// copy or use the software.
//
//
-// Intel License Agreement
+// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
-// * The name of Intel Corporation may not be used to endorse or promote products
+// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
//M*/
#include "precomp.hpp"
-CV_IMPL void
-cvFindCornerSubPix( const void* srcarr, CvPoint2D32f* corners,
- int count, CvSize win, CvSize zeroZone,
- CvTermCriteria criteria )
+void cv::cornerSubPix( InputArray _image, InputOutputArray _corners,
+ Size win, Size zeroZone, TermCriteria criteria )
{
- cv::AutoBuffer<float> buffer;
-
const int MAX_ITERS = 100;
- const float drv[] = { -1.f, 0.f, 1.f };
- float *maskX;
- float *maskY;
- float *mask;
- float *src_buffer;
- float *gx_buffer;
- float *gy_buffer;
int win_w = win.width * 2 + 1, win_h = win.height * 2 + 1;
- int win_rect_size = (win_w + 4) * (win_h + 4);
- double coeff;
- CvSize size, src_buf_size;
- int i, j, k, pt_i;
- int max_iters = 10;
- double eps = 0;
-
- CvMat stub, *src = (CvMat*)srcarr;
- src = cvGetMat( srcarr, &stub );
-
- if( CV_MAT_TYPE( src->type ) != CV_8UC1 )
- CV_Error( CV_StsUnsupportedFormat, "The source image must be 8-bit single-channel (CV_8UC1)" );
+ int i, j, k;
+ int max_iters = (criteria.type & CV_TERMCRIT_ITER) ? MIN(MAX(criteria.maxCount, 1), MAX_ITERS) : MAX_ITERS;
+ double eps = (criteria.type & CV_TERMCRIT_EPS) ? MAX(criteria.epsilon, 0.) : 0;
+ eps *= eps; // use square of error in comparsion operations
- if( !corners )
- CV_Error( CV_StsNullPtr, "" );
-
- if( count < 0 )
- CV_Error( CV_StsBadSize, "" );
+ cv::Mat src = _image.getMat(), cornersmat = _corners.getMat();
+ int count = cornersmat.checkVector(2, CV_32F);
+ CV_Assert( count >= 0 );
+ Point2f* corners = (Point2f*)cornersmat.data;
if( count == 0 )
return;
- if( win.width <= 0 || win.height <= 0 )
- CV_Error( CV_StsBadSize, "" );
-
- size = cvGetMatSize( src );
-
- if( size.width < win_w + 4 || size.height < win_h + 4 )
- CV_Error( CV_StsBadSize, "" );
-
- /* initialize variables, controlling loop termination */
- switch( criteria.type )
- {
- case CV_TERMCRIT_ITER:
- eps = 0.f;
- max_iters = criteria.max_iter;
- break;
- case CV_TERMCRIT_EPS:
- eps = criteria.epsilon;
- max_iters = MAX_ITERS;
- break;
- case CV_TERMCRIT_ITER | CV_TERMCRIT_EPS:
- eps = criteria.epsilon;
- max_iters = criteria.max_iter;
- break;
- default:
- assert( 0 );
- CV_Error( CV_StsBadFlag, "" );
- }
-
- eps = MAX( eps, 0 );
- eps *= eps; /* use square of error in comparsion operations. */
-
- max_iters = MAX( max_iters, 1 );
- max_iters = MIN( max_iters, MAX_ITERS );
-
- buffer.allocate( win_rect_size * 5 + win_w + win_h + 32 );
-
- /* assign pointers */
- maskX = buffer;
- maskY = maskX + win_w + 4;
- mask = maskY + win_h + 4;
- src_buffer = mask + win_w * win_h;
- gx_buffer = src_buffer + win_rect_size;
- gy_buffer = gx_buffer + win_rect_size;
+ CV_Assert( win.width > 0 && win.height > 0 );
+ CV_Assert( src.cols >= win_w + 4 && src.rows >= win_h + 4 );
+ CV_Assert( src.channels() == 1 );
- coeff = 1. / (win.width * win.width);
-
- /* calculate mask */
- for( i = -win.width, k = 0; i <= win.width; i++, k++ )
- {
- maskX[k] = (float)exp( -i * i * coeff );
- }
-
- if( win.width == win.height )
- {
- maskY = maskX;
- }
- else
- {
- coeff = 1. / (win.height * win.height);
- for( i = -win.height, k = 0; i <= win.height; i++, k++ )
- {
- maskY[k] = (float) exp( -i * i * coeff );
- }
- }
+ Mat maskm(win_h, win_w, CV_32F), subpix_buf(win_h+2, win_w+2, CV_32F);
+ float* mask = maskm.ptr<float>();
for( i = 0; i < win_h; i++ )
{
+ float y = (float)(i - win.height)/win.height;
+ float vy = std::exp(-y*y);
for( j = 0; j < win_w; j++ )
{
- mask[i * win_w + j] = maskX[j] * maskY[i];
+ float x = (float)(j - win.width)/win.width;
+ mask[i * win_w + j] = (float)(vy*std::exp(-x*x));
}
}
-
- /* make zero_zone */
+ // make zero_zone
if( zeroZone.width >= 0 && zeroZone.height >= 0 &&
zeroZone.width * 2 + 1 < win_w && zeroZone.height * 2 + 1 < win_h )
{
}
}
- /* set sizes of image rectangles, used in convolutions */
- src_buf_size.width = win_w + 2;
- src_buf_size.height = win_h + 2;
-
- /* do optimization loop for all the points */
- for( pt_i = 0; pt_i < count; pt_i++ )
+ // do optimization loop for all the points
+ for( int pt_i = 0; pt_i < count; pt_i++ )
{
- CvPoint2D32f cT = corners[pt_i], cI = cT;
+ Point2f cT = corners[pt_i], cI = cT;
int iter = 0;
- double err;
+ double err = 0;
do
{
- CvPoint2D32f cI2;
- double a, b, c, bb1, bb2;
-
- IPPI_CALL( icvGetRectSubPix_8u32f_C1R( (uchar*)src->data.ptr, src->step, size,
- src_buffer, (win_w + 2) * sizeof( src_buffer[0] ),
- cvSize( win_w + 2, win_h + 2 ), cI ));
+ Point2f cI2;
+ double a = 0, b = 0, c = 0, bb1 = 0, bb2 = 0;
- /* calc derivatives */
- icvSepConvSmall3_32f( src_buffer+src_buf_size.width, src_buf_size.width * sizeof(src_buffer[0]),
- gx_buffer, win_w * sizeof(gx_buffer[0]),
- src_buf_size, drv, NULL, NULL );
- icvSepConvSmall3_32f( src_buffer+1, src_buf_size.width * sizeof(src_buffer[0]),
- gy_buffer, win_w * sizeof(gy_buffer[0]),
- src_buf_size, NULL, drv, NULL );
+ getRectSubPix(src, Size(win_w+2, win_h+2), cI, subpix_buf, subpix_buf.type());
+ const float* subpix = &subpix_buf.at<float>(1,1);
- a = b = c = bb1 = bb2 = 0;
-
- /* process gradient */
- for( i = 0, k = 0; i < win_h; i++ )
+ // process gradient
+ for( i = 0, k = 0; i < win_h; i++, subpix += win_w + 2 )
{
double py = i - win.height;
for( j = 0; j < win_w; j++, k++ )
{
double m = mask[k];
- double tgx = gx_buffer[k];
- double tgy = gy_buffer[k];
+ double tgx = subpix[1] - subpix[-1];
+ double tgy = subpix[win_w+2] - subpix[-win_w-2];
double gxx = tgx * tgx * m;
double gxy = tgx * tgy * m;
double gyy = tgy * tgy * m;
}
double det=a*c-b*b;
- if( fabs( det ) > DBL_EPSILON*DBL_EPSILON )
- {
- // 2x2 matrix inversion
- double scale=1.0/det;
- cI2.x = (float)(cI.x + c*scale*bb1 - b*scale*bb2);
- cI2.y = (float)(cI.y - b*scale*bb1 + a*scale*bb2);
- }
- else
- {
- cI2 = cI;
- }
+ if( fabs( det ) <= DBL_EPSILON*DBL_EPSILON )
+ break;
+ // 2x2 matrix inversion
+ double scale=1.0/det;
+ cI2.x = (float)(cI.x + c*scale*bb1 - b*scale*bb2);
+ cI2.y = (float)(cI.y - b*scale*bb1 + a*scale*bb2);
err = (cI2.x - cI.x) * (cI2.x - cI.x) + (cI2.y - cI.y) * (cI2.y - cI.y);
cI = cI2;
}
while( ++iter < max_iters && err > eps );
- /* if new point is too far from initial, it means poor convergence.
- leave initial point as the result */
+ // if new point is too far from initial, it means poor convergence.
+ // leave initial point as the result
if( fabs( cI.x - cT.x ) > win.width || fabs( cI.y - cT.y ) > win.height )
- {
cI = cT;
- }
- corners[pt_i] = cI; /* store result */
+ corners[pt_i] = cI;
}
}
-void cv::cornerSubPix( InputArray _image, InputOutputArray _corners,
- Size winSize, Size zeroZone,
- TermCriteria criteria )
+
+CV_IMPL void
+cvFindCornerSubPix( const void* srcarr, CvPoint2D32f* _corners,
+ int count, CvSize win, CvSize zeroZone,
+ CvTermCriteria criteria )
{
- Mat corners = _corners.getMat();
- int ncorners = corners.checkVector(2);
- CV_Assert( ncorners >= 0 && corners.depth() == CV_32F );
- Mat image = _image.getMat();
- CvMat c_image = image;
+ if(!_corners || count <= 0)
+ return;
- cvFindCornerSubPix( &c_image, (CvPoint2D32f*)corners.data, ncorners,
- winSize, zeroZone, criteria );
+ cv::Mat src = cv::cvarrToMat(srcarr), corners(count, 1, CV_32FC2, _corners);
+ cv::cornerSubPix(src, corners, win, zeroZone, criteria);
}
/* End of file. */
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
static IppStatus sts = ippInit();
#endif
-/****************************************************************************************/
-
-/* lightweight convolution with 3x3 kernel */
-void icvSepConvSmall3_32f( float* src, int src_step, float* dst, int dst_step,
- CvSize src_size, const float* kx, const float* ky, float* buffer )
-{
- int dst_width, buffer_step = 0;
- int x, y;
- bool fast_kx = true, fast_ky = true;
-
- assert( src && dst && src_size.width > 2 && src_size.height > 2 &&
- (src_step & 3) == 0 && (dst_step & 3) == 0 &&
- (kx || ky) && (buffer || !kx || !ky));
-
- src_step /= sizeof(src[0]);
- dst_step /= sizeof(dst[0]);
-
- dst_width = src_size.width - 2;
-
- if( !kx )
- {
- /* set vars, so that vertical convolution
- will write results into destination ROI and
- horizontal convolution won't run */
- src_size.width = dst_width;
- buffer_step = dst_step;
- buffer = dst;
- dst_width = 0;
- }
- else
- fast_kx = kx[1] == 0.f && kx[0] == -kx[2] && kx[0] == -1.f;
-
- assert( src_step >= src_size.width && dst_step >= dst_width );
-
- src_size.height -= 2;
- if( !ky )
- {
- /* set vars, so that vertical convolution won't run and
- horizontal convolution will write results into destination ROI */
- src_size.height += 2;
- buffer_step = src_step;
- buffer = src;
- src_size.width = 0;
- }
- else
- fast_ky = ky[1] == 0.f && ky[0] == -ky[2] && ky[0] == -1.f;
-
- for( y = 0; y < src_size.height; y++, src += src_step,
- dst += dst_step,
- buffer += buffer_step )
- {
- float* src2 = src + src_step;
- float* src3 = src + src_step*2;
- if( fast_ky )
- for( x = 0; x < src_size.width; x++ )
- {
- buffer[x] = (float)(src3[x] - src[x]);
- }
- else
- for( x = 0; x < src_size.width; x++ )
- {
- buffer[x] = (float)(ky[0]*src[x] + ky[1]*src2[x] + ky[2]*src3[x]);
- }
-
- if( fast_kx )
- for( x = 0; x < dst_width; x++ )
- {
- dst[x] = (float)(buffer[x+2] - buffer[x]);
- }
- else
- for( x = 0; x < dst_width; x++ )
- {
- dst[x] = (float)(kx[0]*buffer[x] + kx[1]*buffer[x+1] + kx[2]*buffer[x+2]);
- }
- }
-}
-
/****************************************************************************************\
Sobel & Scharr Derivative Filters
// copy or use the software.
//
//
-// Intel License Agreement
+// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
-// * The name of Intel Corporation may not be used to endorse or promote products
+// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
#include "precomp.hpp"
-typedef struct CvFFillSegment
+namespace cv
+{
+
+struct FFillSegment
{
ushort y;
ushort l;
ushort prevl;
ushort prevr;
short dir;
-}
-CvFFillSegment;
+};
-#define UP 1
-#define DOWN -1
+enum
+{
+ UP = 1,
+ DOWN = -1
+};
#define ICV_PUSH( Y, L, R, PREV_L, PREV_R, DIR ) \
{ \
tail->dir = (short)(DIR); \
if( ++tail == buffer_end ) \
{ \
- buffer->resize(buffer->size() * 2); \
+ buffer->resize(buffer->size() * 3/2); \
tail = &buffer->front() + (tail - head); \
head = &buffer->front(); \
buffer_end = head + buffer->size(); \
DIR = tail->dir; \
}
-/****************************************************************************************\
-* Simple Floodfill (repainting single-color connected component) *
-\****************************************************************************************/
+struct ConnectedComp
+{
+ ConnectedComp();
+ Rect rect;
+ Point pt;
+ int threshold;
+ int label;
+ int area;
+ int harea;
+ int carea;
+ int perimeter;
+ int nholes;
+ int ninflections;
+ double mx;
+ double my;
+ Scalar avg;
+ Scalar sdv;
+};
+
+ConnectedComp::ConnectedComp()
+{
+ rect = Rect(0, 0, 0, 0);
+ pt = Point(-1, -1);
+ threshold = -1;
+ label = -1;
+ area = harea = carea = perimeter = nholes = ninflections = 0;
+ mx = my = 0;
+ avg = sdv = Scalar::all(0);
+}
+
+// Simple Floodfill (repainting single-color connected component)
template<typename _Tp>
static void
-icvFloodFill_CnIR( uchar* pImage, int step, CvSize roi, CvPoint seed,
- _Tp newVal, CvConnectedComp* region, int flags,
- std::vector<CvFFillSegment>* buffer )
+floodFill_CnIR( Mat& image, Point seed,
+ _Tp newVal, ConnectedComp* region, int flags,
+ std::vector<FFillSegment>* buffer )
{
- typedef typename cv::DataType<_Tp>::channel_type _CTp;
- _Tp* img = (_Tp*)(pImage + step * seed.y);
+ typedef typename DataType<_Tp>::channel_type _CTp;
+ _Tp* img = (_Tp*)(image.data + image.step * seed.y);
+ Size roi = image.size();
int i, L, R;
int area = 0;
int XMin, XMax, YMin = seed.y, YMax = seed.y;
int _8_connectivity = (flags & 255) == 8;
- CvFFillSegment* buffer_end = &buffer->front() + buffer->size(), *head = &buffer->front(), *tail = &buffer->front();
+ FFillSegment* buffer_end = &buffer->front() + buffer->size(), *head = &buffer->front(), *tail = &buffer->front();
L = R = XMin = XMax = seed.x;
for( k = 0; k < 3; k++ )
{
dir = data[k][0];
- img = (_Tp*)(pImage + (YC + dir) * step);
+ img = (_Tp*)(image.data + (YC + dir) * image.step);
int left = data[k][1];
int right = data[k][2];
if( region )
{
+ region->pt = seed;
region->area = area;
region->rect.x = XMin;
region->rect.y = YMin;
region->rect.width = XMax - XMin + 1;
region->rect.height = YMax - YMin + 1;
- region->value = cv::Scalar(newVal);
}
}
struct Diff8uC3
{
- Diff8uC3(cv::Vec3b _lo, cv::Vec3b _up)
+ Diff8uC3(Vec3b _lo, Vec3b _up)
{
for( int k = 0; k < 3; k++ )
lo[k] = _lo[k], interval[k] = _lo[k] + _up[k];
}
- bool operator()(const cv::Vec3b* a, const cv::Vec3b* b) const
+ bool operator()(const Vec3b* a, const Vec3b* b) const
{
return (unsigned)(a[0][0] - b[0][0] + lo[0]) <= interval[0] &&
(unsigned)(a[0][1] - b[0][1] + lo[1]) <= interval[1] &&
};
typedef DiffC1<int> Diff32sC1;
-typedef DiffC3<cv::Vec3i> Diff32sC3;
+typedef DiffC3<Vec3i> Diff32sC3;
typedef DiffC1<float> Diff32fC1;
-typedef DiffC3<cv::Vec3f> Diff32fC3;
+typedef DiffC3<Vec3f> Diff32fC3;
-static cv::Vec3i& operator += (cv::Vec3i& a, const cv::Vec3b& b)
-{
- a[0] += b[0];
- a[1] += b[1];
- a[2] += b[2];
- return a;
-}
-
-template<typename _Tp, typename _WTp, class Diff>
+template<typename _Tp, typename _MTp, typename _WTp, class Diff>
static void
-icvFloodFillGrad_CnIR( uchar* pImage, int step, uchar* pMask, int maskStep,
- CvSize /*roi*/, CvPoint seed, _Tp newVal, Diff diff,
- CvConnectedComp* region, int flags,
- std::vector<CvFFillSegment>* buffer )
+floodFillGrad_CnIR( Mat& image, Mat& msk,
+ Point seed, _Tp newVal, _MTp newMaskVal,
+ Diff diff, ConnectedComp* region, int flags,
+ std::vector<FFillSegment>* buffer )
{
- typedef typename cv::DataType<_Tp>::channel_type _CTp;
+ typedef typename DataType<_Tp>::channel_type _CTp;
+ int step = (int)image.step, maskStep = (int)msk.step;
+ uchar* pImage = image.data;
_Tp* img = (_Tp*)(pImage + step*seed.y);
- uchar* mask = (pMask += maskStep + 1) + maskStep*seed.y;
+ uchar* pMask = msk.data + maskStep + sizeof(_MTp);
+ _MTp* mask = (_MTp*)(pMask + maskStep*seed.y);
int i, L, R;
int area = 0;
- _WTp sum = _WTp((typename cv::DataType<_Tp>::channel_type)0);
int XMin, XMax, YMin = seed.y, YMax = seed.y;
int _8_connectivity = (flags & 255) == 8;
- int fixedRange = flags & CV_FLOODFILL_FIXED_RANGE;
- int fillImage = (flags & CV_FLOODFILL_MASK_ONLY) == 0;
- uchar newMaskVal = (uchar)(flags & 0xff00 ? flags >> 8 : 1);
- CvFFillSegment* buffer_end = &buffer->front() + buffer->size(), *head = &buffer->front(), *tail = &buffer->front();
+ int fixedRange = flags & FLOODFILL_FIXED_RANGE;
+ int fillImage = (flags & FLOODFILL_MASK_ONLY) == 0;
+ FFillSegment* buffer_end = &buffer->front() + buffer->size(), *head = &buffer->front(), *tail = &buffer->front();
L = R = seed.x;
if( mask[L] )
dir = data[k][0];
img = (_Tp*)(pImage + (YC + dir) * step);
_Tp* img1 = (_Tp*)(pImage + YC * step);
- mask = pMask + (YC + dir) * maskStep;
+ mask = (_MTp*)(pMask + (YC + dir) * maskStep);
int left = data[k][1];
int right = data[k][2];
mask[j] = newMaskVal;
while( !mask[++i] &&
- (diff( img + i, img + (i-1) ) ||
+ (diff( img + i, img + (i-1) ) ||
(diff( img + i, img1 + i) && i <= R)))
mask[i] = newMaskVal;
_Tp val;
if( !mask[i] &&
- (((val = img[i],
- (unsigned)(idx = i-L-1) <= length) &&
- diff( &val, img1 + (i-1))) ||
+ (((val = img[i],
+ (unsigned)(idx = i-L-1) <= length) &&
+ diff( &val, img1 + (i-1))) ||
((unsigned)(++idx) <= length &&
- diff( &val, img1 + i )) ||
+ diff( &val, img1 + i )) ||
((unsigned)(++idx) <= length &&
- diff( &val, img1 + (i+1) ))))
+ diff( &val, img1 + (i+1) ))))
{
int j = i;
mask[i] = newMaskVal;
mask[j] = newMaskVal;
while( !mask[++i] &&
- ((val = img[i],
- diff( &val, img + (i-1) )) ||
+ ((val = img[i],
+ diff( &val, img + (i-1) )) ||
(((unsigned)(idx = i-L-1) <= length &&
- diff( &val, img1 + (i-1) ))) ||
+ diff( &val, img1 + (i-1) ))) ||
((unsigned)(++idx) <= length &&
- diff( &val, img1 + i )) ||
+ diff( &val, img1 + i )) ||
((unsigned)(++idx) <= length &&
- diff( &val, img1 + (i+1) ))))
+ diff( &val, img1 + (i+1) ))))
mask[i] = newMaskVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
if( fillImage )
for( i = L; i <= R; i++ )
img[i] = newVal;
- else if( region )
- for( i = L; i <= R; i++ )
- sum += img[i];
+ /*else if( region )
+ for( i = L; i <= R; i++ )
+ sum += img[i];*/
}
if( region )
{
+ region->pt = seed;
+ region->label = saturate_cast<int>(newMaskVal);
region->area = area;
region->rect.x = XMin;
region->rect.y = YMin;
region->rect.width = XMax - XMin + 1;
region->rect.height = YMax - YMin + 1;
-
- if( fillImage )
- region->value = cv::Scalar(newVal);
- else
- {
- double iarea = area ? 1./area : 0;
- region->value = cv::Scalar(sum*iarea);
- }
}
}
+}
/****************************************************************************************\
* External Functions *
\****************************************************************************************/
-typedef void (*CvFloodFillFunc)(
- void* img, int step, CvSize size, CvPoint seed, void* newval,
- CvConnectedComp* comp, int flags, void* buffer, int cn );
-
-typedef void (*CvFloodFillGradFunc)(
- void* img, int step, uchar* mask, int maskStep, CvSize size,
- CvPoint seed, void* newval, void* d_lw, void* d_up, void* ccomp,
- int flags, void* buffer, int cn );
-
-CV_IMPL void
-cvFloodFill( CvArr* arr, CvPoint seed_point,
- CvScalar newVal, CvScalar lo_diff, CvScalar up_diff,
- CvConnectedComp* comp, int flags, CvArr* maskarr )
+int cv::floodFill( InputOutputArray _image, InputOutputArray _mask,
+ Point seedPoint, Scalar newVal, Rect* rect,
+ Scalar loDiff, Scalar upDiff, int flags )
{
- cv::Ptr<CvMat> tempMask;
- std::vector<CvFFillSegment> buffer;
+ ConnectedComp comp;
+ vector<FFillSegment> buffer;
- if( comp )
- memset( comp, 0, sizeof(*comp) );
+ if( rect )
+ *rect = Rect();
- int i, type, depth, cn, is_simple;
- int buffer_size, connectivity = flags & 255;
+ int i, connectivity = flags & 255;
union {
uchar b[4];
int i[4];
} nv_buf;
nv_buf._[0] = nv_buf._[1] = nv_buf._[2] = nv_buf._[3] = 0;
- struct { cv::Vec3b b; cv::Vec3i i; cv::Vec3f f; } ld_buf, ud_buf;
- CvMat stub, *img = cvGetMat(arr, &stub);
- CvMat maskstub, *mask = (CvMat*)maskarr;
- CvSize size;
+ struct { Vec3b b; Vec3i i; Vec3f f; } ld_buf, ud_buf;
+ Mat img = _image.getMat(), mask;
+ if( !_mask.empty() )
+ mask = _mask.getMat();
+ Size size = img.size();
- type = CV_MAT_TYPE( img->type );
- depth = CV_MAT_DEPTH(type);
- cn = CV_MAT_CN(type);
+ int type = img.type();
+ int depth = img.depth();
+ int cn = img.channels();
if( connectivity == 0 )
connectivity = 4;
else if( connectivity != 4 && connectivity != 8 )
CV_Error( CV_StsBadFlag, "Connectivity must be 4, 0(=4) or 8" );
- is_simple = mask == 0 && (flags & CV_FLOODFILL_MASK_ONLY) == 0;
+ bool is_simple = mask.empty() && (flags & FLOODFILL_MASK_ONLY) == 0;
for( i = 0; i < cn; i++ )
{
- if( lo_diff.val[i] < 0 || up_diff.val[i] < 0 )
+ if( loDiff[i] < 0 || upDiff[i] < 0 )
CV_Error( CV_StsBadArg, "lo_diff and up_diff must be non-negative" );
- is_simple &= fabs(lo_diff.val[i]) < DBL_EPSILON && fabs(up_diff.val[i]) < DBL_EPSILON;
+ is_simple = is_simple && fabs(loDiff[i]) < DBL_EPSILON && fabs(upDiff[i]) < DBL_EPSILON;
}
- size = cvGetMatSize( img );
-
- if( (unsigned)seed_point.x >= (unsigned)size.width ||
- (unsigned)seed_point.y >= (unsigned)size.height )
+ if( (unsigned)seedPoint.x >= (unsigned)size.width ||
+ (unsigned)seedPoint.y >= (unsigned)size.height )
CV_Error( CV_StsOutOfRange, "Seed point is outside of image" );
- cvScalarToRawData( &newVal, &nv_buf, type, 0 );
- buffer_size = MAX( size.width, size.height ) * 2;
+ scalarToRawData( newVal, &nv_buf, type, 0);
+ size_t buffer_size = MAX( size.width, size.height ) * 2;
buffer.resize( buffer_size );
if( is_simple )
{
- int elem_size = CV_ELEM_SIZE(type);
- const uchar* seed_ptr = img->data.ptr + img->step*seed_point.y + elem_size*seed_point.x;
+ int elem_size = img.elemSize();
+ const uchar* seed_ptr = img.data + img.step*seedPoint.y + elem_size*seedPoint.x;
for(i = 0; i < elem_size; i++)
if (seed_ptr[i] != nv_buf.b[i])
break;
- if (i != elem_size)
+ if( i != elem_size )
{
if( type == CV_8UC1 )
- icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, nv_buf.b[0],
- comp, flags, &buffer);
+ floodFill_CnIR(img, seedPoint, nv_buf.b[0], &comp, flags, &buffer);
else if( type == CV_8UC3 )
- icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, cv::Vec3b(nv_buf.b),
- comp, flags, &buffer);
+ floodFill_CnIR(img, seedPoint, Vec3b(nv_buf.b), &comp, flags, &buffer);
else if( type == CV_32SC1 )
- icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, nv_buf.i[0],
- comp, flags, &buffer);
+ floodFill_CnIR(img, seedPoint, nv_buf.i[0], &comp, flags, &buffer);
else if( type == CV_32FC1 )
- icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, nv_buf.f[0],
- comp, flags, &buffer);
+ floodFill_CnIR(img, seedPoint, nv_buf.f[0], &comp, flags, &buffer);
else if( type == CV_32SC3 )
- icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, cv::Vec3i(nv_buf.i),
- comp, flags, &buffer);
+ floodFill_CnIR(img, seedPoint, Vec3i(nv_buf.i), &comp, flags, &buffer);
else if( type == CV_32FC3 )
- icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, cv::Vec3f(nv_buf.f),
- comp, flags, &buffer);
+ floodFill_CnIR(img, seedPoint, Vec3f(nv_buf.f), &comp, flags, &buffer);
else
CV_Error( CV_StsUnsupportedFormat, "" );
- return;
+ if( rect )
+ *rect = comp.rect;
+ return comp.area;
}
}
- if( !mask )
+ if( mask.empty() )
{
- /* created mask will be 8-byte aligned */
- tempMask = cvCreateMat( size.height + 2, (size.width + 9) & -8, CV_8UC1 );
+ Mat tempMask( size.height + 2, size.width + 2, CV_8UC1 );
+ tempMask.setTo(Scalar::all(0));
mask = tempMask;
}
else
{
- mask = cvGetMat( mask, &maskstub );
- if( !CV_IS_MASK_ARR( mask ))
- CV_Error( CV_StsBadMask, "" );
-
- if( mask->width != size.width + 2 || mask->height != size.height + 2 )
- CV_Error( CV_StsUnmatchedSizes, "mask must be 2 pixel wider "
- "and 2 pixel taller than filled image" );
+ CV_Assert( mask.rows == size.height+2 && mask.cols == size.width+2 );
+ CV_Assert( mask.type() == CV_8U );
}
- int width = tempMask ? mask->step : size.width + 2;
- uchar* mask_row = mask->data.ptr + mask->step;
- memset( mask_row - mask->step, 1, width );
+ memset( mask.data, 1, mask.cols );
+ memset( mask.data + mask.step*(mask.rows-1), 1, mask.cols );
- for( i = 1; i <= size.height; i++, mask_row += mask->step )
+ for( i = 1; i <= size.height; i++ )
{
- if( tempMask )
- memset( mask_row, 0, width );
- mask_row[0] = mask_row[size.width+1] = (uchar)1;
+ mask.at<uchar>(i, 0) = mask.at<uchar>(i, mask.cols-1) = (uchar)1;
}
- memset( mask_row, 1, width );
if( depth == CV_8U )
for( i = 0; i < cn; i++ )
{
- int t = cvFloor(lo_diff.val[i]);
- ld_buf.b[i] = CV_CAST_8U(t);
- t = cvFloor(up_diff.val[i]);
- ud_buf.b[i] = CV_CAST_8U(t);
+ ld_buf.b[i] = saturate_cast<uchar>(cvFloor(loDiff[i]));
+ ud_buf.b[i] = saturate_cast<uchar>(cvFloor(upDiff[i]));
}
else if( depth == CV_32S )
for( i = 0; i < cn; i++ )
{
- int t = cvFloor(lo_diff.val[i]);
- ld_buf.i[i] = t;
- t = cvFloor(up_diff.val[i]);
- ud_buf.i[i] = t;
+ ld_buf.i[i] = cvFloor(loDiff[i]);
+ ud_buf.i[i] = cvFloor(upDiff[i]);
}
else if( depth == CV_32F )
for( i = 0; i < cn; i++ )
{
- ld_buf.f[i] = (float)lo_diff.val[i];
- ud_buf.f[i] = (float)up_diff.val[i];
+ ld_buf.f[i] = (float)loDiff[i];
+ ud_buf.f[i] = (float)upDiff[i];
}
else
CV_Error( CV_StsUnsupportedFormat, "" );
+ uchar newMaskVal = (uchar)((flags & ~0xff) == 0 ? 1 : ((flags >> 8) & 255));
+
if( type == CV_8UC1 )
- icvFloodFillGrad_CnIR<uchar, int, Diff8uC1>(
- img->data.ptr, img->step, mask->data.ptr, mask->step,
- size, seed_point, nv_buf.b[0],
- Diff8uC1(ld_buf.b[0], ud_buf.b[0]),
- comp, flags, &buffer);
+ floodFillGrad_CnIR<uchar, uchar, int, Diff8uC1>(
+ img, mask, seedPoint, nv_buf.b[0], newMaskVal,
+ Diff8uC1(ld_buf.b[0], ud_buf.b[0]),
+ &comp, flags, &buffer);
else if( type == CV_8UC3 )
- icvFloodFillGrad_CnIR<cv::Vec3b, cv::Vec3i, Diff8uC3>(
- img->data.ptr, img->step, mask->data.ptr, mask->step,
- size, seed_point, cv::Vec3b(nv_buf.b),
- Diff8uC3(ld_buf.b, ud_buf.b),
- comp, flags, &buffer);
+ floodFillGrad_CnIR<Vec3b, uchar, Vec3i, Diff8uC3>(
+ img, mask, seedPoint, Vec3b(nv_buf.b), newMaskVal,
+ Diff8uC3(ld_buf.b, ud_buf.b),
+ &comp, flags, &buffer);
else if( type == CV_32SC1 )
- icvFloodFillGrad_CnIR<int, int, Diff32sC1>(
- img->data.ptr, img->step, mask->data.ptr, mask->step,
- size, seed_point, nv_buf.i[0],
- Diff32sC1(ld_buf.i[0], ud_buf.i[0]),
- comp, flags, &buffer);
+ floodFillGrad_CnIR<int, uchar, int, Diff32sC1>(
+ img, mask, seedPoint, nv_buf.i[0], newMaskVal,
+ Diff32sC1(ld_buf.i[0], ud_buf.i[0]),
+ &comp, flags, &buffer);
else if( type == CV_32SC3 )
- icvFloodFillGrad_CnIR<cv::Vec3i, cv::Vec3i, Diff32sC3>(
- img->data.ptr, img->step, mask->data.ptr, mask->step,
- size, seed_point, cv::Vec3i(nv_buf.i),
- Diff32sC3(ld_buf.i, ud_buf.i),
- comp, flags, &buffer);
+ floodFillGrad_CnIR<Vec3i, uchar, Vec3i, Diff32sC3>(
+ img, mask, seedPoint, Vec3i(nv_buf.i), newMaskVal,
+ Diff32sC3(ld_buf.i, ud_buf.i),
+ &comp, flags, &buffer);
else if( type == CV_32FC1 )
- icvFloodFillGrad_CnIR<float, float, Diff32fC1>(
- img->data.ptr, img->step, mask->data.ptr, mask->step,
- size, seed_point, nv_buf.f[0],
- Diff32fC1(ld_buf.f[0], ud_buf.f[0]),
- comp, flags, &buffer);
+ floodFillGrad_CnIR<float, uchar, float, Diff32fC1>(
+ img, mask, seedPoint, nv_buf.f[0], newMaskVal,
+ Diff32fC1(ld_buf.f[0], ud_buf.f[0]),
+ &comp, flags, &buffer);
else if( type == CV_32FC3 )
- icvFloodFillGrad_CnIR<cv::Vec3f, cv::Vec3f, Diff32fC3>(
- img->data.ptr, img->step, mask->data.ptr, mask->step,
- size, seed_point, cv::Vec3f(nv_buf.f),
- Diff32fC3(ld_buf.f, ud_buf.f),
- comp, flags, &buffer);
+ floodFillGrad_CnIR<Vec3f, uchar, Vec3f, Diff32fC3>(
+ img, mask, seedPoint, Vec3f(nv_buf.f), newMaskVal,
+ Diff32fC3(ld_buf.f, ud_buf.f),
+ &comp, flags, &buffer);
else
CV_Error(CV_StsUnsupportedFormat, "");
+
+ if( rect )
+ *rect = comp.rect;
+ return comp.area;
}
int cv::floodFill( InputOutputArray _image, Point seedPoint,
- Scalar newVal, Rect* rect,
- Scalar loDiff, Scalar upDiff, int flags )
+ Scalar newVal, Rect* rect,
+ Scalar loDiff, Scalar upDiff, int flags )
{
- CvConnectedComp ccomp;
- CvMat c_image = _image.getMat();
- cvFloodFill(&c_image, seedPoint, newVal, loDiff, upDiff, &ccomp, flags, 0);
- if( rect )
- *rect = ccomp.rect;
- return cvRound(ccomp.area);
+ return floodFill(_image, Mat(), seedPoint, newVal, rect, loDiff, upDiff, flags);
}
-int cv::floodFill( InputOutputArray _image, InputOutputArray _mask,
- Point seedPoint, Scalar newVal, Rect* rect,
- Scalar loDiff, Scalar upDiff, int flags )
+
+CV_IMPL void
+cvFloodFill( CvArr* arr, CvPoint seed_point,
+ CvScalar newVal, CvScalar lo_diff, CvScalar up_diff,
+ CvConnectedComp* comp, int flags, CvArr* maskarr )
{
- CvConnectedComp ccomp;
- CvMat c_image = _image.getMat(), c_mask = _mask.getMat();
- cvFloodFill(&c_image, seedPoint, newVal, loDiff, upDiff, &ccomp, flags, c_mask.data.ptr ? &c_mask : 0);
- if( rect )
- *rect = ccomp.rect;
- return cvRound(ccomp.area);
+ if( comp )
+ memset( comp, 0, sizeof(*comp) );
+
+ cv::Mat img = cv::cvarrToMat(arr), mask = cv::cvarrToMat(maskarr);
+ int area = cv::floodFill(img, mask, seed_point, newVal,
+ comp ? (cv::Rect*)&comp->rect : 0,
+ lo_diff, up_diff, flags );
+ if( comp )
+ {
+ comp->area = area;
+ comp->value = newVal;
+ }
}
/* End of file. */
{
public:
RemapInvoker(const Mat& _src, Mat& _dst, const Mat *_m1,
- const Mat *_m2, int _interpolation, int _borderType, const Scalar &_borderValue,
+ const Mat *_m2, int _borderType, const Scalar &_borderValue,
int _planar_input, RemapNNFunc _nnfunc, RemapFunc _ifunc, const void *_ctab) :
ParallelLoopBody(), src(&_src), dst(&_dst), m1(_m1), m2(_m2),
- interpolation(_interpolation), borderType(_borderType), borderValue(_borderValue),
+ borderType(_borderType), borderValue(_borderValue),
planar_input(_planar_input), nnfunc(_nnfunc), ifunc(_ifunc), ctab(_ctab)
{
}
const Mat* src;
Mat* dst;
const Mat *m1, *m2;
- int interpolation, borderType;
+ int borderType;
Scalar borderValue;
int planar_input;
RemapNNFunc nnfunc;
planar_input = map1.channels() == 1;
}
- RemapInvoker invoker(src, dst, m1, m2, interpolation,
+ RemapInvoker invoker(src, dst, m1, m2,
borderType, borderValue, planar_input, nnfunc, ifunc,
ctab);
parallel_for_(Range(0, dst.rows), invoker, dst.total()/(double)(1<<16));
#define CV_SET( dst, val, len, idx ) \
for( (idx) = 0; (idx) < (len); (idx)++) (dst)[idx] = (val)
-/* performs convolution of 2d floating-point array with 3x1, 1x3 or separable 3x3 mask */
-void icvSepConvSmall3_32f( float* src, int src_step, float* dst, int dst_step,
- CvSize src_size, const float* kx, const float* ky, float* buffer );
-
#undef CV_CALC_MIN
#define CV_CALC_MIN(a, b) if((a) > (b)) (a) = (b)
#undef CV_CALC_MAX
#define CV_CALC_MAX(a, b) if((a) < (b)) (a) = (b)
-CvStatus CV_STDCALL
-icvCopyReplicateBorder_8u( const uchar* src, int srcstep, CvSize srcroi,
- uchar* dst, int dststep, CvSize dstroi,
- int left, int right, int cn, const uchar* value = 0 );
-
-CvStatus CV_STDCALL icvGetRectSubPix_8u_C1R
-( const uchar* src, int src_step, CvSize src_size,
- uchar* dst, int dst_step, CvSize win_size, CvPoint2D32f center );
-CvStatus CV_STDCALL icvGetRectSubPix_8u32f_C1R
-( const uchar* src, int src_step, CvSize src_size,
- float* dst, int dst_step, CvSize win_size, CvPoint2D32f center );
-CvStatus CV_STDCALL icvGetRectSubPix_32f_C1R
-( const float* src, int src_step, CvSize src_size,
- float* dst, int dst_step, CvSize win_size, CvPoint2D32f center );
-
-CvStatus CV_STDCALL icvGetQuadrangleSubPix_8u_C1R
-( const uchar* src, int src_step, CvSize src_size,
- uchar* dst, int dst_step, CvSize win_size, const float *matrix );
-CvStatus CV_STDCALL icvGetQuadrangleSubPix_8u32f_C1R
-( const uchar* src, int src_step, CvSize src_size,
- float* dst, int dst_step, CvSize win_size, const float *matrix );
-CvStatus CV_STDCALL icvGetQuadrangleSubPix_32f_C1R
-( const float* src, int src_step, CvSize src_size,
- float* dst, int dst_step, CvSize win_size, const float *matrix );
-
#include "_geom.h"
#endif /*__OPENCV_CV_INTERNAL_H_*/
// copy or use the software.
//
//
-// Intel License Agreement
+// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
-// * The name of Intel Corporation may not be used to endorse or promote products
+// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
#include "precomp.hpp"
-/**************************************************************************************\
-* line samplers *
-\**************************************************************************************/
-
-CV_IMPL int
-cvSampleLine( const void* img, CvPoint pt1, CvPoint pt2,
- void* _buffer, int connectivity )
+namespace cv
{
- int count = -1;
-
- int i, coi = 0, pix_size;
- CvMat stub, *mat = cvGetMat( img, &stub, &coi );
- CvLineIterator iterator;
- uchar* buffer = (uchar*)_buffer;
-
- if( coi != 0 )
- CV_Error( CV_BadCOI, "" );
-
- if( !buffer )
- CV_Error( CV_StsNullPtr, "" );
-
- count = cvInitLineIterator( mat, pt1, pt2, &iterator, connectivity );
-
- pix_size = CV_ELEM_SIZE(mat->type);
- for( i = 0; i < count; i++ )
- {
- for( int j = 0; j < pix_size; j++ )
- buffer[j] = iterator.ptr[j];
- buffer += pix_size;
- CV_NEXT_LINE_POINT( iterator );
- }
-
- return count;
-}
-
-static const void*
-icvAdjustRect( const void* srcptr, int src_step, int pix_size,
- CvSize src_size, CvSize win_size,
- CvPoint ip, CvRect* pRect )
+static const uchar*
+adjustRect( const uchar* src, int src_step, int pix_size,
+ Size src_size, Size win_size,
+ Point ip, Rect* pRect )
{
- CvRect rect;
- const char* src = (const char*)srcptr;
+ Rect rect;
if( ip.x >= 0 )
{
}
-#define ICV_DEF_GET_RECT_SUB_PIX_FUNC( flavor, srctype, dsttype, worktype, \
- cast_macro, scale_macro, cast_macro2 )\
-CvStatus CV_STDCALL icvGetRectSubPix_##flavor##_C1R \
-( const srctype* src, int src_step, CvSize src_size, \
- dsttype* dst, int dst_step, CvSize win_size, CvPoint2D32f center ) \
-{ \
- CvPoint ip; \
- worktype a11, a12, a21, a22, b1, b2; \
- float a, b; \
- int i, j; \
- \
- center.x -= (win_size.width-1)*0.5f; \
- center.y -= (win_size.height-1)*0.5f; \
- \
- ip.x = cvFloor( center.x ); \
- ip.y = cvFloor( center.y ); \
- \
- a = center.x - ip.x; \
- b = center.y - ip.y; \
- a11 = scale_macro((1.f-a)*(1.f-b)); \
- a12 = scale_macro(a*(1.f-b)); \
- a21 = scale_macro((1.f-a)*b); \
- a22 = scale_macro(a*b); \
- b1 = scale_macro(1.f - b); \
- b2 = scale_macro(b); \
- \
- src_step /= sizeof(src[0]); \
- dst_step /= sizeof(dst[0]); \
- \
- if( 0 <= ip.x && ip.x + win_size.width < src_size.width && \
- 0 <= ip.y && ip.y + win_size.height < src_size.height ) \
- { \
- /* extracted rectangle is totally inside the image */ \
- src += ip.y * src_step + ip.x; \
- \
- for( i = 0; i < win_size.height; i++, src += src_step, \
- dst += dst_step ) \
- { \
- for( j = 0; j <= win_size.width - 2; j += 2 ) \
- { \
- worktype s0 = cast_macro(src[j])*a11 + \
- cast_macro(src[j+1])*a12 + \
- cast_macro(src[j+src_step])*a21 + \
- cast_macro(src[j+src_step+1])*a22; \
- worktype s1 = cast_macro(src[j+1])*a11 + \
- cast_macro(src[j+2])*a12 + \
- cast_macro(src[j+src_step+1])*a21 + \
- cast_macro(src[j+src_step+2])*a22; \
- \
- dst[j] = (dsttype)cast_macro2(s0); \
- dst[j+1] = (dsttype)cast_macro2(s1); \
- } \
- \
- for( ; j < win_size.width; j++ ) \
- { \
- worktype s0 = cast_macro(src[j])*a11 + \
- cast_macro(src[j+1])*a12 + \
- cast_macro(src[j+src_step])*a21 + \
- cast_macro(src[j+src_step+1])*a22; \
- \
- dst[j] = (dsttype)cast_macro2(s0); \
- } \
- } \
- } \
- else \
- { \
- CvRect r; \
- \
- src = (const srctype*)icvAdjustRect( src, src_step*sizeof(*src), \
- sizeof(*src), src_size, win_size,ip, &r); \
- \
- for( i = 0; i < win_size.height; i++, dst += dst_step ) \
- { \
- const srctype *src2 = src + src_step; \
- \
- if( i < r.y || i >= r.height ) \
- src2 -= src_step; \
- \
- for( j = 0; j < r.x; j++ ) \
- { \
- worktype s0 = cast_macro(src[r.x])*b1 + \
- cast_macro(src2[r.x])*b2; \
- \
- dst[j] = (dsttype)cast_macro2(s0); \
- } \
- \
- for( ; j < r.width; j++ ) \
- { \
- worktype s0 = cast_macro(src[j])*a11 + \
- cast_macro(src[j+1])*a12 + \
- cast_macro(src2[j])*a21 + \
- cast_macro(src2[j+1])*a22; \
- \
- dst[j] = (dsttype)cast_macro2(s0); \
- } \
- \
- for( ; j < win_size.width; j++ ) \
- { \
- worktype s0 = cast_macro(src[r.width])*b1 + \
- cast_macro(src2[r.width])*b2; \
- \
- dst[j] = (dsttype)cast_macro2(s0); \
- } \
- \
- if( i < r.height ) \
- src = src2; \
- } \
- } \
- \
- return CV_OK; \
-}
+enum { SUBPIX_SHIFT=16 };
+struct scale_fixpt
+{
+ int operator()(float a) const { return cvRound(a*(1 << SUBPIX_SHIFT)); }
+};
-#define ICV_DEF_GET_RECT_SUB_PIX_FUNC_C3( flavor, srctype, dsttype, worktype, \
- cast_macro, scale_macro, mul_macro )\
-static CvStatus CV_STDCALL icvGetRectSubPix_##flavor##_C3R \
-( const srctype* src, int src_step, CvSize src_size, \
- dsttype* dst, int dst_step, CvSize win_size, CvPoint2D32f center ) \
-{ \
- CvPoint ip; \
- worktype a, b; \
- int i, j; \
- \
- center.x -= (win_size.width-1)*0.5f; \
- center.y -= (win_size.height-1)*0.5f; \
- \
- ip.x = cvFloor( center.x ); \
- ip.y = cvFloor( center.y ); \
- \
- a = scale_macro( center.x - ip.x ); \
- b = scale_macro( center.y - ip.y ); \
- \
- src_step /= sizeof( src[0] ); \
- dst_step /= sizeof( dst[0] ); \
- \
- if( 0 <= ip.x && ip.x + win_size.width < src_size.width && \
- 0 <= ip.y && ip.y + win_size.height < src_size.height ) \
- { \
- /* extracted rectangle is totally inside the image */ \
- src += ip.y * src_step + ip.x*3; \
- \
- for( i = 0; i < win_size.height; i++, src += src_step, \
- dst += dst_step ) \
- { \
- for( j = 0; j < win_size.width; j++ ) \
- { \
- worktype s0 = cast_macro(src[j*3]); \
- worktype s1 = cast_macro(src[j*3 + src_step]); \
- s0 += mul_macro( a, (cast_macro(src[j*3+3]) - s0)); \
- s1 += mul_macro( a, (cast_macro(src[j*3+3+src_step]) - s1));\
- dst[j*3] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
- \
- s0 = cast_macro(src[j*3+1]); \
- s1 = cast_macro(src[j*3+1 + src_step]); \
- s0 += mul_macro( a, (cast_macro(src[j*3+4]) - s0)); \
- s1 += mul_macro( a, (cast_macro(src[j*3+4+src_step]) - s1));\
- dst[j*3+1] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
- \
- s0 = cast_macro(src[j*3+2]); \
- s1 = cast_macro(src[j*3+2 + src_step]); \
- s0 += mul_macro( a, (cast_macro(src[j*3+5]) - s0)); \
- s1 += mul_macro( a, (cast_macro(src[j*3+5+src_step]) - s1));\
- dst[j*3+2] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
- } \
- } \
- } \
- else \
- { \
- CvRect r; \
- \
- src = (const srctype*)icvAdjustRect( src, src_step*sizeof(*src), \
- sizeof(*src)*3, src_size, win_size, ip, &r ); \
- \
- for( i = 0; i < win_size.height; i++, dst += dst_step ) \
- { \
- const srctype *src2 = src + src_step; \
- \
- if( i < r.y || i >= r.height ) \
- src2 -= src_step; \
- \
- for( j = 0; j < r.x; j++ ) \
- { \
- worktype s0 = cast_macro(src[r.x*3]); \
- worktype s1 = cast_macro(src2[r.x*3]); \
- dst[j*3] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
- \
- s0 = cast_macro(src[r.x*3+1]); \
- s1 = cast_macro(src2[r.x*3+1]); \
- dst[j*3+1] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
- \
- s0 = cast_macro(src[r.x*3+2]); \
- s1 = cast_macro(src2[r.x*3+2]); \
- dst[j*3+2] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
- } \
- \
- for( ; j < r.width; j++ ) \
- { \
- worktype s0 = cast_macro(src[j*3]); \
- worktype s1 = cast_macro(src2[j*3]); \
- s0 += mul_macro( a, (cast_macro(src[j*3 + 3]) - s0)); \
- s1 += mul_macro( a, (cast_macro(src2[j*3 + 3]) - s1)); \
- dst[j*3] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
- \
- s0 = cast_macro(src[j*3+1]); \
- s1 = cast_macro(src2[j*3+1]); \
- s0 += mul_macro( a, (cast_macro(src[j*3 + 4]) - s0)); \
- s1 += mul_macro( a, (cast_macro(src2[j*3 + 4]) - s1)); \
- dst[j*3+1] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
- \
- s0 = cast_macro(src[j*3+2]); \
- s1 = cast_macro(src2[j*3+2]); \
- s0 += mul_macro( a, (cast_macro(src[j*3 + 5]) - s0)); \
- s1 += mul_macro( a, (cast_macro(src2[j*3 + 5]) - s1)); \
- dst[j*3+2] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
- } \
- \
- for( ; j < win_size.width; j++ ) \
- { \
- worktype s0 = cast_macro(src[r.width*3]); \
- worktype s1 = cast_macro(src2[r.width*3]); \
- dst[j*3] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
- \
- s0 = cast_macro(src[r.width*3+1]); \
- s1 = cast_macro(src2[r.width*3+1]); \
- dst[j*3+1] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
- \
- s0 = cast_macro(src[r.width*3+2]); \
- s1 = cast_macro(src2[r.width*3+2]); \
- dst[j*3+2] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
- } \
- \
- if( i < r.height ) \
- src = src2; \
- } \
- } \
- \
- return CV_OK; \
-}
+struct cast_8u
+{
+ uchar operator()(int a) const { return (uchar)((a + (1 << (SUBPIX_SHIFT-1))) >> SUBPIX_SHIFT); }
+};
+struct cast_flt_8u
+{
+ uchar operator()(float a) const { return (uchar)cvRound(a); }
+};
+
+template<typename _Tp>
+struct nop
+{
+ _Tp operator()(_Tp a) const { return a; }
+};
-CvStatus CV_STDCALL icvGetRectSubPix_8u32f_C1R
-( const uchar* src, int src_step, CvSize src_size,
- float* dst, int dst_step, CvSize win_size, CvPoint2D32f center )
+template<typename _Tp, typename _DTp, typename _WTp, class ScaleOp, class CastOp>
+void getRectSubPix_Cn_(const _Tp* src, int src_step, Size src_size,
+ _DTp* dst, int dst_step, Size win_size, Point2f center, int cn )
{
- CvPoint ip;
- float a12, a22, b1, b2;
+ ScaleOp scale_op;
+ CastOp cast_op;
+ Point ip;
+ _WTp a11, a12, a21, a22, b1, b2;
float a, b;
- double s = 0;
- int i, j;
+ int i, j, c;
center.x -= (win_size.width-1)*0.5f;
center.y -= (win_size.height-1)*0.5f;
ip.x = cvFloor( center.x );
ip.y = cvFloor( center.y );
- if( win_size.width <= 0 || win_size.height <= 0 )
- return CV_BADRANGE_ERR;
-
a = center.x - ip.x;
b = center.y - ip.y;
- a = MAX(a,0.0001f);
- a12 = a*(1.f-b);
- a22 = a*b;
- b1 = 1.f - b;
- b2 = b;
- s = (1. - a)/a;
+ a11 = scale_op((1.f-a)*(1.f-b));
+ a12 = scale_op(a*(1.f-b));
+ a21 = scale_op((1.f-a)*b);
+ a22 = scale_op(a*b);
+ b1 = scale_op(1.f - b);
+ b2 = scale_op(b);
src_step /= sizeof(src[0]);
dst_step /= sizeof(dst[0]);
if( 0 <= ip.x && ip.x + win_size.width < src_size.width &&
- 0 <= ip.y && ip.y + win_size.height < src_size.height )
+ 0 <= ip.y && ip.y + win_size.height < src_size.height )
{
// extracted rectangle is totally inside the image
- src += ip.y * src_step + ip.x;
-
-#if 0
- if( icvCopySubpix_8u32f_C1R_p &&
- icvCopySubpix_8u32f_C1R_p( src, src_step, dst,
- dst_step*sizeof(dst[0]), win_size, a, b ) >= 0 )
- return CV_OK;
-#endif
+ src += ip.y * src_step + ip.x*cn;
+ win_size.width *= cn;
- for( ; win_size.height--; src += src_step, dst += dst_step )
+ for( i = 0; i < win_size.height; i++, src += src_step, dst += dst_step )
{
- float prev = (1 - a)*(b1*CV_8TO32F(src[0]) + b2*CV_8TO32F(src[src_step]));
+ for( j = 0; j <= win_size.width - 2; j += 2 )
+ {
+ _WTp s0 = src[j]*a11 + src[j+cn]*a12 + src[j+src_step]*a21 + src[j+src_step+cn]*a22;
+ _WTp s1 = src[j+1]*a11 + src[j+cn+1]*a12 + src[j+src_step+1]*a21 + src[j+src_step+cn+1]*a22;
+ dst[j] = cast_op(s0);
+ dst[j+1] = cast_op(s1);
+ }
+
for( j = 0; j < win_size.width; j++ )
{
- float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src[j+1+src_step]);
- dst[j] = prev + t;
- prev = (float)(t*s);
+ _WTp s0 = src[j]*a11 + src[j+cn]*a12 + src[j+src_step]*a21 + src[j+src_step+cn]*a22;
+ dst[j] = cast_op(s0);
}
}
}
else
{
- CvRect r;
-
- src = (const uchar*)icvAdjustRect( src, src_step*sizeof(*src),
- sizeof(*src), src_size, win_size,ip, &r);
+ Rect r;
+ src = (const _Tp*)adjustRect( (const uchar*)src, src_step*sizeof(*src),
+ sizeof(*src)*cn, src_size, win_size, ip, &r);
for( i = 0; i < win_size.height; i++, dst += dst_step )
{
- const uchar *src2 = src + src_step;
+ const _Tp *src2 = src + src_step;
+ _WTp s0;
if( i < r.y || i >= r.height )
src2 -= src_step;
- for( j = 0; j < r.x; j++ )
- {
- float s0 = CV_8TO32F(src[r.x])*b1 +
- CV_8TO32F(src2[r.x])*b2;
-
- dst[j] = (float)(s0);
- }
-
- if( j < r.width )
+ for( c = 0; c < cn; c++ )
{
- float prev = (1 - a)*(b1*CV_8TO32F(src[j]) + b2*CV_8TO32F(src2[j]));
-
- for( ; j < r.width; j++ )
- {
- float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src2[j+1]);
- dst[j] = prev + t;
- prev = (float)(t*s);
- }
+ s0 = src[r.x*cn + c]*b1 + src2[r.x*cn + c]*b2;
+ for( j = 0; j < r.x; j++ )
+ dst[j*cn + c] = cast_op(s0);
+ s0 = src[r.width*cn + c]*b1 + src2[r.width*cn + c]*b2;
+ for( j = r.width; j < win_size.width; j++ )
+ dst[j*cn + c] = cast_op(s0);
}
- for( ; j < win_size.width; j++ )
+ for( j = r.x*cn; j < r.width*cn; j++ )
{
- float s0 = CV_8TO32F(src[r.width])*b1 +
- CV_8TO32F(src2[r.width])*b2;
-
- dst[j] = (float)(s0);
+ _WTp s0 = src[j]*a11 + src[j+cn]*a12 + src2[j]*a21 + src2[j+cn]*a22;
+ dst[j] = cast_op(s0);
}
if( i < r.height )
src = src2;
}
}
-
- return CV_OK;
-}
-
-
-
-#define ICV_SHIFT 16
-#define ICV_SCALE(x) cvRound((x)*(1 << ICV_SHIFT))
-#define ICV_MUL_SCALE(x,y) (((x)*(y) + (1 << (ICV_SHIFT-1))) >> ICV_SHIFT)
-#define ICV_DESCALE(x) (((x)+(1 << (ICV_SHIFT-1))) >> ICV_SHIFT)
-
-/*icvCopySubpix_8u_C1R_t icvCopySubpix_8u_C1R_p = 0;
-icvCopySubpix_8u32f_C1R_t icvCopySubpix_8u32f_C1R_p = 0;
-icvCopySubpix_32f_C1R_t icvCopySubpix_32f_C1R_p = 0;*/
-
-ICV_DEF_GET_RECT_SUB_PIX_FUNC( 8u, uchar, uchar, int, CV_NOP, ICV_SCALE, ICV_DESCALE )
-//ICV_DEF_GET_RECT_SUB_PIX_FUNC( 8u32f, uchar, float, float, CV_8TO32F, CV_NOP, CV_NOP )
-ICV_DEF_GET_RECT_SUB_PIX_FUNC( 32f, float, float, float, CV_NOP, CV_NOP, CV_NOP )
-
-ICV_DEF_GET_RECT_SUB_PIX_FUNC_C3( 8u, uchar, uchar, int, CV_NOP, ICV_SCALE, ICV_MUL_SCALE )
-ICV_DEF_GET_RECT_SUB_PIX_FUNC_C3( 8u32f, uchar, float, float, CV_8TO32F, CV_NOP, CV_MUL )
-ICV_DEF_GET_RECT_SUB_PIX_FUNC_C3( 32f, float, float, float, CV_NOP, CV_NOP, CV_MUL )
-
-
-#define ICV_DEF_INIT_SUBPIX_TAB( FUNCNAME, FLAG ) \
-static void icvInit##FUNCNAME##FLAG##Table( CvFuncTable* tab ) \
-{ \
- tab->fn_2d[CV_8U] = (void*)icv##FUNCNAME##_8u_##FLAG; \
- tab->fn_2d[CV_32F] = (void*)icv##FUNCNAME##_32f_##FLAG; \
- \
- tab->fn_2d[1] = (void*)icv##FUNCNAME##_8u32f_##FLAG; \
}
-ICV_DEF_INIT_SUBPIX_TAB( GetRectSubPix, C1R )
-ICV_DEF_INIT_SUBPIX_TAB( GetRectSubPix, C3R )
-
-typedef CvStatus (CV_STDCALL *CvGetRectSubPixFunc)( const void* src, int src_step,
- CvSize src_size, void* dst,
- int dst_step, CvSize win_size,
- CvPoint2D32f center );
-
-CV_IMPL void
-cvGetRectSubPix( const void* srcarr, void* dstarr, CvPoint2D32f center )
+static void getRectSubPix_8u32f
+( const uchar* src, int src_step, Size src_size,
+ float* dst, int dst_step, Size win_size, Point2f center0, int cn )
{
- static CvFuncTable gr_tab[2];
- static int inittab = 0;
-
- CvMat srcstub, *src = (CvMat*)srcarr;
- CvMat dststub, *dst = (CvMat*)dstarr;
- CvSize src_size, dst_size;
- CvGetRectSubPixFunc func;
- int cn, src_step, dst_step;
-
- if( !inittab )
- {
- icvInitGetRectSubPixC1RTable( gr_tab + 0 );
- icvInitGetRectSubPixC3RTable( gr_tab + 1 );
- inittab = 1;
- }
+ Point2f center = center0;
+ Point ip;
- if( !CV_IS_MAT(src))
- src = cvGetMat( src, &srcstub );
-
- if( !CV_IS_MAT(dst))
- dst = cvGetMat( dst, &dststub );
-
- cn = CV_MAT_CN( src->type );
+ center.x -= (win_size.width-1)*0.5f;
+ center.y -= (win_size.height-1)*0.5f;
- if( (cn != 1 && cn != 3) || !CV_ARE_CNS_EQ( src, dst ))
- CV_Error( CV_StsUnsupportedFormat, "" );
+ ip.x = cvFloor( center.x );
+ ip.y = cvFloor( center.y );
- src_size = cvGetMatSize( src );
- dst_size = cvGetMatSize( dst );
- src_step = src->step ? src->step : CV_STUB_STEP;
- dst_step = dst->step ? dst->step : CV_STUB_STEP;
+ if( cn == 1 &&
+ 0 <= ip.x && ip.x + win_size.width < src_size.width &&
+ 0 <= ip.y && ip.y + win_size.height < src_size.height &&
+ win_size.width > 0 && win_size.height > 0 )
+ {
+ float a = center.x - ip.x;
+ float b = center.y - ip.y;
+ a = MAX(a,0.0001f);
+ float a12 = a*(1.f-b);
+ float a22 = a*b;
+ float b1 = 1.f - b;
+ float b2 = b;
+ double s = (1. - a)/a;
+
+ src_step /= sizeof(src[0]);
+ dst_step /= sizeof(dst[0]);
- //if( dst_size.width > src_size.width || dst_size.height > src_size.height )
- // CV_ERROR( CV_StsBadSize, "destination ROI must be smaller than source ROI" );
+ // extracted rectangle is totally inside the image
+ src += ip.y * src_step + ip.x;
- if( CV_ARE_DEPTHS_EQ( src, dst ))
- {
- func = (CvGetRectSubPixFunc)(gr_tab[cn != 1].fn_2d[CV_MAT_DEPTH(src->type)]);
+ for( ; win_size.height--; src += src_step, dst += dst_step )
+ {
+ float prev = (1 - a)*(b1*src[0] + b2*src[src_step]);
+ for( int j = 0; j < win_size.width; j++ )
+ {
+ float t = a12*src[j+1] + a22*src[j+1+src_step];
+ dst[j] = prev + t;
+ prev = (float)(t*s);
+ }
+ }
}
else
{
- if( CV_MAT_DEPTH( src->type ) != CV_8U || CV_MAT_DEPTH( dst->type ) != CV_32F )
- CV_Error( CV_StsUnsupportedFormat, "" );
-
- func = (CvGetRectSubPixFunc)(gr_tab[cn != 1].fn_2d[1]);
+ getRectSubPix_Cn_<uchar, float, float, nop<float>, nop<float> >
+ (src, src_step, src_size, dst, dst_step, win_size, center0, cn );
}
-
- if( !func )
- CV_Error( CV_StsUnsupportedFormat, "" );
-
- IPPI_CALL( func( src->data.ptr, src_step, src_size,
- dst->data.ptr, dst_step, dst_size, center ));
}
-
-#define ICV_32F8U(x) ((uchar)cvRound(x))
-
-#define ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( flavor, srctype, dsttype, \
- worktype, cast_macro, cvt ) \
-CvStatus CV_STDCALL \
-icvGetQuadrangleSubPix_##flavor##_C1R \
-( const srctype * src, int src_step, CvSize src_size, \
- dsttype *dst, int dst_step, CvSize win_size, const float *matrix ) \
-{ \
- int x, y; \
- double dx = (win_size.width - 1)*0.5; \
- double dy = (win_size.height - 1)*0.5; \
- double A11 = matrix[0], A12 = matrix[1], A13 = matrix[2]-A11*dx-A12*dy; \
- double A21 = matrix[3], A22 = matrix[4], A23 = matrix[5]-A21*dx-A22*dy; \
- \
- src_step /= sizeof(srctype); \
- dst_step /= sizeof(dsttype); \
- \
- for( y = 0; y < win_size.height; y++, dst += dst_step ) \
- { \
- double xs = A12*y + A13; \
- double ys = A22*y + A23; \
- double xe = A11*(win_size.width-1) + A12*y + A13; \
- double ye = A21*(win_size.width-1) + A22*y + A23; \
- \
- if( (unsigned)(cvFloor(xs)-1) < (unsigned)(src_size.width - 3) && \
- (unsigned)(cvFloor(ys)-1) < (unsigned)(src_size.height - 3) && \
- (unsigned)(cvFloor(xe)-1) < (unsigned)(src_size.width - 3) && \
- (unsigned)(cvFloor(ye)-1) < (unsigned)(src_size.height - 3)) \
- { \
- for( x = 0; x < win_size.width; x++ ) \
- { \
- int ixs = cvFloor( xs ); \
- int iys = cvFloor( ys ); \
- const srctype *ptr = src + src_step*iys + ixs; \
- double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \
- worktype p0 = cvt(ptr[0])*a1 + cvt(ptr[1])*a; \
- worktype p1 = cvt(ptr[src_step])*a1 + cvt(ptr[src_step+1])*a;\
- xs += A11; \
- ys += A21; \
- \
- dst[x] = cast_macro(p0 + b * (p1 - p0)); \
- } \
- } \
- else \
- { \
- for( x = 0; x < win_size.width; x++ ) \
- { \
- int ixs = cvFloor( xs ), iys = cvFloor( ys ); \
- double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \
- const srctype *ptr0, *ptr1; \
- worktype p0, p1; \
- xs += A11; ys += A21; \
- \
- if( (unsigned)iys < (unsigned)(src_size.height-1) ) \
- ptr0 = src + src_step*iys, ptr1 = ptr0 + src_step; \
- else \
- ptr0 = ptr1 = src + (iys < 0 ? 0 : src_size.height-1)*src_step; \
- \
- if( (unsigned)ixs < (unsigned)(src_size.width-1) ) \
- { \
- p0 = cvt(ptr0[ixs])*a1 + cvt(ptr0[ixs+1])*a; \
- p1 = cvt(ptr1[ixs])*a1 + cvt(ptr1[ixs+1])*a; \
- } \
- else \
- { \
- ixs = ixs < 0 ? 0 : src_size.width - 1; \
- p0 = cvt(ptr0[ixs]); p1 = cvt(ptr1[ixs]); \
- } \
- dst[x] = cast_macro(p0 + b * (p1 - p0)); \
- } \
- } \
- } \
- \
- return CV_OK; \
}
-
-#define ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC_C3( flavor, srctype, dsttype, \
- worktype, cast_macro, cvt ) \
-static CvStatus CV_STDCALL \
-icvGetQuadrangleSubPix_##flavor##_C3R \
-( const srctype * src, int src_step, CvSize src_size, \
- dsttype *dst, int dst_step, CvSize win_size, const float *matrix ) \
-{ \
- int x, y; \
- double dx = (win_size.width - 1)*0.5; \
- double dy = (win_size.height - 1)*0.5; \
- double A11 = matrix[0], A12 = matrix[1], A13 = matrix[2]-A11*dx-A12*dy; \
- double A21 = matrix[3], A22 = matrix[4], A23 = matrix[5]-A21*dx-A22*dy; \
- \
- src_step /= sizeof(srctype); \
- dst_step /= sizeof(dsttype); \
- \
- for( y = 0; y < win_size.height; y++, dst += dst_step ) \
- { \
- double xs = A12*y + A13; \
- double ys = A22*y + A23; \
- double xe = A11*(win_size.width-1) + A12*y + A13; \
- double ye = A21*(win_size.width-1) + A22*y + A23; \
- \
- if( (unsigned)(cvFloor(xs)-1) < (unsigned)(src_size.width - 3) && \
- (unsigned)(cvFloor(ys)-1) < (unsigned)(src_size.height - 3) && \
- (unsigned)(cvFloor(xe)-1) < (unsigned)(src_size.width - 3) && \
- (unsigned)(cvFloor(ye)-1) < (unsigned)(src_size.height - 3)) \
- { \
- for( x = 0; x < win_size.width; x++ ) \
- { \
- int ixs = cvFloor( xs ); \
- int iys = cvFloor( ys ); \
- const srctype *ptr = src + src_step*iys + ixs*3; \
- double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \
- worktype p0, p1; \
- xs += A11; \
- ys += A21; \
- \
- p0 = cvt(ptr[0])*a1 + cvt(ptr[3])*a; \
- p1 = cvt(ptr[src_step])*a1 + cvt(ptr[src_step+3])*a; \
- dst[x*3] = cast_macro(p0 + b * (p1 - p0)); \
- \
- p0 = cvt(ptr[1])*a1 + cvt(ptr[4])*a; \
- p1 = cvt(ptr[src_step+1])*a1 + cvt(ptr[src_step+4])*a; \
- dst[x*3+1] = cast_macro(p0 + b * (p1 - p0)); \
- \
- p0 = cvt(ptr[2])*a1 + cvt(ptr[5])*a; \
- p1 = cvt(ptr[src_step+2])*a1 + cvt(ptr[src_step+5])*a; \
- dst[x*3+2] = cast_macro(p0 + b * (p1 - p0)); \
- } \
- } \
- else \
- { \
- for( x = 0; x < win_size.width; x++ ) \
- { \
- int ixs = cvFloor(xs), iys = cvFloor(ys); \
- double a = xs - ixs, b = ys - iys; \
- const srctype *ptr0, *ptr1; \
- xs += A11; ys += A21; \
- \
- if( (unsigned)iys < (unsigned)(src_size.height-1) ) \
- ptr0 = src + src_step*iys, ptr1 = ptr0 + src_step; \
- else \
- ptr0 = ptr1 = src + (iys < 0 ? 0 : src_size.height-1)*src_step; \
- \
- if( (unsigned)ixs < (unsigned)(src_size.width - 1) ) \
- { \
- double a1 = 1.f - a; \
- worktype p0, p1; \
- ptr0 += ixs*3; ptr1 += ixs*3; \
- p0 = cvt(ptr0[0])*a1 + cvt(ptr0[3])*a; \
- p1 = cvt(ptr1[0])*a1 + cvt(ptr1[3])*a; \
- dst[x*3] = cast_macro(p0 + b * (p1 - p0)); \
- \
- p0 = cvt(ptr0[1])*a1 + cvt(ptr0[4])*a; \
- p1 = cvt(ptr1[1])*a1 + cvt(ptr1[4])*a; \
- dst[x*3+1] = cast_macro(p0 + b * (p1 - p0)); \
- \
- p0 = cvt(ptr0[2])*a1 + cvt(ptr0[5])*a; \
- p1 = cvt(ptr1[2])*a1 + cvt(ptr1[5])*a; \
- dst[x*3+2] = cast_macro(p0 + b * (p1 - p0)); \
- } \
- else \
- { \
- double b1 = 1.f - b; \
- ixs = ixs < 0 ? 0 : src_size.width - 1; \
- ptr0 += ixs*3; ptr1 += ixs*3; \
- \
- dst[x*3] = cast_macro(cvt(ptr0[0])*b1 + cvt(ptr1[0])*b);\
- dst[x*3+1]=cast_macro(cvt(ptr0[1])*b1 + cvt(ptr1[1])*b);\
- dst[x*3+2]=cast_macro(cvt(ptr0[2])*b1 + cvt(ptr1[2])*b);\
- } \
- } \
- } \
- } \
- \
- return CV_OK; \
+void cv::getRectSubPix( InputArray _image, Size patchSize, Point2f center,
+ OutputArray _patch, int patchType )
+{
+ Mat image = _image.getMat();
+ int depth = image.depth(), cn = image.channels();
+ int ddepth = patchType < 0 ? depth : CV_MAT_DEPTH(patchType);
+
+ CV_Assert( cn == 1 || cn == 3 );
+
+ _patch.create(patchSize, CV_MAKETYPE(ddepth, cn));
+ Mat patch = _patch.getMat();
+
+ if( depth == CV_8U && ddepth == CV_8U )
+ getRectSubPix_Cn_<uchar, uchar, int, scale_fixpt, cast_8u>
+ (image.data, image.step, image.size(), patch.data, patch.step, patch.size(), center, cn);
+ else if( depth == CV_8U && ddepth == CV_32F )
+ getRectSubPix_8u32f
+ (image.data, image.step, image.size(), (float*)patch.data, patch.step, patch.size(), center, cn);
+ else if( depth == CV_32F && ddepth == CV_32F )
+ getRectSubPix_Cn_<float, float, float, nop<float>, nop<float> >
+ ((const float*)image.data, image.step, image.size(), (float*)patch.data, patch.step, patch.size(), center, cn);
+ else
+ CV_Error( CV_StsUnsupportedFormat, "Unsupported combination of input and output formats");
}
-/*#define srctype uchar
-#define dsttype uchar
-#define worktype float
-#define cvt CV_8TO32F
-#define cast_macro ICV_32F8U
-
-#undef srctype
-#undef dsttype
-#undef worktype
-#undef cvt
-#undef cast_macro*/
-
-ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 8u, uchar, uchar, double, ICV_32F8U, CV_8TO32F )
-ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 32f, float, float, double, CV_CAST_32F, CV_NOP )
-ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 8u32f, uchar, float, double, CV_CAST_32F, CV_8TO32F )
-
-ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC_C3( 8u, uchar, uchar, double, ICV_32F8U, CV_8TO32F )
-ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC_C3( 32f, float, float, double, CV_CAST_32F, CV_NOP )
-ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC_C3( 8u32f, uchar, float, double, CV_CAST_32F, CV_8TO32F )
+CV_IMPL void
+cvGetRectSubPix( const void* srcarr, void* dstarr, CvPoint2D32f center )
+{
+ cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
+ CV_Assert( src.channels() == dst.channels() );
-ICV_DEF_INIT_SUBPIX_TAB( GetQuadrangleSubPix, C1R )
-ICV_DEF_INIT_SUBPIX_TAB( GetQuadrangleSubPix, C3R )
+ cv::getRectSubPix(src, dst.size(), center, dst, dst.type());
+}
-typedef CvStatus (CV_STDCALL *CvGetQuadrangleSubPixFunc)(
- const void* src, int src_step,
- CvSize src_size, void* dst,
- int dst_step, CvSize win_size,
- const float* matrix );
CV_IMPL void
cvGetQuadrangleSubPix( const void* srcarr, void* dstarr, const CvMat* mat )
{
- static CvFuncTable gq_tab[2];
- static int inittab = 0;
-
- CvMat srcstub, *src = (CvMat*)srcarr;
- CvMat dststub, *dst = (CvMat*)dstarr;
- CvSize src_size, dst_size;
- CvGetQuadrangleSubPixFunc func;
- float m[6];
- int k, cn;
-
- if( !inittab )
- {
- icvInitGetQuadrangleSubPixC1RTable( gq_tab + 0 );
- icvInitGetQuadrangleSubPixC3RTable( gq_tab + 1 );
- inittab = 1;
- }
-
- if( !CV_IS_MAT(src))
- src = cvGetMat( src, &srcstub );
-
- if( !CV_IS_MAT(dst))
- dst = cvGetMat( dst, &dststub );
-
- if( !CV_IS_MAT(mat))
- CV_Error( CV_StsBadArg, "map matrix is not valid" );
-
- cn = CV_MAT_CN( src->type );
-
- if( (cn != 1 && cn != 3) || !CV_ARE_CNS_EQ( src, dst ))
- CV_Error( CV_StsUnsupportedFormat, "" );
-
- src_size = cvGetMatSize( src );
- dst_size = cvGetMatSize( dst );
-
- /*if( dst_size.width > src_size.width || dst_size.height > src_size.height )
- CV_ERROR( CV_StsBadSize, "destination ROI must not be larger than source ROI" );*/
+ cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), m = cv::cvarrToMat(mat);
+ cv::Size win_size = dst.size();
+ double matrix[6];
+ cv::Mat M(2, 3, CV_64F, matrix);
+ m.convertTo(M, CV_64F);
+ double dx = (win_size.width - 1)*0.5;
+ double dy = (win_size.height - 1)*0.5;
+ matrix[2] -= matrix[0]*dx + matrix[1]*dy;
+ matrix[5] -= matrix[3]*dx + matrix[4]*dy;
+
+ cv::warpAffine(src, dst, M, dst.size(),
+ cv::INTER_LINEAR + cv::WARP_INVERSE_MAP,
+ cv::BORDER_REPLICATE);
+}
- if( mat->rows != 2 || mat->cols != 3 )
- CV_Error( CV_StsBadArg,
- "Transformation matrix must be 2x3" );
- if( CV_MAT_TYPE( mat->type ) == CV_32FC1 )
- {
- for( k = 0; k < 3; k++ )
- {
- m[k] = mat->data.fl[k];
- m[3 + k] = ((float*)(mat->data.ptr + mat->step))[k];
- }
- }
- else if( CV_MAT_TYPE( mat->type ) == CV_64FC1 )
- {
- for( k = 0; k < 3; k++ )
- {
- m[k] = (float)mat->data.db[k];
- m[3 + k] = (float)((double*)(mat->data.ptr + mat->step))[k];
- }
- }
- else
- CV_Error( CV_StsUnsupportedFormat,
- "The transformation matrix should have 32fC1 or 64fC1 type" );
+CV_IMPL int
+cvSampleLine( const void* _img, CvPoint pt1, CvPoint pt2,
+ void* _buffer, int connectivity )
+{
+ cv::Mat img = cv::cvarrToMat(_img);
+ cv::LineIterator li(img, pt1, pt2, connectivity, false);
+ uchar* buffer = (uchar*)_buffer;
+ size_t pixsize = img.elemSize();
+
+ if( !buffer )
+ CV_Error( CV_StsNullPtr, "" );
- if( CV_ARE_DEPTHS_EQ( src, dst ))
- {
- func = (CvGetQuadrangleSubPixFunc)(gq_tab[cn != 1].fn_2d[CV_MAT_DEPTH(src->type)]);
- }
- else
+ for( int i = 0; i < li.count; i++, ++li )
{
- if( CV_MAT_DEPTH( src->type ) != CV_8U || CV_MAT_DEPTH( dst->type ) != CV_32F )
- CV_Error( CV_StsUnsupportedFormat, "" );
-
- func = (CvGetQuadrangleSubPixFunc)(gq_tab[cn != 1].fn_2d[1]);
+ for( size_t k = 0; k < pixsize; k++ )
+ *buffer++ = li.ptr[k];
}
- if( !func )
- CV_Error( CV_StsUnsupportedFormat, "" );
-
- IPPI_CALL( func( src->data.ptr, src->step, src_size,
- dst->data.ptr, dst->step, dst_size, m ));
+ return li.count;
}
-void cv::getRectSubPix( InputArray _image, Size patchSize, Point2f center,
- OutputArray _patch, int patchType )
-{
- Mat image = _image.getMat();
- _patch.create(patchSize, patchType < 0 ? image.type() :
- CV_MAKETYPE(CV_MAT_DEPTH(patchType),image.channels()));
- Mat patch = _patch.getMat();
- CvMat _cimage = image, _cpatch = patch;
- cvGetRectSubPix(&_cimage, &_cpatch, center);
-}
-
/* End of file. */
private:
Mat src;
Mat dst;
- int nStripes;
double thresh;
double maxval;
comp[2] = r.y;
comp[3] = r.width - r.x + 1;
comp[4] = r.height - r.y + 1;
+#if 0
if( mask_only )
{
double t = area ? 1./area : 0;
comp[5] = s0;
comp[6] = s1;
comp[7] = s2;
+#else
+ comp[5] = new_val.val[0];
+ comp[6] = new_val.val[1];
+ comp[7] = new_val.val[2];
+#endif
comp[8] = 0;
}