+2008-10-28 Sebastian Dröge <slomo@circular-chaos.org>
+
+ * gst/speexresample/README:
+ * gst/speexresample/arch.h:
+ * gst/speexresample/fixed_arm4.h:
+ * gst/speexresample/fixed_arm5e.h:
+ * gst/speexresample/fixed_bfin.h:
+ * gst/speexresample/fixed_debug.h:
+ * gst/speexresample/fixed_generic.h:
+ * gst/speexresample/resample.c: (compute_func), (main), (sinc),
+ (cubic_coef), (resampler_basic_direct_single),
+ (resampler_basic_direct_double),
+ (resampler_basic_interpolate_single),
+ (resampler_basic_interpolate_double), (update_filter),
+ (speex_resampler_init_frac), (speex_resampler_process_native),
+ (speex_resampler_magic), (speex_resampler_process_float),
+ (speex_resampler_process_int),
+ (speex_resampler_process_interleaved_float),
+ (speex_resampler_process_interleaved_int),
+ (speex_resampler_set_rate_frac), (speex_resampler_skip_zeros),
+ (speex_resampler_reset_mem):
+ * gst/speexresample/speex_resampler.h:
+ Update Speex resampler with latest version from Speex GIT.
+
2008-10-27 Michael Smith <msmith@songbirdnest.com>
* gst/aiffparse/aiffparse.c:
-resample.c
-arch.h
-fixed_generic.h
-speex_resampler.h
+ arch.h
+ fixed_arm4.h
+ fixed_arm5e.h
+ fixed_bfin.h
+ fixed_debug.h
+ fixed_generic.h
+ resample.c
+ speex_resampler.h
-are taken from http://svn.xiph.org/trunk/speex/ revision 14232.
+are taken from http://git.xiph.org/speex.git/ as of 2008-10-28.
The only changes are:
---- speex/libspeex/arch.h 2007-11-21 11:05:46.000000000 +0100
-+++ speexresample/arch.h 2007-11-20 05:41:09.000000000 +0100
-@@ -78,7 +78,9 @@
- #include "speex/speex_types.h"
+--- arch.h 2008-10-28 12:21:37.000000000 +0100
++++ arch.h 2008-10-28 12:27:56.000000000 +0100
+@@ -78,7 +78,10 @@
+ #include "../include/speex/speex_types.h"
#endif
+#ifndef ABS
#define ABS(x) ((x) < 0 ? (-(x)) : (x)) /**< Absolute integer value. */
+#endif
++
#define ABS16(x) ((x) < 0 ? (-(x)) : (x)) /**< Absolute 16-bit value. */
#define MIN16(a,b) ((a) < (b) ? (a) : (b)) /**< Maximum 16-bit value. */
#define MAX16(a,b) ((a) > (b) ? (a) : (b)) /**< Maximum 16-bit value. */
-
---- speex/include/speex/speex_resampler.h 2007-11-21 11:05:44.000000000 +0100
-+++ speexresample/speex_resampler.h 2007-11-21 11:10:02.000000000 +0100
-@@ -41,6 +41,8 @@
-
- #ifdef OUTSIDE_SPEEX
-
-+#include <glib.h>
-+
- /********* WARNING: MENTAL SANITY ENDS HERE *************/
-
- /* If the resampler is defined outside of Speex, we change the symbol names so that
-@@ -75,10 +77,10 @@
- #define speex_resampler_reset_mem CAT_PREFIX(RANDOM_PREFIX,_resampler_reset_mem)
- #define speex_resampler_strerror CAT_PREFIX(RANDOM_PREFIX,_resampler_strerror)
-
--#define spx_int16_t short
--#define spx_int32_t int
--#define spx_uint16_t unsigned short
--#define spx_uint32_t unsigned int
-+#define spx_int16_t gint16
-+#define spx_int32_t gint32
-+#define spx_uint16_t guint16
-+#define spx_uint32_t guint32
-
- #else /* OUTSIDE_SPEEX */
-
---- speex/libspeex/resample.c 2007-11-25 14:15:38.000000000 +0100
-+++ speexresample/resample.c 2007-11-25 14:15:31.000000000 +0100
-@@ -62,20 +62,23 @@
+--- resample.c 2008-10-28 12:21:35.000000000 +0100
++++ resample.c 2008-10-28 12:33:46.000000000 +0100
+@@ -63,22 +63,27 @@
#ifdef OUTSIDE_SPEEX
#include <stdlib.h>
-static void *
++
+#include <glib.h>
+
++#define EXPORT
++
+static inline void *
speex_alloc (int size)
{
- return calloc (size, 1);
+ return g_malloc0 (size);
}
+
-static void *
+static inline void *
speex_realloc (void *ptr, int size)
- return realloc (ptr, size);
+ return g_realloc (ptr, size);
}
+
-static void
-+
+static inline void
speex_free (void *ptr)
{
}
#include "speex_resampler.h"
+@@ -90,7 +95,6 @@
+ #include "os_support.h"
+ #endif /* OUTSIDE_SPEEX */
+
+-#include "stack_alloc.h"
+ #include <math.h>
+
+ #ifndef M_PI
+--- speex_resampler.h 2008-10-28 12:21:37.000000000 +0100
++++ speex_resampler.h 2008-10-28 12:30:48.000000000 +0100
+@@ -77,10 +77,10 @@
+ #define speex_resampler_reset_mem CAT_PREFIX(RANDOM_PREFIX,_resampler_reset_mem)
+ #define speex_resampler_strerror CAT_PREFIX(RANDOM_PREFIX,_resampler_strerror)
+
+-#define spx_int16_t short
+-#define spx_int32_t int
+-#define spx_uint16_t unsigned short
+-#define spx_uint32_t unsigned int
++#define spx_int16_t gint16
++#define spx_int32_t gint32
++#define spx_uint16_t guint16
++#define spx_uint32_t guint32
+
+ #else /* OUTSIDE_SPEEX */
+
#define SPEEX_MINOR_VERSION 1 /**< Minor Speex version. */
#define SPEEX_MICRO_VERSION 15 /**< Micro Speex version. */
#define SPEEX_EXTRA_VERSION "" /**< Extra Speex version. */
-#define SPEEX_VERSION "speex-1.2beta4" /**< Speex version string. */
+#define SPEEX_VERSION "speex-1.2beta3" /**< Speex version string. */
#endif
/* A couple test to catch stupid option combinations */
#endif
#ifndef OUTSIDE_SPEEX
-#include "speex/speex_types.h"
+#include "../include/speex/speex_types.h"
#endif
#ifndef ABS
#define ABS(x) ((x) < 0 ? (-(x)) : (x)) /**< Absolute integer value. */
#endif
+
#define ABS16(x) ((x) < 0 ? (-(x)) : (x)) /**< Absolute 16-bit value. */
#define MIN16(a,b) ((a) < (b) ? (a) : (b)) /**< Maximum 16-bit value. */
#define MAX16(a,b) ((a) > (b) ? (a) : (b)) /**< Maximum 16-bit value. */
#ifdef FIXED_POINT
typedef spx_int16_t spx_word16_t;
-typedef spx_int32_t spx_word32_t;
+typedef spx_int32_t spx_word32_t;
typedef spx_word32_t spx_mem_t;
typedef spx_word16_t spx_coef_t;
typedef spx_word16_t spx_lsp_t;
#if defined (CONFIG_TI_C54X) || defined (CONFIG_TI_C55X)
/* 2 on TI C5x DSP */
-#define BYTES_PER_CHAR 2
+#define BYTES_PER_CHAR 2
#define BITS_PER_CHAR 16
#define LOG2_BITS_PER_CHAR 4
-#else
+#else
#define BYTES_PER_CHAR 1
#define BITS_PER_CHAR 8
#ifdef FIXED_DEBUG
-long long spx_mips=0;
+extern long long spx_mips;
#endif
--- /dev/null
+/* Copyright (C) 2004 Jean-Marc Valin */
+/**
+ @file fixed_arm4.h
+ @brief ARM4 fixed-point operations
+*/
+/*
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ - Neither the name of the Xiph.org Foundation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifndef FIXED_ARM4_H
+#define FIXED_ARM4_H
+
+#undef MULT16_32_Q14
+static inline spx_word32_t
+MULT16_32_Q14 (spx_word16_t x, spx_word32_t y)
+{
+ int res;
+ int dummy;
+asm ("smull %0,%1,%2,%3 \n\t" "mov %0, %0, lsr #14 \n\t" "add %0, %0, %1, lsl #18 \n\t":"=&r" (res),
+ "=&r"
+ (dummy)
+: "r" (y), "r" ((int) x));
+ return (res);
+}
+
+#undef MULT16_32_Q15
+static inline spx_word32_t
+MULT16_32_Q15 (spx_word16_t x, spx_word32_t y)
+{
+ int res;
+ int dummy;
+asm ("smull %0,%1,%2,%3 \n\t" "mov %0, %0, lsr #15 \n\t" "add %0, %0, %1, lsl #17 \n\t":"=&r" (res),
+ "=&r"
+ (dummy)
+: "r" (y), "r" ((int) x));
+ return (res);
+}
+
+#undef DIV32_16
+static inline short
+DIV32_16 (int a, int b)
+{
+ int res = 0;
+ int dead1, dead2, dead3, dead4, dead5;
+ __asm__ __volatile__ ("\teor %5, %0, %1\n"
+ "\tmovs %4, %0\n"
+ "\trsbmi %0, %0, #0 \n"
+ "\tmovs %4, %1\n"
+ "\trsbmi %1, %1, #0 \n"
+ "\tmov %4, #1\n"
+ "\tsubs %3, %0, %1, asl #14 \n"
+ "\tmovpl %0, %3 \n"
+ "\torrpl %2, %2, %4, asl #14 \n"
+ "\tsubs %3, %0, %1, asl #13 \n"
+ "\tmovpl %0, %3 \n"
+ "\torrpl %2, %2, %4, asl #13 \n"
+ "\tsubs %3, %0, %1, asl #12 \n"
+ "\tmovpl %0, %3 \n"
+ "\torrpl %2, %2, %4, asl #12 \n"
+ "\tsubs %3, %0, %1, asl #11 \n"
+ "\tmovpl %0, %3 \n"
+ "\torrpl %2, %2, %4, asl #11 \n"
+ "\tsubs %3, %0, %1, asl #10 \n"
+ "\tmovpl %0, %3 \n"
+ "\torrpl %2, %2, %4, asl #10 \n"
+ "\tsubs %3, %0, %1, asl #9 \n"
+ "\tmovpl %0, %3 \n"
+ "\torrpl %2, %2, %4, asl #9 \n"
+ "\tsubs %3, %0, %1, asl #8 \n"
+ "\tmovpl %0, %3 \n"
+ "\torrpl %2, %2, %4, asl #8 \n"
+ "\tsubs %3, %0, %1, asl #7 \n"
+ "\tmovpl %0, %3 \n"
+ "\torrpl %2, %2, %4, asl #7 \n"
+ "\tsubs %3, %0, %1, asl #6 \n"
+ "\tmovpl %0, %3 \n"
+ "\torrpl %2, %2, %4, asl #6 \n"
+ "\tsubs %3, %0, %1, asl #5 \n"
+ "\tmovpl %0, %3 \n"
+ "\torrpl %2, %2, %4, asl #5 \n"
+ "\tsubs %3, %0, %1, asl #4 \n"
+ "\tmovpl %0, %3 \n"
+ "\torrpl %2, %2, %4, asl #4 \n"
+ "\tsubs %3, %0, %1, asl #3 \n"
+ "\tmovpl %0, %3 \n"
+ "\torrpl %2, %2, %4, asl #3 \n"
+ "\tsubs %3, %0, %1, asl #2 \n"
+ "\tmovpl %0, %3 \n"
+ "\torrpl %2, %2, %4, asl #2 \n"
+ "\tsubs %3, %0, %1, asl #1 \n"
+ "\tmovpl %0, %3 \n"
+ "\torrpl %2, %2, %4, asl #1 \n"
+ "\tsubs %3, %0, %1 \n"
+ "\tmovpl %0, %3 \n"
+ "\torrpl %2, %2, %4 \n"
+ "\tmovs %5, %5, lsr #31 \n"
+ "\trsbne %2, %2, #0 \n":"=r" (dead1), "=r" (dead2), "=r" (res),
+ "=r" (dead3), "=r" (dead4), "=r" (dead5)
+ :"0" (a), "1" (b), "2" (res)
+ :"cc");
+ return res;
+}
+
+
+#endif
--- /dev/null
+/* Copyright (C) 2003 Jean-Marc Valin */
+/**
+ @file fixed_arm5e.h
+ @brief ARM-tuned fixed-point operations
+*/
+/*
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ - Neither the name of the Xiph.org Foundation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifndef FIXED_ARM5E_H
+#define FIXED_ARM5E_H
+
+#undef MULT16_16
+static inline spx_word32_t
+MULT16_16 (spx_word16_t x, spx_word16_t y)
+{
+ int res;
+asm ("smulbb %0,%1,%2;\n":"=&r" (res)
+: "%r" (x), "r" (y));
+ return (res);
+}
+
+#undef MAC16_16
+static inline spx_word32_t
+MAC16_16 (spx_word32_t a, spx_word16_t x, spx_word32_t y)
+{
+ int res;
+asm ("smlabb %0,%1,%2,%3;\n":"=&r" (res)
+: "%r" (x), "r" (y), "r" (a));
+ return (res);
+}
+
+#undef MULT16_32_Q15
+static inline spx_word32_t
+MULT16_32_Q15 (spx_word16_t x, spx_word32_t y)
+{
+ int res;
+asm ("smulwb %0,%1,%2;\n":"=&r" (res)
+: "%r" (y << 1), "r" (x));
+ return (res);
+}
+
+#undef MAC16_32_Q15
+static inline spx_word32_t
+MAC16_32_Q15 (spx_word32_t a, spx_word16_t x, spx_word32_t y)
+{
+ int res;
+asm ("smlawb %0,%1,%2,%3;\n":"=&r" (res)
+: "%r" (y << 1), "r" (x), "r" (a));
+ return (res);
+}
+
+#undef MULT16_32_Q11
+static inline spx_word32_t
+MULT16_32_Q11 (spx_word16_t x, spx_word32_t y)
+{
+ int res;
+asm ("smulwb %0,%1,%2;\n":"=&r" (res)
+: "%r" (y << 5), "r" (x));
+ return (res);
+}
+
+#undef MAC16_32_Q11
+static inline spx_word32_t
+MAC16_32_Q11 (spx_word32_t a, spx_word16_t x, spx_word32_t y)
+{
+ int res;
+asm ("smlawb %0,%1,%2,%3;\n":"=&r" (res)
+: "%r" (y << 5), "r" (x), "r" (a));
+ return (res);
+}
+
+#undef DIV32_16
+static inline short
+DIV32_16 (int a, int b)
+{
+ int res = 0;
+ int dead1, dead2, dead3, dead4, dead5;
+ __asm__ __volatile__ ("\teor %5, %0, %1\n"
+ "\tmovs %4, %0\n"
+ "\trsbmi %0, %0, #0 \n"
+ "\tmovs %4, %1\n"
+ "\trsbmi %1, %1, #0 \n"
+ "\tmov %4, #1\n"
+ "\tsubs %3, %0, %1, asl #14 \n"
+ "\torrpl %2, %2, %4, asl #14 \n"
+ "\tmovpl %0, %3 \n"
+ "\tsubs %3, %0, %1, asl #13 \n"
+ "\torrpl %2, %2, %4, asl #13 \n"
+ "\tmovpl %0, %3 \n"
+ "\tsubs %3, %0, %1, asl #12 \n"
+ "\torrpl %2, %2, %4, asl #12 \n"
+ "\tmovpl %0, %3 \n"
+ "\tsubs %3, %0, %1, asl #11 \n"
+ "\torrpl %2, %2, %4, asl #11 \n"
+ "\tmovpl %0, %3 \n"
+ "\tsubs %3, %0, %1, asl #10 \n"
+ "\torrpl %2, %2, %4, asl #10 \n"
+ "\tmovpl %0, %3 \n"
+ "\tsubs %3, %0, %1, asl #9 \n"
+ "\torrpl %2, %2, %4, asl #9 \n"
+ "\tmovpl %0, %3 \n"
+ "\tsubs %3, %0, %1, asl #8 \n"
+ "\torrpl %2, %2, %4, asl #8 \n"
+ "\tmovpl %0, %3 \n"
+ "\tsubs %3, %0, %1, asl #7 \n"
+ "\torrpl %2, %2, %4, asl #7 \n"
+ "\tmovpl %0, %3 \n"
+ "\tsubs %3, %0, %1, asl #6 \n"
+ "\torrpl %2, %2, %4, asl #6 \n"
+ "\tmovpl %0, %3 \n"
+ "\tsubs %3, %0, %1, asl #5 \n"
+ "\torrpl %2, %2, %4, asl #5 \n"
+ "\tmovpl %0, %3 \n"
+ "\tsubs %3, %0, %1, asl #4 \n"
+ "\torrpl %2, %2, %4, asl #4 \n"
+ "\tmovpl %0, %3 \n"
+ "\tsubs %3, %0, %1, asl #3 \n"
+ "\torrpl %2, %2, %4, asl #3 \n"
+ "\tmovpl %0, %3 \n"
+ "\tsubs %3, %0, %1, asl #2 \n"
+ "\torrpl %2, %2, %4, asl #2 \n"
+ "\tmovpl %0, %3 \n"
+ "\tsubs %3, %0, %1, asl #1 \n"
+ "\torrpl %2, %2, %4, asl #1 \n"
+ "\tmovpl %0, %3 \n"
+ "\tsubs %3, %0, %1 \n"
+ "\torrpl %2, %2, %4 \n"
+ "\tmovpl %0, %3 \n"
+ "\tmovs %5, %5, lsr #31 \n"
+ "\trsbne %2, %2, #0 \n":"=r" (dead1), "=r" (dead2), "=r" (res),
+ "=r" (dead3), "=r" (dead4), "=r" (dead5)
+ :"0" (a), "1" (b), "2" (res)
+ :"memory", "cc");
+ return res;
+}
+
+
+
+
+#endif
--- /dev/null
+/* Copyright (C) 2005 Analog Devices
+ Author: Jean-Marc Valin */
+/**
+ @file fixed_bfin.h
+ @brief Blackfin fixed-point operations
+*/
+/*
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ - Neither the name of the Xiph.org Foundation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifndef FIXED_BFIN_H
+#define FIXED_BFIN_H
+
+#undef PDIV32_16
+static inline spx_word16_t
+PDIV32_16 (spx_word32_t a, spx_word16_t b)
+{
+ spx_word32_t res, bb;
+ bb = b;
+ a += b >> 1;
+ __asm__ ("P0 = 15;\n\t" "R0 = %1;\n\t" "R1 = %2;\n\t"
+ //"R0 = R0 + R1;\n\t"
+"R0 <<= 1;\n\t" "DIVS (R0, R1);\n\t" "LOOP divide%= LC0 = P0;\n\t" "LOOP_BEGIN divide%=;\n\t" "DIVQ (R0, R1);\n\t" "LOOP_END divide%=;\n\t" "R0 = R0.L;\n\t" "%0 = R0;\n\t":"=m"
+ (res)
+: "m" (a), "m" (bb)
+: "P0", "R0", "R1", "cc");
+ return res;
+}
+
+#undef DIV32_16
+static inline spx_word16_t
+DIV32_16 (spx_word32_t a, spx_word16_t b)
+{
+ spx_word32_t res, bb;
+ bb = b;
+ /* Make the roundinf consistent with the C version
+ (do we need to do that?) */
+ if (a < 0)
+ a += (b - 1);
+__asm__ ("P0 = 15;\n\t" "R0 = %1;\n\t" "R1 = %2;\n\t" "R0 <<= 1;\n\t" "DIVS (R0, R1);\n\t" "LOOP divide%= LC0 = P0;\n\t" "LOOP_BEGIN divide%=;\n\t" "DIVQ (R0, R1);\n\t" "LOOP_END divide%=;\n\t" "R0 = R0.L;\n\t" "%0 = R0;\n\t":"=m" (res)
+: "m" (a), "m" (bb)
+: "P0", "R0", "R1", "cc");
+ return res;
+}
+
+#undef MAX16
+static inline spx_word16_t
+MAX16 (spx_word16_t a, spx_word16_t b)
+{
+ spx_word32_t res;
+__asm__ ("%1 = %1.L (X);\n\t" "%2 = %2.L (X);\n\t" "%0 = MAX(%1,%2);":"=d" (res)
+: "%d" (a), "d" (b)
+ );
+ return res;
+}
+
+#undef MULT16_32_Q15
+static inline spx_word32_t
+MULT16_32_Q15 (spx_word16_t a, spx_word32_t b)
+{
+ spx_word32_t res;
+__asm__ ("A1 = %2.L*%1.L (M);\n\t" "A1 = A1 >>> 15;\n\t" "%0 = (A1 += %2.L*%1.H) ;\n\t":"=&W" (res),
+ "=&d"
+ (b)
+: "d" (a), "1" (b)
+: "A1");
+ return res;
+}
+
+#undef MAC16_32_Q15
+static inline spx_word32_t
+MAC16_32_Q15 (spx_word32_t c, spx_word16_t a, spx_word32_t b)
+{
+ spx_word32_t res;
+__asm__ ("A1 = %2.L*%1.L (M);\n\t" "A1 = A1 >>> 15;\n\t" "%0 = (A1 += %2.L*%1.H);\n\t" "%0 = %0 + %4;\n\t":"=&W" (res),
+ "=&d"
+ (b)
+: "d" (a), "1" (b), "d" (c)
+: "A1");
+ return res;
+}
+
+#undef MULT16_32_Q14
+static inline spx_word32_t
+MULT16_32_Q14 (spx_word16_t a, spx_word32_t b)
+{
+ spx_word32_t res;
+__asm__ ("%2 <<= 1;\n\t" "A1 = %1.L*%2.L (M);\n\t" "A1 = A1 >>> 15;\n\t" "%0 = (A1 += %1.L*%2.H);\n\t":"=W" (res), "=d" (a),
+ "=d"
+ (b)
+: "1" (a), "2" (b)
+: "A1");
+ return res;
+}
+
+#undef MAC16_32_Q14
+static inline spx_word32_t
+MAC16_32_Q14 (spx_word32_t c, spx_word16_t a, spx_word32_t b)
+{
+ spx_word32_t res;
+__asm__ ("%1 <<= 1;\n\t" "A1 = %2.L*%1.L (M);\n\t" "A1 = A1 >>> 15;\n\t" "%0 = (A1 += %2.L*%1.H);\n\t" "%0 = %0 + %4;\n\t":"=&W" (res),
+ "=&d"
+ (b)
+: "d" (a), "1" (b), "d" (c)
+: "A1");
+ return res;
+}
+
+#endif
--- /dev/null
+/* Copyright (C) 2003 Jean-Marc Valin */
+/**
+ @file fixed_debug.h
+ @brief Fixed-point operations with debugging
+*/
+/*
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ - Neither the name of the Xiph.org Foundation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifndef FIXED_DEBUG_H
+#define FIXED_DEBUG_H
+
+#include <stdio.h>
+
+extern long long spx_mips;
+#define MIPS_INC spx_mips++,
+
+#define QCONST16(x,bits) ((spx_word16_t)(.5+(x)*(((spx_word32_t)1)<<(bits))))
+#define QCONST32(x,bits) ((spx_word32_t)(.5+(x)*(((spx_word32_t)1)<<(bits))))
+
+
+#define VERIFY_SHORT(x) ((x)<=32767&&(x)>=-32768)
+#define VERIFY_INT(x) ((x)<=2147483647LL&&(x)>=-2147483648LL)
+
+static inline short
+NEG16 (int x)
+{
+ int res;
+ if (!VERIFY_SHORT (x)) {
+ fprintf (stderr, "NEG16: input is not short: %d\n", (int) x);
+ }
+ res = -x;
+ if (!VERIFY_SHORT (res))
+ fprintf (stderr, "NEG16: output is not short: %d\n", (int) res);
+ spx_mips++;
+ return res;
+}
+
+static inline int
+NEG32 (long long x)
+{
+ long long res;
+ if (!VERIFY_INT (x)) {
+ fprintf (stderr, "NEG16: input is not int: %d\n", (int) x);
+ }
+ res = -x;
+ if (!VERIFY_INT (res))
+ fprintf (stderr, "NEG16: output is not int: %d\n", (int) res);
+ spx_mips++;
+ return res;
+}
+
+#define EXTRACT16(x) _EXTRACT16(x, __FILE__, __LINE__)
+static inline short
+_EXTRACT16 (int x, char *file, int line)
+{
+ int res;
+ if (!VERIFY_SHORT (x)) {
+ fprintf (stderr, "EXTRACT16: input is not short: %d in %s: line %d\n", x,
+ file, line);
+ }
+ res = x;
+ spx_mips++;
+ return res;
+}
+
+#define EXTEND32(x) _EXTEND32(x, __FILE__, __LINE__)
+static inline int
+_EXTEND32 (int x, char *file, int line)
+{
+ int res;
+ if (!VERIFY_SHORT (x)) {
+ fprintf (stderr, "EXTEND32: input is not short: %d in %s: line %d\n", x,
+ file, line);
+ }
+ res = x;
+ spx_mips++;
+ return res;
+}
+
+#define SHR16(a, shift) _SHR16(a, shift, __FILE__, __LINE__)
+static inline short
+_SHR16 (int a, int shift, char *file, int line)
+{
+ int res;
+ if (!VERIFY_SHORT (a) || !VERIFY_SHORT (shift)) {
+ fprintf (stderr, "SHR16: inputs are not short: %d >> %d in %s: line %d\n",
+ a, shift, file, line);
+ }
+ res = a >> shift;
+ if (!VERIFY_SHORT (res))
+ fprintf (stderr, "SHR16: output is not short: %d in %s: line %d\n", res,
+ file, line);
+ spx_mips++;
+ return res;
+}
+
+#define SHL16(a, shift) _SHL16(a, shift, __FILE__, __LINE__)
+static inline short
+_SHL16 (int a, int shift, char *file, int line)
+{
+ int res;
+ if (!VERIFY_SHORT (a) || !VERIFY_SHORT (shift)) {
+ fprintf (stderr, "SHL16: inputs are not short: %d %d in %s: line %d\n", a,
+ shift, file, line);
+ }
+ res = a << shift;
+ if (!VERIFY_SHORT (res))
+ fprintf (stderr, "SHL16: output is not short: %d in %s: line %d\n", res,
+ file, line);
+ spx_mips++;
+ return res;
+}
+
+static inline int
+SHR32 (long long a, int shift)
+{
+ long long res;
+ if (!VERIFY_INT (a) || !VERIFY_SHORT (shift)) {
+ fprintf (stderr, "SHR32: inputs are not int: %d %d\n", (int) a, shift);
+ }
+ res = a >> shift;
+ if (!VERIFY_INT (res)) {
+ fprintf (stderr, "SHR32: output is not int: %d\n", (int) res);
+ }
+ spx_mips++;
+ return res;
+}
+
+static inline int
+SHL32 (long long a, int shift)
+{
+ long long res;
+ if (!VERIFY_INT (a) || !VERIFY_SHORT (shift)) {
+ fprintf (stderr, "SHL32: inputs are not int: %d %d\n", (int) a, shift);
+ }
+ res = a << shift;
+ if (!VERIFY_INT (res)) {
+ fprintf (stderr, "SHL32: output is not int: %d\n", (int) res);
+ }
+ spx_mips++;
+ return res;
+}
+
+#define PSHR16(a,shift) (SHR16(ADD16((a),((1<<((shift))>>1))),shift))
+#define PSHR32(a,shift) (SHR32(ADD32((a),((EXTEND32(1)<<((shift))>>1))),shift))
+#define VSHR32(a, shift) (((shift)>0) ? SHR32(a, shift) : SHL32(a, -(shift)))
+
+#define SATURATE16(x,a) (((x)>(a) ? (a) : (x)<-(a) ? -(a) : (x)))
+#define SATURATE32(x,a) (((x)>(a) ? (a) : (x)<-(a) ? -(a) : (x)))
+
+//#define SHR(a,shift) ((a) >> (shift))
+//#define SHL(a,shift) ((a) << (shift))
+
+#define ADD16(a, b) _ADD16(a, b, __FILE__, __LINE__)
+static inline short
+_ADD16 (int a, int b, char *file, int line)
+{
+ int res;
+ if (!VERIFY_SHORT (a) || !VERIFY_SHORT (b)) {
+ fprintf (stderr, "ADD16: inputs are not short: %d %d in %s: line %d\n", a,
+ b, file, line);
+ }
+ res = a + b;
+ if (!VERIFY_SHORT (res)) {
+ fprintf (stderr, "ADD16: output is not short: %d+%d=%d in %s: line %d\n", a,
+ b, res, file, line);
+ }
+ spx_mips++;
+ return res;
+}
+
+#define SUB16(a, b) _SUB16(a, b, __FILE__, __LINE__)
+static inline short
+_SUB16 (int a, int b, char *file, int line)
+{
+ int res;
+ if (!VERIFY_SHORT (a) || !VERIFY_SHORT (b)) {
+ fprintf (stderr, "SUB16: inputs are not short: %d %d in %s: line %d\n", a,
+ b, file, line);
+ }
+ res = a - b;
+ if (!VERIFY_SHORT (res))
+ fprintf (stderr, "SUB16: output is not short: %d in %s: line %d\n", res,
+ file, line);
+ spx_mips++;
+ return res;
+}
+
+#define ADD32(a, b) _ADD32(a, b, __FILE__, __LINE__)
+static inline int
+_ADD32 (long long a, long long b, char *file, int line)
+{
+ long long res;
+ if (!VERIFY_INT (a) || !VERIFY_INT (b)) {
+ fprintf (stderr, "ADD32: inputs are not int: %d %d in %s: line %d\n",
+ (int) a, (int) b, file, line);
+ }
+ res = a + b;
+ if (!VERIFY_INT (res)) {
+ fprintf (stderr, "ADD32: output is not int: %d in %s: line %d\n", (int) res,
+ file, line);
+ }
+ spx_mips++;
+ return res;
+}
+
+static inline int
+SUB32 (long long a, long long b)
+{
+ long long res;
+ if (!VERIFY_INT (a) || !VERIFY_INT (b)) {
+ fprintf (stderr, "SUB32: inputs are not int: %d %d\n", (int) a, (int) b);
+ }
+ res = a - b;
+ if (!VERIFY_INT (res))
+ fprintf (stderr, "SUB32: output is not int: %d\n", (int) res);
+ spx_mips++;
+ return res;
+}
+
+#define ADD64(a,b) (MIPS_INC(a)+(b))
+
+/* result fits in 16 bits */
+static inline short
+MULT16_16_16 (int a, int b)
+{
+ int res;
+ if (!VERIFY_SHORT (a) || !VERIFY_SHORT (b)) {
+ fprintf (stderr, "MULT16_16_16: inputs are not short: %d %d\n", a, b);
+ }
+ res = a * b;
+ if (!VERIFY_SHORT (res))
+ fprintf (stderr, "MULT16_16_16: output is not short: %d\n", res);
+ spx_mips++;
+ return res;
+}
+
+#define MULT16_16(a, b) _MULT16_16(a, b, __FILE__, __LINE__)
+static inline int
+_MULT16_16 (int a, int b, char *file, int line)
+{
+ long long res;
+ if (!VERIFY_SHORT (a) || !VERIFY_SHORT (b)) {
+ fprintf (stderr, "MULT16_16: inputs are not short: %d %d in %s: line %d\n",
+ a, b, file, line);
+ }
+ res = ((long long) a) * b;
+ if (!VERIFY_INT (res))
+ fprintf (stderr, "MULT16_16: output is not int: %d in %s: line %d\n",
+ (int) res, file, line);
+ spx_mips++;
+ return res;
+}
+
+#define MAC16_16(c,a,b) (spx_mips--,ADD32((c),MULT16_16((a),(b))))
+#define MAC16_16_Q11(c,a,b) (EXTRACT16(ADD16((c),EXTRACT16(SHR32(MULT16_16((a),(b)),11)))))
+#define MAC16_16_Q13(c,a,b) (EXTRACT16(ADD16((c),EXTRACT16(SHR32(MULT16_16((a),(b)),13)))))
+#define MAC16_16_P13(c,a,b) (EXTRACT16(ADD32((c),SHR32(ADD32(4096,MULT16_16((a),(b))),13))))
+
+
+#define MULT16_32_QX(a, b, Q) _MULT16_32_QX(a, b, Q, __FILE__, __LINE__)
+static inline int
+_MULT16_32_QX (int a, long long b, int Q, char *file, int line)
+{
+ long long res;
+ if (!VERIFY_SHORT (a) || !VERIFY_INT (b)) {
+ fprintf (stderr,
+ "MULT16_32_Q%d: inputs are not short+int: %d %d in %s: line %d\n", Q,
+ (int) a, (int) b, file, line);
+ }
+ if (ABS32 (b) >= (EXTEND32 (1) << (15 + Q)))
+ fprintf (stderr,
+ "MULT16_32_Q%d: second operand too large: %d %d in %s: line %d\n", Q,
+ (int) a, (int) b, file, line);
+ res = (((long long) a) * (long long) b) >> Q;
+ if (!VERIFY_INT (res))
+ fprintf (stderr,
+ "MULT16_32_Q%d: output is not int: %d*%d=%d in %s: line %d\n", Q,
+ (int) a, (int) b, (int) res, file, line);
+ spx_mips += 5;
+ return res;
+}
+
+static inline int
+MULT16_32_PX (int a, long long b, int Q)
+{
+ long long res;
+ if (!VERIFY_SHORT (a) || !VERIFY_INT (b)) {
+ fprintf (stderr, "MULT16_32_P%d: inputs are not short+int: %d %d\n", Q,
+ (int) a, (int) b);
+ }
+ if (ABS32 (b) >= (EXTEND32 (1) << (15 + Q)))
+ fprintf (stderr, "MULT16_32_Q%d: second operand too large: %d %d\n", Q,
+ (int) a, (int) b);
+ res = ((((long long) a) * (long long) b) + ((EXTEND32 (1) << Q) >> 1)) >> Q;
+ if (!VERIFY_INT (res))
+ fprintf (stderr, "MULT16_32_P%d: output is not int: %d*%d=%d\n", Q, (int) a,
+ (int) b, (int) res);
+ spx_mips += 5;
+ return res;
+}
+
+
+#define MULT16_32_Q11(a,b) MULT16_32_QX(a,b,11)
+#define MAC16_32_Q11(c,a,b) ADD32((c),MULT16_32_Q11((a),(b)))
+#define MULT16_32_Q12(a,b) MULT16_32_QX(a,b,12)
+#define MULT16_32_Q13(a,b) MULT16_32_QX(a,b,13)
+#define MULT16_32_Q14(a,b) MULT16_32_QX(a,b,14)
+#define MULT16_32_Q15(a,b) MULT16_32_QX(a,b,15)
+#define MULT16_32_P15(a,b) MULT16_32_PX(a,b,15)
+#define MAC16_32_Q15(c,a,b) ADD32((c),MULT16_32_Q15((a),(b)))
+
+static inline int
+SATURATE (int a, int b)
+{
+ if (a > b)
+ a = b;
+ if (a < -b)
+ a = -b;
+ return a;
+}
+
+static inline int
+MULT16_16_Q11_32 (int a, int b)
+{
+ long long res;
+ if (!VERIFY_SHORT (a) || !VERIFY_SHORT (b)) {
+ fprintf (stderr, "MULT16_16_Q11: inputs are not short: %d %d\n", a, b);
+ }
+ res = ((long long) a) * b;
+ res >>= 11;
+ if (!VERIFY_INT (res))
+ fprintf (stderr, "MULT16_16_Q11: output is not short: %d*%d=%d\n", (int) a,
+ (int) b, (int) res);
+ spx_mips += 3;
+ return res;
+}
+
+static inline short
+MULT16_16_Q13 (int a, int b)
+{
+ long long res;
+ if (!VERIFY_SHORT (a) || !VERIFY_SHORT (b)) {
+ fprintf (stderr, "MULT16_16_Q13: inputs are not short: %d %d\n", a, b);
+ }
+ res = ((long long) a) * b;
+ res >>= 13;
+ if (!VERIFY_SHORT (res))
+ fprintf (stderr, "MULT16_16_Q13: output is not short: %d*%d=%d\n", a, b,
+ (int) res);
+ spx_mips += 3;
+ return res;
+}
+
+static inline short
+MULT16_16_Q14 (int a, int b)
+{
+ long long res;
+ if (!VERIFY_SHORT (a) || !VERIFY_SHORT (b)) {
+ fprintf (stderr, "MULT16_16_Q14: inputs are not short: %d %d\n", a, b);
+ }
+ res = ((long long) a) * b;
+ res >>= 14;
+ if (!VERIFY_SHORT (res))
+ fprintf (stderr, "MULT16_16_Q14: output is not short: %d\n", (int) res);
+ spx_mips += 3;
+ return res;
+}
+
+static inline short
+MULT16_16_Q15 (int a, int b)
+{
+ long long res;
+ if (!VERIFY_SHORT (a) || !VERIFY_SHORT (b)) {
+ fprintf (stderr, "MULT16_16_Q15: inputs are not short: %d %d\n", a, b);
+ }
+ res = ((long long) a) * b;
+ res >>= 15;
+ if (!VERIFY_SHORT (res)) {
+ fprintf (stderr, "MULT16_16_Q15: output is not short: %d\n", (int) res);
+ }
+ spx_mips += 3;
+ return res;
+}
+
+static inline short
+MULT16_16_P13 (int a, int b)
+{
+ long long res;
+ if (!VERIFY_SHORT (a) || !VERIFY_SHORT (b)) {
+ fprintf (stderr, "MULT16_16_P13: inputs are not short: %d %d\n", a, b);
+ }
+ res = ((long long) a) * b;
+ res += 4096;
+ if (!VERIFY_INT (res))
+ fprintf (stderr, "MULT16_16_P13: overflow: %d*%d=%d\n", a, b, (int) res);
+ res >>= 13;
+ if (!VERIFY_SHORT (res))
+ fprintf (stderr, "MULT16_16_P13: output is not short: %d*%d=%d\n", a, b,
+ (int) res);
+ spx_mips += 4;
+ return res;
+}
+
+static inline short
+MULT16_16_P14 (int a, int b)
+{
+ long long res;
+ if (!VERIFY_SHORT (a) || !VERIFY_SHORT (b)) {
+ fprintf (stderr, "MULT16_16_P14: inputs are not short: %d %d\n", a, b);
+ }
+ res = ((long long) a) * b;
+ res += 8192;
+ if (!VERIFY_INT (res))
+ fprintf (stderr, "MULT16_16_P14: overflow: %d*%d=%d\n", a, b, (int) res);
+ res >>= 14;
+ if (!VERIFY_SHORT (res))
+ fprintf (stderr, "MULT16_16_P14: output is not short: %d*%d=%d\n", a, b,
+ (int) res);
+ spx_mips += 4;
+ return res;
+}
+
+static inline short
+MULT16_16_P15 (int a, int b)
+{
+ long long res;
+ if (!VERIFY_SHORT (a) || !VERIFY_SHORT (b)) {
+ fprintf (stderr, "MULT16_16_P15: inputs are not short: %d %d\n", a, b);
+ }
+ res = ((long long) a) * b;
+ res += 16384;
+ if (!VERIFY_INT (res))
+ fprintf (stderr, "MULT16_16_P15: overflow: %d*%d=%d\n", a, b, (int) res);
+ res >>= 15;
+ if (!VERIFY_SHORT (res))
+ fprintf (stderr, "MULT16_16_P15: output is not short: %d*%d=%d\n", a, b,
+ (int) res);
+ spx_mips += 4;
+ return res;
+}
+
+#define DIV32_16(a, b) _DIV32_16(a, b, __FILE__, __LINE__)
+
+static inline int
+_DIV32_16 (long long a, long long b, char *file, int line)
+{
+ long long res;
+ if (b == 0) {
+ fprintf (stderr, "DIV32_16: divide by zero: %d/%d in %s: line %d\n",
+ (int) a, (int) b, file, line);
+ return 0;
+ }
+ if (!VERIFY_INT (a) || !VERIFY_SHORT (b)) {
+ fprintf (stderr,
+ "DIV32_16: inputs are not int/short: %d %d in %s: line %d\n", (int) a,
+ (int) b, file, line);
+ }
+ res = a / b;
+ if (!VERIFY_SHORT (res)) {
+ fprintf (stderr,
+ "DIV32_16: output is not short: %d / %d = %d in %s: line %d\n", (int) a,
+ (int) b, (int) res, file, line);
+ if (res > 32767)
+ res = 32767;
+ if (res < -32768)
+ res = -32768;
+ }
+ spx_mips += 20;
+ return res;
+}
+
+#define DIV32(a, b) _DIV32(a, b, __FILE__, __LINE__)
+static inline int
+_DIV32 (long long a, long long b, char *file, int line)
+{
+ long long res;
+ if (b == 0) {
+ fprintf (stderr, "DIV32: divide by zero: %d/%d in %s: line %d\n", (int) a,
+ (int) b, file, line);
+ return 0;
+ }
+
+ if (!VERIFY_INT (a) || !VERIFY_INT (b)) {
+ fprintf (stderr, "DIV32: inputs are not int/short: %d %d in %s: line %d\n",
+ (int) a, (int) b, file, line);
+ }
+ res = a / b;
+ if (!VERIFY_INT (res))
+ fprintf (stderr, "DIV32: output is not int: %d in %s: line %d\n", (int) res,
+ file, line);
+ spx_mips += 36;
+ return res;
+}
+
+#define PDIV32(a,b) DIV32(ADD32((a),(b)>>1),b)
+#define PDIV32_16(a,b) DIV32_16(ADD32((a),(b)>>1),b)
+
+#endif
#define SHR32(a,shift) ((a) >> (shift))
#define SHL32(a,shift) ((a) << (shift))
#define PSHR16(a,shift) (SHR16((a)+((1<<((shift))>>1)),shift))
-#define PSHR32(a,shift) (SHR32((a)+((1<<((shift))>>1)),shift))
+#define PSHR32(a,shift) (SHR32((a)+((EXTEND32(1)<<((shift))>>1)),shift))
#define VSHR32(a, shift) (((shift)>0) ? SHR32(a, shift) : SHL32(a, -(shift)))
#define SATURATE16(x,a) (((x)>(a) ? (a) : (x)<-(a) ? -(a) : (x)))
#define SATURATE32(x,a) (((x)>(a) ? (a) : (x)<-(a) ? -(a) : (x)))
#define SHR(a,shift) ((a) >> (shift))
#define SHL(a,shift) ((spx_word32_t)(a) << (shift))
-#define PSHR(a,shift) (SHR((a)+((1<<((shift))>>1)),shift))
+#define PSHR(a,shift) (SHR((a)+((EXTEND32(1)<<((shift))>>1)),shift))
#define SATURATE(x,a) (((x)>(a) ? (a) : (x)<-(a) ? -(a) : (x)))
-/* Copyright (C) 2007 Jean-Marc Valin
+/* Copyright (C) 2007-2008 Jean-Marc Valin
+ Copyright (C) 2008 Thorvald Natvig
File: resample.c
Arbitrary resampling code
#ifdef OUTSIDE_SPEEX
#include <stdlib.h>
+
#include <glib.h>
+#define EXPORT
+
static inline void *
speex_alloc (int size)
{
return g_malloc0 (size);
}
+
static inline void *
speex_realloc (void *ptr, int size)
{
#include "arch.h"
#else /* OUTSIDE_SPEEX */
-#include "speex/speex_resampler.h"
+#include "../include/speex/speex_resampler.h"
#include "arch.h"
#include "os_support.h"
#endif /* OUTSIDE_SPEEX */
#define WORD2INT(x) ((x) < -32767.5f ? -32768 : ((x) > 32766.5f ? 32767 : floor(.5+(x))))
#endif
-/*#define float double*/
-#define FILTER_SIZE 64
-#define OVERSAMPLE 8
-
#define IMAX(a,b) ((a) > (b) ? (a) : (b))
#define IMIN(a,b) ((a) < (b) ? (a) : (b))
#define NULL 0
#endif
+#ifdef _USE_SSE
+#include "resample_sse.h"
+#endif
+
+/* Numer of elements to allocate on the stack */
+#ifdef VAR_ARRAYS
+#define FIXED_STACK_ALLOC 8192
+#else
+#define FIXED_STACK_ALLOC 1024
+#endif
+
typedef int (*resampler_basic_func) (SpeexResamplerState *, spx_uint32_t,
const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *);
spx_uint32_t nb_channels;
spx_uint32_t filt_len;
spx_uint32_t mem_alloc_size;
+ spx_uint32_t buffer_size;
int int_advance;
int frac_advance;
float cutoff;
float y, frac;
double interp[4];
int ind;
-
y = x * func->oversample;
ind = (int) floor (y);
frac = (y - ind);
main (int argc, char **argv)
{
int i;
-
for (i = 0; i < 256; i++) {
printf ("%f\n", compute_func (i / 256., KAISER12));
}
{
/*fprintf (stderr, "%f ", x); */
float xx = x * cutoff;
-
if (fabs (x) < 1e-6f)
return WORD2INT (32768. * cutoff);
else if (fabs (x) > .5f * N)
{
/*fprintf (stderr, "%f ", x); */
float xx = x * cutoff;
-
if (fabs (x) < 1e-6)
return cutoff;
else if (fabs (x) > .5 * N)
/* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation
but I know it's MMSE-optimal on a sinc */
spx_word16_t x2, x3;
-
x2 = MULT16_16_P15 (x, x);
x3 = MULT16_16_P15 (x, x2);
interp[0] =
spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
spx_word16_t * out, spx_uint32_t * out_len)
{
- int N = st->filt_len;
+ const int N = st->filt_len;
int out_sample = 0;
- spx_word16_t *mem;
int last_sample = st->last_sample[channel_index];
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
+ const spx_word16_t *sinc_table = st->sinc_table;
+ const int out_stride = st->out_stride;
+ const int int_advance = st->int_advance;
+ const int frac_advance = st->frac_advance;
+ const spx_uint32_t den_rate = st->den_rate;
+ spx_word32_t sum;
+ int j;
- mem = st->mem + channel_index * st->mem_alloc_size;
while (!(last_sample >= (spx_int32_t) * in_len
|| out_sample >= (spx_int32_t) * out_len)) {
- int j;
- spx_word32_t sum = 0;
-
- /* We already have all the filter coefficients pre-computed in the table */
- const spx_word16_t *ptr;
+ const spx_word16_t *sinc = &sinc_table[samp_frac_num * N];
+ const spx_word16_t *iptr = &in[last_sample];
- /* Do the memory part */
- for (j = 0; last_sample - N + 1 + j < 0; j++) {
- sum +=
- MULT16_16 (mem[last_sample + j],
- st->sinc_table[samp_frac_num * st->filt_len + j]);
- }
+#ifndef OVERRIDE_INNER_PRODUCT_SINGLE
+ float accum[4] = { 0, 0, 0, 0 };
- /* Do the new part */
- if (in != NULL) {
- ptr = in + st->in_stride * (last_sample - N + 1 + j);
- for (; j < N; j++) {
- sum +=
- MULT16_16 (*ptr, st->sinc_table[samp_frac_num * st->filt_len + j]);
- ptr += st->in_stride;
- }
+ for (j = 0; j < N; j += 4) {
+ accum[0] += sinc[j] * iptr[j];
+ accum[1] += sinc[j + 1] * iptr[j + 1];
+ accum[2] += sinc[j + 2] * iptr[j + 2];
+ accum[3] += sinc[j + 3] * iptr[j + 3];
}
+ sum = accum[0] + accum[1] + accum[2] + accum[3];
+#else
+ sum = inner_product_single (sinc, iptr, N);
+#endif
- *out = PSHR32 (sum, 15);
- out += st->out_stride;
- out_sample++;
- last_sample += st->int_advance;
- samp_frac_num += st->frac_advance;
- if (samp_frac_num >= st->den_rate) {
- samp_frac_num -= st->den_rate;
+ out[out_stride * out_sample++] = PSHR32 (sum, 15);
+ last_sample += int_advance;
+ samp_frac_num += frac_advance;
+ if (samp_frac_num >= den_rate) {
+ samp_frac_num -= den_rate;
last_sample++;
}
}
+
st->last_sample[channel_index] = last_sample;
st->samp_frac_num[channel_index] = samp_frac_num;
return out_sample;
spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
spx_word16_t * out, spx_uint32_t * out_len)
{
- int N = st->filt_len;
+ const int N = st->filt_len;
int out_sample = 0;
- spx_word16_t *mem;
int last_sample = st->last_sample[channel_index];
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
+ const spx_word16_t *sinc_table = st->sinc_table;
+ const int out_stride = st->out_stride;
+ const int int_advance = st->int_advance;
+ const int frac_advance = st->frac_advance;
+ const spx_uint32_t den_rate = st->den_rate;
+ double sum;
+ int j;
- mem = st->mem + channel_index * st->mem_alloc_size;
while (!(last_sample >= (spx_int32_t) * in_len
|| out_sample >= (spx_int32_t) * out_len)) {
- int j;
- double sum = 0;
+ const spx_word16_t *sinc = &sinc_table[samp_frac_num * N];
+ const spx_word16_t *iptr = &in[last_sample];
- /* We already have all the filter coefficients pre-computed in the table */
- const spx_word16_t *ptr;
+#ifndef OVERRIDE_INNER_PRODUCT_DOUBLE
+ double accum[4] = { 0, 0, 0, 0 };
- /* Do the memory part */
- for (j = 0; last_sample - N + 1 + j < 0; j++) {
- sum +=
- MULT16_16 (mem[last_sample + j],
- (double) st->sinc_table[samp_frac_num * st->filt_len + j]);
- }
-
- /* Do the new part */
- if (in != NULL) {
- ptr = in + st->in_stride * (last_sample - N + 1 + j);
- for (; j < N; j++) {
- sum +=
- MULT16_16 (*ptr,
- (double) st->sinc_table[samp_frac_num * st->filt_len + j]);
- ptr += st->in_stride;
- }
+ for (j = 0; j < N; j += 4) {
+ accum[0] += sinc[j] * iptr[j];
+ accum[1] += sinc[j + 1] * iptr[j + 1];
+ accum[2] += sinc[j + 2] * iptr[j + 2];
+ accum[3] += sinc[j + 3] * iptr[j + 3];
}
+ sum = accum[0] + accum[1] + accum[2] + accum[3];
+#else
+ sum = inner_product_double (sinc, iptr, N);
+#endif
- *out = sum;
- out += st->out_stride;
- out_sample++;
- last_sample += st->int_advance;
- samp_frac_num += st->frac_advance;
- if (samp_frac_num >= st->den_rate) {
- samp_frac_num -= st->den_rate;
+ out[out_stride * out_sample++] = PSHR32 (sum, 15);
+ last_sample += int_advance;
+ samp_frac_num += frac_advance;
+ if (samp_frac_num >= den_rate) {
+ samp_frac_num -= den_rate;
last_sample++;
}
}
+
st->last_sample[channel_index] = last_sample;
st->samp_frac_num[channel_index] = samp_frac_num;
return out_sample;
spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
spx_word16_t * out, spx_uint32_t * out_len)
{
- int N = st->filt_len;
+ const int N = st->filt_len;
int out_sample = 0;
- spx_word16_t *mem;
int last_sample = st->last_sample[channel_index];
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
+ const int out_stride = st->out_stride;
+ const int int_advance = st->int_advance;
+ const int frac_advance = st->frac_advance;
+ const spx_uint32_t den_rate = st->den_rate;
+ int j;
+ spx_word32_t sum;
- mem = st->mem + channel_index * st->mem_alloc_size;
while (!(last_sample >= (spx_int32_t) * in_len
|| out_sample >= (spx_int32_t) * out_len)) {
- int j;
- spx_word32_t sum = 0;
+ const spx_word16_t *iptr = &in[last_sample];
- /* We need to interpolate the sinc filter */
- spx_word32_t accum[4] = { 0.f, 0.f, 0.f, 0.f };
- spx_word16_t interp[4];
- const spx_word16_t *ptr;
- int offset;
- spx_word16_t frac;
-
- offset = samp_frac_num * st->oversample / st->den_rate;
+ const int offset = samp_frac_num * st->oversample / st->den_rate;
#ifdef FIXED_POINT
- frac =
+ const spx_word16_t frac =
PDIV32 (SHL32 ((samp_frac_num * st->oversample) % st->den_rate, 15),
st->den_rate);
#else
- frac =
+ const spx_word16_t frac =
((float) ((samp_frac_num * st->oversample) % st->den_rate)) /
st->den_rate;
#endif
- /* This code is written like this to make it easy to optimise with SIMD.
- For most DSPs, it would be best to split the loops in two because most DSPs
- have only two accumulators */
- for (j = 0; last_sample - N + 1 + j < 0; j++) {
- spx_word16_t curr_mem = mem[last_sample + j];
+ spx_word16_t interp[4];
+
+#ifndef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
+ spx_word32_t accum[4] = { 0, 0, 0, 0 };
+
+ for (j = 0; j < N; j++) {
+ const spx_word16_t curr_in = iptr[j];
accum[0] +=
- MULT16_16 (curr_mem,
+ MULT16_16 (curr_in,
st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]);
accum[1] +=
- MULT16_16 (curr_mem,
+ MULT16_16 (curr_in,
st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]);
accum[2] +=
- MULT16_16 (curr_mem,
+ MULT16_16 (curr_in,
st->sinc_table[4 + (j + 1) * st->oversample - offset]);
accum[3] +=
- MULT16_16 (curr_mem,
+ MULT16_16 (curr_in,
st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]);
}
- if (in != NULL) {
- ptr = in + st->in_stride * (last_sample - N + 1 + j);
- /* Do the new part */
- for (; j < N; j++) {
- spx_word16_t curr_in = *ptr;
-
- ptr += st->in_stride;
- accum[0] +=
- MULT16_16 (curr_in,
- st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]);
- accum[1] +=
- MULT16_16 (curr_in,
- st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]);
- accum[2] +=
- MULT16_16 (curr_in,
- st->sinc_table[4 + (j + 1) * st->oversample - offset]);
- accum[3] +=
- MULT16_16 (curr_in,
- st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]);
- }
- }
cubic_coef (frac, interp);
sum =
MULT16_32_Q15 (interp[0], accum[0]) + MULT16_32_Q15 (interp[1],
accum[1]) + MULT16_32_Q15 (interp[2],
accum[2]) + MULT16_32_Q15 (interp[3], accum[3]);
+#else
+ cubic_coef (frac, interp);
+ sum =
+ interpolate_product_single (iptr,
+ st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample,
+ interp);
+#endif
- *out = PSHR32 (sum, 15);
- out += st->out_stride;
- out_sample++;
- last_sample += st->int_advance;
- samp_frac_num += st->frac_advance;
- if (samp_frac_num >= st->den_rate) {
- samp_frac_num -= st->den_rate;
+ out[out_stride * out_sample++] = PSHR32 (sum, 15);
+ last_sample += int_advance;
+ samp_frac_num += frac_advance;
+ if (samp_frac_num >= den_rate) {
+ samp_frac_num -= den_rate;
last_sample++;
}
}
+
st->last_sample[channel_index] = last_sample;
st->samp_frac_num[channel_index] = samp_frac_num;
return out_sample;
spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
spx_word16_t * out, spx_uint32_t * out_len)
{
- int N = st->filt_len;
+ const int N = st->filt_len;
int out_sample = 0;
- spx_word16_t *mem;
int last_sample = st->last_sample[channel_index];
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
+ const int out_stride = st->out_stride;
+ const int int_advance = st->int_advance;
+ const int frac_advance = st->frac_advance;
+ const spx_uint32_t den_rate = st->den_rate;
+ int j;
+ spx_word32_t sum;
- mem = st->mem + channel_index * st->mem_alloc_size;
while (!(last_sample >= (spx_int32_t) * in_len
|| out_sample >= (spx_int32_t) * out_len)) {
- int j;
- spx_word32_t sum = 0;
-
- /* We need to interpolate the sinc filter */
- double accum[4] = { 0.f, 0.f, 0.f, 0.f };
- float interp[4];
- const spx_word16_t *ptr;
- float alpha = ((float) samp_frac_num) / st->den_rate;
- int offset = samp_frac_num * st->oversample / st->den_rate;
- float frac = alpha * st->oversample - offset;
-
- /* This code is written like this to make it easy to optimise with SIMD.
- For most DSPs, it would be best to split the loops in two because most DSPs
- have only two accumulators */
- for (j = 0; last_sample - N + 1 + j < 0; j++) {
- double curr_mem = mem[last_sample + j];
+ const spx_word16_t *iptr = &in[last_sample];
+ const int offset = samp_frac_num * st->oversample / st->den_rate;
+#ifdef FIXED_POINT
+ const spx_word16_t frac =
+ PDIV32 (SHL32 ((samp_frac_num * st->oversample) % st->den_rate, 15),
+ st->den_rate);
+#else
+ const spx_word16_t frac =
+ ((float) ((samp_frac_num * st->oversample) % st->den_rate)) /
+ st->den_rate;
+#endif
+ spx_word16_t interp[4];
+
+
+#ifndef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
+ double accum[4] = { 0, 0, 0, 0 };
+
+ for (j = 0; j < N; j++) {
+ const double curr_in = iptr[j];
accum[0] +=
- MULT16_16 (curr_mem,
+ MULT16_16 (curr_in,
st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]);
accum[1] +=
- MULT16_16 (curr_mem,
+ MULT16_16 (curr_in,
st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]);
accum[2] +=
- MULT16_16 (curr_mem,
+ MULT16_16 (curr_in,
st->sinc_table[4 + (j + 1) * st->oversample - offset]);
accum[3] +=
- MULT16_16 (curr_mem,
+ MULT16_16 (curr_in,
st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]);
}
- if (in != NULL) {
- ptr = in + st->in_stride * (last_sample - N + 1 + j);
- /* Do the new part */
- for (; j < N; j++) {
- double curr_in = *ptr;
-
- ptr += st->in_stride;
- accum[0] +=
- MULT16_16 (curr_in,
- st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]);
- accum[1] +=
- MULT16_16 (curr_in,
- st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]);
- accum[2] +=
- MULT16_16 (curr_in,
- st->sinc_table[4 + (j + 1) * st->oversample - offset]);
- accum[3] +=
- MULT16_16 (curr_in,
- st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]);
- }
- }
+
+ cubic_coef (frac, interp);
+ sum =
+ MULT16_32_Q15 (interp[0], accum[0]) + MULT16_32_Q15 (interp[1],
+ accum[1]) + MULT16_32_Q15 (interp[2],
+ accum[2]) + MULT16_32_Q15 (interp[3], accum[3]);
+#else
cubic_coef (frac, interp);
sum =
- interp[0] * accum[0] + interp[1] * accum[1] + interp[2] * accum[2] +
- interp[3] * accum[3];
-
- *out = PSHR32 (sum, 15);
- out += st->out_stride;
- out_sample++;
- last_sample += st->int_advance;
- samp_frac_num += st->frac_advance;
- if (samp_frac_num >= st->den_rate) {
- samp_frac_num -= st->den_rate;
+ interpolate_product_double (iptr,
+ st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample,
+ interp);
+#endif
+
+ out[out_stride * out_sample++] = PSHR32 (sum, 15);
+ last_sample += int_advance;
+ samp_frac_num += frac_advance;
+ if (samp_frac_num >= den_rate) {
+ samp_frac_num -= den_rate;
last_sample++;
}
}
+
st->last_sample[channel_index] = last_sample;
st->samp_frac_num[channel_index] = samp_frac_num;
return out_sample;
/* Choose the resampling type that requires the least amount of memory */
if (st->den_rate <= st->oversample) {
spx_uint32_t i;
-
if (!st->sinc_table)
st->sinc_table =
(spx_word16_t *) speex_alloc (st->filt_len * st->den_rate *
}
for (i = 0; i < st->den_rate; i++) {
spx_int32_t j;
-
for (j = 0; j < st->filt_len; j++) {
st->sinc_table[i * st->filt_len + j] =
sinc (st->cutoff,
/*fprintf (stderr, "resampler uses direct sinc table and normalised cutoff %f\n", cutoff); */
} else {
spx_int32_t i;
-
if (!st->sinc_table)
st->sinc_table =
(spx_word16_t *) speex_alloc ((st->filt_len * st->oversample +
due to handling of lots of corner cases. */
if (!st->mem) {
spx_uint32_t i;
-
+ st->mem_alloc_size = st->filt_len - 1 + st->buffer_size;
st->mem =
- (spx_word16_t *) speex_alloc (st->nb_channels * (st->filt_len -
- 1) * sizeof (spx_word16_t));
- for (i = 0; i < st->nb_channels * (st->filt_len - 1); i++)
+ (spx_word16_t *) speex_alloc (st->nb_channels * st->mem_alloc_size *
+ sizeof (spx_word16_t));
+ for (i = 0; i < st->nb_channels * st->mem_alloc_size; i++)
st->mem[i] = 0;
- st->mem_alloc_size = st->filt_len - 1;
/*speex_warning("init filter"); */
} else if (!st->started) {
spx_uint32_t i;
-
+ st->mem_alloc_size = st->filt_len - 1 + st->buffer_size;
st->mem =
(spx_word16_t *) speex_realloc (st->mem,
- st->nb_channels * (st->filt_len - 1) * sizeof (spx_word16_t));
- for (i = 0; i < st->nb_channels * (st->filt_len - 1); i++)
+ st->nb_channels * st->mem_alloc_size * sizeof (spx_word16_t));
+ for (i = 0; i < st->nb_channels * st->mem_alloc_size; i++)
st->mem[i] = 0;
- st->mem_alloc_size = st->filt_len - 1;
/*speex_warning("reinit filter"); */
} else if (st->filt_len > old_length) {
spx_int32_t i;
-
/* Increase the filter length */
/*speex_warning("increase filter size"); */
int old_alloc_size = st->mem_alloc_size;
-
- if (st->filt_len - 1 > st->mem_alloc_size) {
+ if ((st->filt_len - 1 + st->buffer_size) > st->mem_alloc_size) {
+ st->mem_alloc_size = st->filt_len - 1 + st->buffer_size;
st->mem =
(spx_word16_t *) speex_realloc (st->mem,
- st->nb_channels * (st->filt_len - 1) * sizeof (spx_word16_t));
- st->mem_alloc_size = st->filt_len - 1;
+ st->nb_channels * st->mem_alloc_size * sizeof (spx_word16_t));
}
for (i = st->nb_channels - 1; i >= 0; i--) {
spx_int32_t j;
spx_uint32_t olen = old_length;
-
/*if (st->magic_samples[i]) */
{
/* Try and remove the magic samples as if nothing had happened */
}
} else if (st->filt_len < old_length) {
spx_uint32_t i;
-
/* Reduce filter length, this a bit tricky. We need to store some of the memory as "magic"
samples so they can be used directly as input the next time(s) */
for (i = 0; i < st->nb_channels; i++) {
spx_uint32_t j;
spx_uint32_t old_magic = st->magic_samples[i];
-
st->magic_samples[i] = (old_length - st->filt_len) / 2;
/* We must copy some of the memory that's no longer used */
/* Copy data going backward */
}
-SpeexResamplerState *
+EXPORT SpeexResamplerState *
speex_resampler_init (spx_uint32_t nb_channels, spx_uint32_t in_rate,
spx_uint32_t out_rate, int quality, int *err)
{
out_rate, quality, err);
}
-SpeexResamplerState *
+EXPORT SpeexResamplerState *
speex_resampler_init_frac (spx_uint32_t nb_channels, spx_uint32_t ratio_num,
spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate,
int quality, int *err)
{
spx_uint32_t i;
SpeexResamplerState *st;
-
if (quality > 10 || quality < 0) {
if (err)
*err = RESAMPLER_ERR_INVALID_ARG;
st->in_stride = 1;
st->out_stride = 1;
+#ifdef FIXED_POINT
+ st->buffer_size = 160;
+#else
+ st->buffer_size = 160;
+#endif
+
/* Per channel data */
st->last_sample = (spx_int32_t *) speex_alloc (nb_channels * sizeof (int));
st->magic_samples = (spx_uint32_t *) speex_alloc (nb_channels * sizeof (int));
return st;
}
-void
+EXPORT void
speex_resampler_destroy (SpeexResamplerState * st)
{
speex_free (st->mem);
speex_free (st);
}
-
-
static int
speex_resampler_process_native (SpeexResamplerState * st,
- spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
- spx_word16_t * out, spx_uint32_t * out_len)
+ spx_uint32_t channel_index, spx_uint32_t * in_len, spx_word16_t * out,
+ spx_uint32_t * out_len)
{
int j = 0;
- int N = st->filt_len;
+ const int N = st->filt_len;
int out_sample = 0;
- spx_word16_t *mem;
- spx_uint32_t tmp_out_len = 0;
+ spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
+ spx_uint32_t ilen;
- mem = st->mem + channel_index * st->mem_alloc_size;
st->started = 1;
- /* Handle the case where we have samples left from a reduction in filter length */
- if (st->magic_samples[channel_index]) {
- int istride_save;
- spx_uint32_t tmp_in_len;
- spx_uint32_t tmp_magic;
-
- istride_save = st->in_stride;
- tmp_in_len = st->magic_samples[channel_index];
- tmp_out_len = *out_len;
- /* magic_samples needs to be set to zero to avoid infinite recursion */
- tmp_magic = st->magic_samples[channel_index];
- st->magic_samples[channel_index] = 0;
- st->in_stride = 1;
- speex_resampler_process_native (st, channel_index, mem + N - 1, &tmp_in_len,
- out, &tmp_out_len);
- st->in_stride = istride_save;
- /*speex_warning_int("extra samples:", tmp_out_len); */
- /* If we couldn't process all "magic" input samples, save the rest for next time */
- if (tmp_in_len < tmp_magic) {
- spx_uint32_t i;
-
- st->magic_samples[channel_index] = tmp_magic - tmp_in_len;
- for (i = 0; i < st->magic_samples[channel_index]; i++)
- mem[N - 1 + i] = mem[N - 1 + i + tmp_in_len];
- }
- out += tmp_out_len * st->out_stride;
- *out_len -= tmp_out_len;
- }
-
/* Call the right resampler through the function ptr */
- out_sample = st->resampler_ptr (st, channel_index, in, in_len, out, out_len);
+ out_sample = st->resampler_ptr (st, channel_index, mem, in_len, out, out_len);
if (st->last_sample[channel_index] < (spx_int32_t) * in_len)
*in_len = st->last_sample[channel_index];
- *out_len = out_sample + tmp_out_len;
+ *out_len = out_sample;
st->last_sample[channel_index] -= *in_len;
- for (j = 0; j < N - 1 - (spx_int32_t) * in_len; j++)
- mem[j] = mem[j + *in_len];
- if (in != NULL) {
- for (; j < N - 1; j++)
- mem[j] = in[st->in_stride * (j + *in_len - N + 1)];
- } else {
- for (; j < N - 1; j++)
- mem[j] = 0;
- }
+ ilen = *in_len;
+
+ for (j = 0; j < N - 1; ++j)
+ mem[j] = mem[j + ilen];
+
return RESAMPLER_ERR_SUCCESS;
}
-#define FIXED_STACK_ALLOC 1024
-
-#ifdef FIXED_POINT
-int
-speex_resampler_process_float (SpeexResamplerState * st,
- spx_uint32_t channel_index, const float *in, spx_uint32_t * in_len,
- float *out, spx_uint32_t * out_len)
+static int
+speex_resampler_magic (SpeexResamplerState * st, spx_uint32_t channel_index,
+ spx_word16_t ** out, spx_uint32_t out_len)
{
- spx_uint32_t i;
- int istride_save, ostride_save;
+ spx_uint32_t tmp_in_len = st->magic_samples[channel_index];
+ spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
+ const int N = st->filt_len;
-#ifdef VAR_ARRAYS
- spx_word16_t x[*in_len];
- spx_word16_t y[*out_len];
+ speex_resampler_process_native (st, channel_index, &tmp_in_len, *out,
+ &out_len);
- /*VARDECL(spx_word16_t *x);
- VARDECL(spx_word16_t *y);
- ALLOC(x, *in_len, spx_word16_t);
- ALLOC(y, *out_len, spx_word16_t); */
- istride_save = st->in_stride;
- ostride_save = st->out_stride;
- if (in != NULL) {
- for (i = 0; i < *in_len; i++)
- x[i] = WORD2INT (in[i * st->in_stride]);
- st->in_stride = st->out_stride = 1;
- speex_resampler_process_native (st, channel_index, x, in_len, y, out_len);
- } else {
- st->in_stride = st->out_stride = 1;
- speex_resampler_process_native (st, channel_index, NULL, in_len, y,
- out_len);
- }
- st->in_stride = istride_save;
- st->out_stride = ostride_save;
- for (i = 0; i < *out_len; i++)
- out[i * st->out_stride] = y[i];
-#else
- spx_word16_t x[FIXED_STACK_ALLOC];
- spx_word16_t y[FIXED_STACK_ALLOC];
- spx_uint32_t ilen = *in_len, olen = *out_len;
+ st->magic_samples[channel_index] -= tmp_in_len;
- istride_save = st->in_stride;
- ostride_save = st->out_stride;
- while (ilen && olen) {
- spx_uint32_t ichunk, ochunk;
-
- ichunk = ilen;
- ochunk = olen;
- if (ichunk > FIXED_STACK_ALLOC)
- ichunk = FIXED_STACK_ALLOC;
- if (ochunk > FIXED_STACK_ALLOC)
- ochunk = FIXED_STACK_ALLOC;
- if (in != NULL) {
- for (i = 0; i < ichunk; i++)
- x[i] = WORD2INT (in[i * st->in_stride]);
- st->in_stride = st->out_stride = 1;
- speex_resampler_process_native (st, channel_index, x, &ichunk, y,
- &ochunk);
- } else {
- st->in_stride = st->out_stride = 1;
- speex_resampler_process_native (st, channel_index, NULL, &ichunk, y,
- &ochunk);
- }
- st->in_stride = istride_save;
- st->out_stride = ostride_save;
- for (i = 0; i < ochunk; i++)
- out[i * st->out_stride] = y[i];
- out += ochunk;
- in += ichunk;
- ilen -= ichunk;
- olen -= ochunk;
+ /* If we couldn't process all "magic" input samples, save the rest for next time */
+ if (st->magic_samples[channel_index]) {
+ spx_uint32_t i;
+ for (i = 0; i < st->magic_samples[channel_index]; i++)
+ mem[N - 1 + i] = mem[N - 1 + i + tmp_in_len];
}
- *in_len -= ilen;
- *out_len -= olen;
-#endif
- return RESAMPLER_ERR_SUCCESS;
+ *out += out_len * st->out_stride;
+ return out_len;
}
-int
+#ifdef FIXED_POINT
+EXPORT int
speex_resampler_process_int (SpeexResamplerState * st,
spx_uint32_t channel_index, const spx_int16_t * in, spx_uint32_t * in_len,
spx_int16_t * out, spx_uint32_t * out_len)
-{
- return speex_resampler_process_native (st, channel_index, in, in_len, out,
- out_len);
-}
#else
-int
+EXPORT int
speex_resampler_process_float (SpeexResamplerState * st,
spx_uint32_t channel_index, const float *in, spx_uint32_t * in_len,
float *out, spx_uint32_t * out_len)
+#endif
{
- return speex_resampler_process_native (st, channel_index, in, in_len, out,
- out_len);
+ int j;
+ spx_uint32_t ilen = *in_len;
+ spx_uint32_t olen = *out_len;
+ spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size;
+ const int filt_offs = st->filt_len - 1;
+ const spx_uint32_t xlen = st->mem_alloc_size - filt_offs;
+ const int istride = st->in_stride;
+
+ if (st->magic_samples[channel_index])
+ olen -= speex_resampler_magic (st, channel_index, &out, olen);
+ if (!st->magic_samples[channel_index]) {
+ while (ilen && olen) {
+ spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
+ spx_uint32_t ochunk = olen;
+
+ if (in) {
+ for (j = 0; j < ichunk; ++j)
+ x[j + filt_offs] = in[j * istride];
+ } else {
+ for (j = 0; j < ichunk; ++j)
+ x[j + filt_offs] = 0;
+ }
+ speex_resampler_process_native (st, channel_index, &ichunk, out, &ochunk);
+ ilen -= ichunk;
+ olen -= ochunk;
+ out += ochunk * st->out_stride;
+ if (in)
+ in += ichunk * istride;
+ }
+ }
+ *in_len -= ilen;
+ *out_len -= olen;
+ return RESAMPLER_ERR_SUCCESS;
}
-int
+#ifdef FIXED_POINT
+EXPORT int
+speex_resampler_process_float (SpeexResamplerState * st,
+ spx_uint32_t channel_index, const float *in, spx_uint32_t * in_len,
+ float *out, spx_uint32_t * out_len)
+#else
+EXPORT int
speex_resampler_process_int (SpeexResamplerState * st,
spx_uint32_t channel_index, const spx_int16_t * in, spx_uint32_t * in_len,
spx_int16_t * out, spx_uint32_t * out_len)
+#endif
{
- spx_uint32_t i;
- int istride_save, ostride_save;
-
+ int j;
+ const int istride_save = st->in_stride;
+ const int ostride_save = st->out_stride;
+ spx_uint32_t ilen = *in_len;
+ spx_uint32_t olen = *out_len;
+ spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size;
+ const spx_uint32_t xlen = st->mem_alloc_size - (st->filt_len - 1);
#ifdef VAR_ARRAYS
- spx_word16_t x[*in_len];
- spx_word16_t y[*out_len];
-
- /*VARDECL(spx_word16_t *x);
- VARDECL(spx_word16_t *y);
- ALLOC(x, *in_len, spx_word16_t);
- ALLOC(y, *out_len, spx_word16_t); */
- istride_save = st->in_stride;
- ostride_save = st->out_stride;
- if (in != NULL) {
- for (i = 0; i < *in_len; i++)
- x[i] = in[i * st->in_stride];
- st->in_stride = st->out_stride = 1;
- speex_resampler_process_native (st, channel_index, x, in_len, y, out_len);
- } else {
- st->in_stride = st->out_stride = 1;
- speex_resampler_process_native (st, channel_index, NULL, in_len, y,
- out_len);
- }
- st->in_stride = istride_save;
- st->out_stride = ostride_save;
- for (i = 0; i < *out_len; i++)
- out[i * st->out_stride] = WORD2INT (y[i]);
+ const unsigned int ylen =
+ (olen < FIXED_STACK_ALLOC) ? olen : FIXED_STACK_ALLOC;
+ VARDECL (spx_word16_t * ystack);
+ ALLOC (ystack, ylen, spx_word16_t);
#else
- spx_word16_t x[FIXED_STACK_ALLOC];
- spx_word16_t y[FIXED_STACK_ALLOC];
- spx_uint32_t ilen = *in_len, olen = *out_len;
+ const unsigned int ylen = FIXED_STACK_ALLOC;
+ spx_word16_t ystack[FIXED_STACK_ALLOC];
+#endif
+
+ st->out_stride = 1;
- istride_save = st->in_stride;
- ostride_save = st->out_stride;
while (ilen && olen) {
- spx_uint32_t ichunk, ochunk;
-
- ichunk = ilen;
- ochunk = olen;
- if (ichunk > FIXED_STACK_ALLOC)
- ichunk = FIXED_STACK_ALLOC;
- if (ochunk > FIXED_STACK_ALLOC)
- ochunk = FIXED_STACK_ALLOC;
- if (in != NULL) {
- for (i = 0; i < ichunk; i++)
- x[i] = in[i * st->in_stride];
- st->in_stride = st->out_stride = 1;
- speex_resampler_process_native (st, channel_index, x, &ichunk, y,
- &ochunk);
+ spx_word16_t *y = ystack;
+ spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
+ spx_uint32_t ochunk = (olen > ylen) ? ylen : olen;
+ spx_uint32_t omagic = 0;
+
+ if (st->magic_samples[channel_index]) {
+ omagic = speex_resampler_magic (st, channel_index, &y, ochunk);
+ ochunk -= omagic;
+ olen -= omagic;
+ }
+ if (!st->magic_samples[channel_index]) {
+ if (in) {
+ for (j = 0; j < ichunk; ++j)
+#ifdef FIXED_POINT
+ x[j + st->filt_len - 1] = WORD2INT (in[j * istride_save]);
+#else
+ x[j + st->filt_len - 1] = in[j * istride_save];
+#endif
+ } else {
+ for (j = 0; j < ichunk; ++j)
+ x[j + st->filt_len - 1] = 0;
+ }
+
+ speex_resampler_process_native (st, channel_index, &ichunk, y, &ochunk);
} else {
- st->in_stride = st->out_stride = 1;
- speex_resampler_process_native (st, channel_index, NULL, &ichunk, y,
- &ochunk);
+ ichunk = 0;
+ ochunk = 0;
}
- st->in_stride = istride_save;
- st->out_stride = ostride_save;
- for (i = 0; i < ochunk; i++)
- out[i * st->out_stride] = WORD2INT (y[i]);
- out += ochunk;
- in += ichunk;
+
+ for (j = 0; j < ochunk + omagic; ++j)
+#ifdef FIXED_POINT
+ out[j * ostride_save] = ystack[j];
+#else
+ out[j * ostride_save] = WORD2INT (ystack[j]);
+#endif
+
ilen -= ichunk;
olen -= ochunk;
+ out += (ochunk + omagic) * ostride_save;
+ if (in)
+ in += ichunk * istride_save;
}
+ st->out_stride = ostride_save;
*in_len -= ilen;
*out_len -= olen;
-#endif
+
return RESAMPLER_ERR_SUCCESS;
}
-#endif
-int
+EXPORT int
speex_resampler_process_interleaved_float (SpeexResamplerState * st,
const float *in, spx_uint32_t * in_len, float *out, spx_uint32_t * out_len)
{
spx_uint32_t i;
int istride_save, ostride_save;
spx_uint32_t bak_len = *out_len;
-
istride_save = st->in_stride;
ostride_save = st->out_stride;
st->in_stride = st->out_stride = st->nb_channels;
return RESAMPLER_ERR_SUCCESS;
}
-
-int
+EXPORT int
speex_resampler_process_interleaved_int (SpeexResamplerState * st,
const spx_int16_t * in, spx_uint32_t * in_len, spx_int16_t * out,
spx_uint32_t * out_len)
spx_uint32_t i;
int istride_save, ostride_save;
spx_uint32_t bak_len = *out_len;
-
istride_save = st->in_stride;
ostride_save = st->out_stride;
st->in_stride = st->out_stride = st->nb_channels;
return RESAMPLER_ERR_SUCCESS;
}
-int
+EXPORT int
speex_resampler_set_rate (SpeexResamplerState * st, spx_uint32_t in_rate,
spx_uint32_t out_rate)
{
out_rate);
}
-void
+EXPORT void
speex_resampler_get_rate (SpeexResamplerState * st, spx_uint32_t * in_rate,
spx_uint32_t * out_rate)
{
*out_rate = st->out_rate;
}
-int
+EXPORT int
speex_resampler_set_rate_frac (SpeexResamplerState * st, spx_uint32_t ratio_num,
spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate)
{
spx_uint32_t fact;
spx_uint32_t old_den;
spx_uint32_t i;
-
if (st->in_rate == in_rate && st->out_rate == out_rate
&& st->num_rate == ratio_num && st->den_rate == ratio_den)
return RESAMPLER_ERR_SUCCESS;
return RESAMPLER_ERR_SUCCESS;
}
-void
+EXPORT void
speex_resampler_get_ratio (SpeexResamplerState * st, spx_uint32_t * ratio_num,
spx_uint32_t * ratio_den)
{
*ratio_den = st->den_rate;
}
-int
+EXPORT int
speex_resampler_set_quality (SpeexResamplerState * st, int quality)
{
if (quality > 10 || quality < 0)
return RESAMPLER_ERR_SUCCESS;
}
-void
+EXPORT void
speex_resampler_get_quality (SpeexResamplerState * st, int *quality)
{
*quality = st->quality;
}
-void
+EXPORT void
speex_resampler_set_input_stride (SpeexResamplerState * st, spx_uint32_t stride)
{
st->in_stride = stride;
}
-void
+EXPORT void
speex_resampler_get_input_stride (SpeexResamplerState * st,
spx_uint32_t * stride)
{
*stride = st->in_stride;
}
-void
+EXPORT void
speex_resampler_set_output_stride (SpeexResamplerState * st,
spx_uint32_t stride)
{
st->out_stride = stride;
}
-void
+EXPORT void
speex_resampler_get_output_stride (SpeexResamplerState * st,
spx_uint32_t * stride)
{
*stride = st->out_stride;
}
-int
+EXPORT int
speex_resampler_get_input_latency (SpeexResamplerState * st)
{
return st->filt_len / 2;
}
-int
+EXPORT int
speex_resampler_get_output_latency (SpeexResamplerState * st)
{
return ((st->filt_len / 2) * st->den_rate +
(st->num_rate >> 1)) / st->num_rate;
}
-int
+EXPORT int
speex_resampler_skip_zeros (SpeexResamplerState * st)
{
spx_uint32_t i;
-
for (i = 0; i < st->nb_channels; i++)
st->last_sample[i] = st->filt_len / 2;
return RESAMPLER_ERR_SUCCESS;
}
-int
+EXPORT int
speex_resampler_reset_mem (SpeexResamplerState * st)
{
spx_uint32_t i;
-
for (i = 0; i < st->nb_channels * (st->filt_len - 1); i++)
st->mem[i] = 0;
return RESAMPLER_ERR_SUCCESS;
}
-const char *
+EXPORT const char *
speex_resampler_strerror (int err)
{
switch (err) {
#ifdef OUTSIDE_SPEEX
-#include <glib.h>
-
/********* WARNING: MENTAL SANITY ENDS HERE *************/
/* If the resampler is defined outside of Speex, we change the symbol names so that
#define CAT_PREFIX2(a,b) a ## b
#define CAT_PREFIX(a,b) CAT_PREFIX2(a, b)
-
+
#define speex_resampler_init CAT_PREFIX(RANDOM_PREFIX,_resampler_init)
#define speex_resampler_init_frac CAT_PREFIX(RANDOM_PREFIX,_resampler_init_frac)
#define speex_resampler_destroy CAT_PREFIX(RANDOM_PREFIX,_resampler_destroy)
#define spx_int32_t gint32
#define spx_uint16_t guint16
#define spx_uint32_t guint32
-
+
#else /* OUTSIDE_SPEEX */
-#include "speex/speex_types.h"
+#ifdef _BUILD_SPEEX
+# include "speex_types.h"
+#else
+# include <speex/speex_types.h>
+#endif
#endif /* OUTSIDE_SPEEX */
#ifdef __cplusplus
-extern "C" {
+extern "C"
+{
#endif
#define SPEEX_RESAMPLER_QUALITY_MAX 10
#define SPEEX_RESAMPLER_QUALITY_VOIP 3
#define SPEEX_RESAMPLER_QUALITY_DESKTOP 5
-enum {
- RESAMPLER_ERR_SUCCESS = 0,
- RESAMPLER_ERR_ALLOC_FAILED = 1,
- RESAMPLER_ERR_BAD_STATE = 2,
- RESAMPLER_ERR_INVALID_ARG = 3,
- RESAMPLER_ERR_PTR_OVERLAP = 4,
-
- RESAMPLER_ERR_MAX_ERROR
-};
+ enum
+ {
+ RESAMPLER_ERR_SUCCESS = 0,
+ RESAMPLER_ERR_ALLOC_FAILED = 1,
+ RESAMPLER_ERR_BAD_STATE = 2,
+ RESAMPLER_ERR_INVALID_ARG = 3,
+ RESAMPLER_ERR_PTR_OVERLAP = 4,
+
+ RESAMPLER_ERR_MAX_ERROR
+ };
-struct SpeexResamplerState_;
-typedef struct SpeexResamplerState_ SpeexResamplerState;
+ struct SpeexResamplerState_;
+ typedef struct SpeexResamplerState_ SpeexResamplerState;
/** Create a new resampler with integer input and output rates.
* @param nb_channels Number of channels to be processed
* @return Newly created resampler state
* @retval NULL Error: not enough memory
*/
-SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels,
- spx_uint32_t in_rate,
- spx_uint32_t out_rate,
- int quality,
- int *err);
+ SpeexResamplerState *speex_resampler_init (spx_uint32_t nb_channels,
+ spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err);
/** Create a new resampler with fractional input/output rates. The sampling
* rate ratio is an arbitrary rational number with both the numerator and
* @return Newly created resampler state
* @retval NULL Error: not enough memory
*/
-SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels,
- spx_uint32_t ratio_num,
- spx_uint32_t ratio_den,
- spx_uint32_t in_rate,
- spx_uint32_t out_rate,
- int quality,
- int *err);
+ SpeexResamplerState *speex_resampler_init_frac (spx_uint32_t nb_channels,
+ spx_uint32_t ratio_num,
+ spx_uint32_t ratio_den,
+ spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err);
/** Destroy a resampler state.
* @param st Resampler state
*/
-void speex_resampler_destroy(SpeexResamplerState *st);
+ void speex_resampler_destroy (SpeexResamplerState * st);
/** Resample a float array. The input and output buffers must *not* overlap.
* @param st Resampler state
* @param out Output buffer
* @param out_len Size of the output buffer. Returns the number of samples written
*/
-int speex_resampler_process_float(SpeexResamplerState *st,
- spx_uint32_t channel_index,
- const float *in,
- spx_uint32_t *in_len,
- float *out,
- spx_uint32_t *out_len);
+ int speex_resampler_process_float (SpeexResamplerState * st,
+ spx_uint32_t channel_index,
+ const float *in,
+ spx_uint32_t * in_len, float *out, spx_uint32_t * out_len);
/** Resample an int array. The input and output buffers must *not* overlap.
* @param st Resampler state
* @param out Output buffer
* @param out_len Size of the output buffer. Returns the number of samples written
*/
-int speex_resampler_process_int(SpeexResamplerState *st,
- spx_uint32_t channel_index,
- const spx_int16_t *in,
- spx_uint32_t *in_len,
- spx_int16_t *out,
- spx_uint32_t *out_len);
+ int speex_resampler_process_int (SpeexResamplerState * st,
+ spx_uint32_t channel_index,
+ const spx_int16_t * in,
+ spx_uint32_t * in_len, spx_int16_t * out, spx_uint32_t * out_len);
/** Resample an interleaved float array. The input and output buffers must *not* overlap.
* @param st Resampler state
* @param out_len Size of the output buffer. Returns the number of samples written.
* This is all per-channel.
*/
-int speex_resampler_process_interleaved_float(SpeexResamplerState *st,
- const float *in,
- spx_uint32_t *in_len,
- float *out,
- spx_uint32_t *out_len);
+ int speex_resampler_process_interleaved_float (SpeexResamplerState * st,
+ const float *in,
+ spx_uint32_t * in_len, float *out, spx_uint32_t * out_len);
/** Resample an interleaved int array. The input and output buffers must *not* overlap.
* @param st Resampler state
* @param out_len Size of the output buffer. Returns the number of samples written.
* This is all per-channel.
*/
-int speex_resampler_process_interleaved_int(SpeexResamplerState *st,
- const spx_int16_t *in,
- spx_uint32_t *in_len,
- spx_int16_t *out,
- spx_uint32_t *out_len);
+ int speex_resampler_process_interleaved_int (SpeexResamplerState * st,
+ const spx_int16_t * in,
+ spx_uint32_t * in_len, spx_int16_t * out, spx_uint32_t * out_len);
/** Set (change) the input/output sampling rates (integer value).
* @param st Resampler state
* @param in_rate Input sampling rate (integer number of Hz).
* @param out_rate Output sampling rate (integer number of Hz).
*/
-int speex_resampler_set_rate(SpeexResamplerState *st,
- spx_uint32_t in_rate,
- spx_uint32_t out_rate);
+ int speex_resampler_set_rate (SpeexResamplerState * st,
+ spx_uint32_t in_rate, spx_uint32_t out_rate);
/** Get the current input/output sampling rates (integer value).
* @param st Resampler state
* @param in_rate Input sampling rate (integer number of Hz) copied.
* @param out_rate Output sampling rate (integer number of Hz) copied.
*/
-void speex_resampler_get_rate(SpeexResamplerState *st,
- spx_uint32_t *in_rate,
- spx_uint32_t *out_rate);
+ void speex_resampler_get_rate (SpeexResamplerState * st,
+ spx_uint32_t * in_rate, spx_uint32_t * out_rate);
/** Set (change) the input/output sampling rates and resampling ratio
* (fractional values in Hz supported).
* @param in_rate Input sampling rate rounded to the nearest integer (in Hz).
* @param out_rate Output sampling rate rounded to the nearest integer (in Hz).
*/
-int speex_resampler_set_rate_frac(SpeexResamplerState *st,
- spx_uint32_t ratio_num,
- spx_uint32_t ratio_den,
- spx_uint32_t in_rate,
- spx_uint32_t out_rate);
+ int speex_resampler_set_rate_frac (SpeexResamplerState * st,
+ spx_uint32_t ratio_num,
+ spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate);
/** Get the current resampling ratio. This will be reduced to the least
* common denominator.
* @param ratio_num Numerator of the sampling rate ratio copied
* @param ratio_den Denominator of the sampling rate ratio copied
*/
-void speex_resampler_get_ratio(SpeexResamplerState *st,
- spx_uint32_t *ratio_num,
- spx_uint32_t *ratio_den);
+ void speex_resampler_get_ratio (SpeexResamplerState * st,
+ spx_uint32_t * ratio_num, spx_uint32_t * ratio_den);
/** Set (change) the conversion quality.
* @param st Resampler state
* @param quality Resampling quality between 0 and 10, where 0 has poor
* quality and 10 has very high quality.
*/
-int speex_resampler_set_quality(SpeexResamplerState *st,
- int quality);
+ int speex_resampler_set_quality (SpeexResamplerState * st, int quality);
/** Get the conversion quality.
* @param st Resampler state
* @param quality Resampling quality between 0 and 10, where 0 has poor
* quality and 10 has very high quality.
*/
-void speex_resampler_get_quality(SpeexResamplerState *st,
- int *quality);
+ void speex_resampler_get_quality (SpeexResamplerState * st, int *quality);
/** Set (change) the input stride.
* @param st Resampler state
* @param stride Input stride
*/
-void speex_resampler_set_input_stride(SpeexResamplerState *st,
- spx_uint32_t stride);
+ void speex_resampler_set_input_stride (SpeexResamplerState * st,
+ spx_uint32_t stride);
/** Get the input stride.
* @param st Resampler state
* @param stride Input stride copied
*/
-void speex_resampler_get_input_stride(SpeexResamplerState *st,
- spx_uint32_t *stride);
+ void speex_resampler_get_input_stride (SpeexResamplerState * st,
+ spx_uint32_t * stride);
/** Set (change) the output stride.
* @param st Resampler state
* @param stride Output stride
*/
-void speex_resampler_set_output_stride(SpeexResamplerState *st,
- spx_uint32_t stride);
+ void speex_resampler_set_output_stride (SpeexResamplerState * st,
+ spx_uint32_t stride);
/** Get the output stride.
* @param st Resampler state copied
* @param stride Output stride
*/
-void speex_resampler_get_output_stride(SpeexResamplerState *st,
- spx_uint32_t *stride);
+ void speex_resampler_get_output_stride (SpeexResamplerState * st,
+ spx_uint32_t * stride);
/** Get the latency in input samples introduced by the resampler.
* @param st Resampler state
*/
-int speex_resampler_get_input_latency(SpeexResamplerState *st);
+ int speex_resampler_get_input_latency (SpeexResamplerState * st);
/** Get the latency in output samples introduced by the resampler.
* @param st Resampler state
*/
-int speex_resampler_get_output_latency(SpeexResamplerState *st);
+ int speex_resampler_get_output_latency (SpeexResamplerState * st);
/** Make sure that the first samples to go out of the resamplers don't have
* leading zeros. This is only useful before starting to use a newly created
* is the same for the first frame).
* @param st Resampler state
*/
-int speex_resampler_skip_zeros(SpeexResamplerState *st);
+ int speex_resampler_skip_zeros (SpeexResamplerState * st);
/** Reset a resampler so a new (unrelated) stream can be processed.
* @param st Resampler state
*/
-int speex_resampler_reset_mem(SpeexResamplerState *st);
+ int speex_resampler_reset_mem (SpeexResamplerState * st);
/** Returns the English meaning for an error code
* @param err Error code
* @return English string
*/
-const char *speex_resampler_strerror(int err);
+ const char *speex_resampler_strerror (int err);
#ifdef __cplusplus
}