // Then process it as a normal function call.
+ __ ldr(r0, MemOperand(sp, 3 * kPointerSize));
+ __ ldr(r1, MemOperand(sp, 2 * kPointerSize));
+ __ str(r0, MemOperand(sp, 2 * kPointerSize));
+ __ str(r1, MemOperand(sp, 3 * kPointerSize));
+
+ CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS);
+ frame_->CallStub(&call_function, 3);
+ // The function and its two arguments have been dropped.
+ frame_->Drop(); // Drop the receiver as well.
+ frame_->EmitPush(r0);
+ // Stack now has 1 element:
+ // sp[0]: result
+ __ bind(&done);
+
+ // Restore the context register after a call.
+ __ ldr(cp, frame_->Context());
+}
+
+
void CodeGenerator::Branch(bool if_true, JumpTarget* target) {
VirtualFrame::SpilledScope spilled_scope(frame_);
ASSERT(has_cc());
}
+void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot,
+ TypeofState state) {
+ LoadFromSlot(slot, state);
+
+ // Bail out quickly if we're not using lazy arguments allocation.
+ if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return;
+
+ // ... or if the slot isn't a non-parameter arguments slot.
+ if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return;
+
+ VirtualFrame::SpilledScope spilled_scope(frame_);
+
+ // Load the loaded value from the stack into r0 but leave it on the
+ // stack.
+ __ ldr(r0, MemOperand(sp, 0));
+
+ // If the loaded value is the sentinel that indicates that we
+ // haven't loaded the arguments object yet, we need to do it now.
+ JumpTarget exit;
+ __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+ __ cmp(r0, ip);
+ exit.Branch(ne);
+ frame_->Drop();
+ StoreArgumentsObject(false);
+ exit.Bind();
+}
+
+
void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) {
ASSERT(slot != NULL);
if (slot->type() == Slot::LOOKUP) {
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ Slot");
- LoadFromSlot(node, NOT_INSIDE_TYPEOF);
+ LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF);
ASSERT(frame_->height() == original_height + 1);
}
// JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
// ------------------------------------------------------------------
- LoadAndSpill(property->obj()); // Receiver.
- // Load the arguments.
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- LoadAndSpill(args->at(i));
- }
+ Handle<String> name = Handle<String>::cast(literal->handle());
- // Set the name register and call the IC initialization code.
- __ mov(r2, Operand(literal->handle()));
- InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
- Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop);
- CodeForSourcePosition(node->position());
- frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1);
- __ ldr(cp, frame_->Context());
- frame_->EmitPush(r0);
+ if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION &&
+ name->IsEqualTo(CStrVector("apply")) &&
+ args->length() == 2 &&
+ args->at(1)->AsVariableProxy() != NULL &&
+ args->at(1)->AsVariableProxy()->IsArguments()) {
+ // Use the optimized Function.prototype.apply that avoids
+ // allocating lazily allocated arguments objects.
+ CallApplyLazy(property->obj(),
+ args->at(0),
+ args->at(1)->AsVariableProxy(),
+ node->position());
+
+ } else {
+ LoadAndSpill(property->obj()); // Receiver.
+ // Load the arguments.
+ int arg_count = args->length();
+ for (int i = 0; i < arg_count; i++) {
+ LoadAndSpill(args->at(i));
+ }
+
+ // Set the name register and call the IC initialization code.
+ __ mov(r2, Operand(name));
+ InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
+ Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop);
+ CodeForSourcePosition(node->position());
+ frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1);
+ __ ldr(cp, frame_->Context());
+ frame_->EmitPush(r0);
+ }
} else {
// -------------------------------------------
Comment cmnt(masm, "[ Load from Slot");
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
ASSERT(slot != NULL);
- cgen_->LoadFromSlot(slot, NOT_INSIDE_TYPEOF);
+ cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
break;
}