and report what has been lost.
For media errors in blocks owned by files, parent pointers can be used to
construct file paths from inode numbers for user-friendly reporting.
+
+7. Conclusion and Future Work
+=============================
+
+It is hoped that the reader of this document has followed the designs laid out
+in this document and now has some familiarity with how XFS performs online
+rebuilding of its metadata indices, and how filesystem users can interact with
+that functionality.
+Although the scope of this work is daunting, it is hoped that this guide will
+make it easier for code readers to understand what has been built, for whom it
+has been built, and why.
+Please feel free to contact the XFS mailing list with questions.
+
+FIEXCHANGE_RANGE
+----------------
+
+As discussed earlier, a second frontend to the atomic extent swap mechanism is
+a new ioctl call that userspace programs can use to commit updates to files
+atomically.
+This frontend has been out for review for several years now, though the
+necessary refinements to online repair and lack of customer demand mean that
+the proposal has not been pushed very hard.
+
+Extent Swapping with Regular User Files
+```````````````````````````````````````
+
+As mentioned earlier, XFS has long had the ability to swap extents between
+files, which is used almost exclusively by ``xfs_fsr`` to defragment files.
+The earliest form of this was the fork swap mechanism, where the entire
+contents of data forks could be exchanged between two files by exchanging the
+raw bytes in each inode fork's immediate area.
+When XFS v5 came along with self-describing metadata, this old mechanism grew
+some log support to continue rewriting the owner fields of BMBT blocks during
+log recovery.
+When the reverse mapping btree was later added to XFS, the only way to maintain
+the consistency of the fork mappings with the reverse mapping index was to
+develop an iterative mechanism that used deferred bmap and rmap operations to
+swap mappings one at a time.
+This mechanism is identical to steps 2-3 from the procedure above except for
+the new tracking items, because the atomic extent swap mechanism is an
+iteration of an existing mechanism and not something totally novel.
+For the narrow case of file defragmentation, the file contents must be
+identical, so the recovery guarantees are not much of a gain.
+
+Atomic extent swapping is much more flexible than the existing swapext
+implementations because it can guarantee that the caller never sees a mix of
+old and new contents even after a crash, and it can operate on two arbitrary
+file fork ranges.
+The extra flexibility enables several new use cases:
+
+- **Atomic commit of file writes**: A userspace process opens a file that it
+ wants to update.
+ Next, it opens a temporary file and calls the file clone operation to reflink
+ the first file's contents into the temporary file.
+ Writes to the original file should instead be written to the temporary file.
+ Finally, the process calls the atomic extent swap system call
+ (``FIEXCHANGE_RANGE``) to exchange the file contents, thereby committing all
+ of the updates to the original file, or none of them.
+
+.. _swapext_if_unchanged:
+
+- **Transactional file updates**: The same mechanism as above, but the caller
+ only wants the commit to occur if the original file's contents have not
+ changed.
+ To make this happen, the calling process snapshots the file modification and
+ change timestamps of the original file before reflinking its data to the
+ temporary file.
+ When the program is ready to commit the changes, it passes the timestamps
+ into the kernel as arguments to the atomic extent swap system call.
+ The kernel only commits the changes if the provided timestamps match the
+ original file.
+
+- **Emulation of atomic block device writes**: Export a block device with a
+ logical sector size matching the filesystem block size to force all writes
+ to be aligned to the filesystem block size.
+ Stage all writes to a temporary file, and when that is complete, call the
+ atomic extent swap system call with a flag to indicate that holes in the
+ temporary file should be ignored.
+ This emulates an atomic device write in software, and can support arbitrary
+ scattered writes.
+
+Vectorized Scrub
+----------------
+
+As it turns out, the :ref:`refactoring <scrubrepair>` of repair items mentioned
+earlier was a catalyst for enabling a vectorized scrub system call.
+Since 2018, the cost of making a kernel call has increased considerably on some
+systems to mitigate the effects of speculative execution attacks.
+This incentivizes program authors to make as few system calls as possible to
+reduce the number of times an execution path crosses a security boundary.
+
+With vectorized scrub, userspace pushes to the kernel the identity of a
+filesystem object, a list of scrub types to run against that object, and a
+simple representation of the data dependencies between the selected scrub
+types.
+The kernel executes as much of the caller's plan as it can until it hits a
+dependency that cannot be satisfied due to a corruption, and tells userspace
+how much was accomplished.
+It is hoped that ``io_uring`` will pick up enough of this functionality that
+online fsck can use that instead of adding a separate vectored scrub system
+call to XFS.
+
+The relevant patchsets are the
+`kernel vectorized scrub
+<https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux.git/log/?h=vectorized-scrub>`_
+and
+`userspace vectorized scrub
+<https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfsprogs-dev.git/log/?h=vectorized-scrub>`_
+series.
+
+Quality of Service Targets for Scrub
+------------------------------------
+
+One serious shortcoming of the online fsck code is that the amount of time that
+it can spend in the kernel holding resource locks is basically unbounded.
+Userspace is allowed to send a fatal signal to the process which will cause
+``xfs_scrub`` to exit when it reaches a good stopping point, but there's no way
+for userspace to provide a time budget to the kernel.
+Given that the scrub codebase has helpers to detect fatal signals, it shouldn't
+be too much work to allow userspace to specify a timeout for a scrub/repair
+operation and abort the operation if it exceeds budget.
+However, most repair functions have the property that once they begin to touch
+ondisk metadata, the operation cannot be cancelled cleanly, after which a QoS
+timeout is no longer useful.
+
+Defragmenting Free Space
+------------------------
+
+Over the years, many XFS users have requested the creation of a program to
+clear a portion of the physical storage underlying a filesystem so that it
+becomes a contiguous chunk of free space.
+Call this free space defragmenter ``clearspace`` for short.
+
+The first piece the ``clearspace`` program needs is the ability to read the
+reverse mapping index from userspace.
+This already exists in the form of the ``FS_IOC_GETFSMAP`` ioctl.
+The second piece it needs is a new fallocate mode
+(``FALLOC_FL_MAP_FREE_SPACE``) that allocates the free space in a region and
+maps it to a file.
+Call this file the "space collector" file.
+The third piece is the ability to force an online repair.
+
+To clear all the metadata out of a portion of physical storage, clearspace
+uses the new fallocate map-freespace call to map any free space in that region
+to the space collector file.
+Next, clearspace finds all metadata blocks in that region by way of
+``GETFSMAP`` and issues forced repair requests on the data structure.
+This often results in the metadata being rebuilt somewhere that is not being
+cleared.
+After each relocation, clearspace calls the "map free space" function again to
+collect any newly freed space in the region being cleared.
+
+To clear all the file data out of a portion of the physical storage, clearspace
+uses the FSMAP information to find relevant file data blocks.
+Having identified a good target, it uses the ``FICLONERANGE`` call on that part
+of the file to try to share the physical space with a dummy file.
+Cloning the extent means that the original owners cannot overwrite the
+contents; any changes will be written somewhere else via copy-on-write.
+Clearspace makes its own copy of the frozen extent in an area that is not being
+cleared, and uses ``FIEDEUPRANGE`` (or the :ref:`atomic extent swap
+<swapext_if_unchanged>` feature) to change the target file's data extent
+mapping away from the area being cleared.
+When all other mappings have been moved, clearspace reflinks the space into the
+space collector file so that it becomes unavailable.
+
+There are further optimizations that could apply to the above algorithm.
+To clear a piece of physical storage that has a high sharing factor, it is
+strongly desirable to retain this sharing factor.
+In fact, these extents should be moved first to maximize sharing factor after
+the operation completes.
+To make this work smoothly, clearspace needs a new ioctl
+(``FS_IOC_GETREFCOUNTS``) to report reference count information to userspace.
+With the refcount information exposed, clearspace can quickly find the longest,
+most shared data extents in the filesystem, and target them first.
+
+**Future Work Question**: How might the filesystem move inode chunks?
+
+*Answer*: To move inode chunks, Dave Chinner constructed a prototype program
+that creates a new file with the old contents and then locklessly runs around
+the filesystem updating directory entries.
+The operation cannot complete if the filesystem goes down.
+That problem isn't totally insurmountable: create an inode remapping table
+hidden behind a jump label, and a log item that tracks the kernel walking the
+filesystem to update directory entries.
+The trouble is, the kernel can't do anything about open files, since it cannot
+revoke them.
+
+**Future Work Question**: Can static keys be used to minimize the cost of
+supporting ``revoke()`` on XFS files?
+
+*Answer*: Yes.
+Until the first revocation, the bailout code need not be in the call path at
+all.
+
+The relevant patchsets are the
+`kernel freespace defrag
+<https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux.git/log/?h=defrag-freespace>`_
+and
+`userspace freespace defrag
+<https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfsprogs-dev.git/log/?h=defrag-freespace>`_
+series.
+
+Shrinking Filesystems
+---------------------
+
+Removing the end of the filesystem ought to be a simple matter of evacuating
+the data and metadata at the end of the filesystem, and handing the freed space
+to the shrink code.
+That requires an evacuation of the space at end of the filesystem, which is a
+use of free space defragmentation!