Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
"AddrSpaceCast must be between different address spaces", &I);
if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
- Assert(cast<FixedVectorType>(SrcVTy)->getNumElements() ==
- cast<FixedVectorType>(DestTy)->getNumElements(),
+ Assert(SrcVTy->getElementCount() ==
+ cast<VectorType>(DestTy)->getElementCount(),
"AddrSpaceCast vector pointer number of elements mismatch", &I);
visitInstruction(I);
}
Value *VecOp;
ConstantInt *Cst;
if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
- auto *VecOpTy = cast<FixedVectorType>(VecOp->getType());
- unsigned VecNumElts = VecOpTy->getNumElements();
+ auto *VecOpTy = cast<VectorType>(VecOp->getType());
+ auto VecElts = VecOpTy->getElementCount();
// A badly fit destination size would result in an invalid cast.
if (SrcWidth % DestWidth == 0) {
uint64_t TruncRatio = SrcWidth / DestWidth;
- uint64_t BitCastNumElts = VecNumElts * TruncRatio;
+ uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio;
uint64_t VecOpIdx = Cst->getZExtValue();
uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
: VecOpIdx * TruncRatio;
assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
"overflow 32-bits");
- auto *BitCastTo = FixedVectorType::get(DestTy, BitCastNumElts);
+ auto *BitCastTo =
+ VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable());
Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
}
unsigned PtrSize = DL.getPointerSizeInBits(AS);
if (TySize != PtrSize) {
Type *IntPtrTy = DL.getIntPtrType(CI.getContext(), AS);
- if (auto *VecTy = dyn_cast<VectorType>(Ty)) {
- // Handle vectors of pointers.
- // FIXME: what should happen for scalable vectors?
- IntPtrTy = FixedVectorType::get(
- IntPtrTy, cast<FixedVectorType>(VecTy)->getNumElements());
- }
+ // Handle vectors of pointers.
+ if (auto *VecTy = dyn_cast<VectorType>(Ty))
+ IntPtrTy = VectorType::get(IntPtrTy, VecTy->getElementCount());
Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy);
return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
// a bitcast to a vector with the same # elts.
Value *ShufOp0 = Shuf->getOperand(0);
Value *ShufOp1 = Shuf->getOperand(1);
- unsigned NumShufElts =
- cast<FixedVectorType>(Shuf->getType())->getNumElements();
- unsigned NumSrcVecElts =
- cast<FixedVectorType>(ShufOp0->getType())->getNumElements();
+ auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount();
+ auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount();
if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
- cast<FixedVectorType>(DestTy)->getNumElements() == NumShufElts &&
- NumShufElts == NumSrcVecElts) {
+ cast<VectorType>(DestTy)->getElementCount() == ShufElts &&
+ ShufElts == SrcVecElts) {
BitCastInst *Tmp;
// If either of the operands is a cast from CI.getType(), then
// evaluating the shuffle in the casted destination's type will allow
// TODO: We should match the related pattern for bitreverse.
if (DestTy->isIntegerTy() &&
DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
- SrcTy->getScalarSizeInBits() == 8 && NumShufElts % 2 == 0 &&
- Shuf->hasOneUse() && Shuf->isReverse()) {
+ SrcTy->getScalarSizeInBits() == 8 &&
+ ShufElts.getKnownMinValue() % 2 == 0 && Shuf->hasOneUse() &&
+ Shuf->isReverse()) {
assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
assert(isa<UndefValue>(ShufOp1) && "Unexpected shuffle op");
Function *Bswap =
Type *DestElemTy = DestTy->getElementType();
if (SrcTy->getElementType() != DestElemTy) {
Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
- if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
- // Handle vectors of pointers.
- // FIXME: what should happen for scalable vectors?
- MidTy = FixedVectorType::get(MidTy,
- cast<FixedVectorType>(VT)->getNumElements());
- }
+ // Handle vectors of pointers.
+ if (VectorType *VT = dyn_cast<VectorType>(CI.getType()))
+ MidTy = VectorType::get(MidTy, VT->getElementCount());
Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
return new AddrSpaceCastInst(NewBitCast, CI.getType());
ret <4 x float addrspace(2)*> %y
}
+define <vscale x 4 x float addrspace(2)*> @combine_addrspacecast_types_scalevector(<vscale x 4 x i32 addrspace(1)*> %x) nounwind {
+; CHECK-LABEL: @combine_addrspacecast_types_scalevector(
+; CHECK-NEXT: bitcast <vscale x 4 x i32 addrspace(1)*> %x to <vscale x 4 x float addrspace(1)*>
+; CHECK-NEXT: addrspacecast <vscale x 4 x float addrspace(1)*> %1 to <vscale x 4 x float addrspace(2)*>
+; CHECK-NEXT: ret
+ %y = addrspacecast <vscale x 4 x i32 addrspace(1)*> %x to <vscale x 4 x float addrspace(2)*>
+ ret <vscale x 4 x float addrspace(2)*> %y
+}
+
+
define i32 @canonicalize_addrspacecast([16 x i32] addrspace(1)* %arr) {
; CHECK-LABEL: @canonicalize_addrspacecast(
; CHECK-NEXT: getelementptr [16 x i32], [16 x i32] addrspace(1)* %arr, i32 0, i32 0
+; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -instcombine -S | FileCheck %s
target datalayout = "E-p:64:64:64-a0:0:8-f32:32:32-f64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-v64:64:64-v128:128:128"
define i1 @test1(i32 *%x) nounwind {
+; CHECK-LABEL: @test1(
+; CHECK-NEXT: entry:
+; CHECK-NEXT: [[TMP0:%.*]] = ptrtoint i32* [[X:%.*]] to i64
+; CHECK-NEXT: [[TMP1:%.*]] = and i64 [[TMP0]], 1
+; CHECK-NEXT: [[TMP2:%.*]] = icmp ne i64 [[TMP1]], 0
+; CHECK-NEXT: ret i1 [[TMP2]]
+;
entry:
-; CHECK: test1
-; CHECK: ptrtoint i32* %x to i64
- %0 = ptrtoint i32* %x to i1
- ret i1 %0
+ %0 = ptrtoint i32* %x to i1
+ ret i1 %0
}
define i32* @test2(i128 %x) nounwind {
+; CHECK-LABEL: @test2(
+; CHECK-NEXT: entry:
+; CHECK-NEXT: [[TMP0:%.*]] = trunc i128 [[X:%.*]] to i64
+; CHECK-NEXT: [[TMP1:%.*]] = inttoptr i64 [[TMP0]] to i32*
+; CHECK-NEXT: ret i32* [[TMP1]]
+;
entry:
-; CHECK: test2
-; CHECK: inttoptr i64 %0 to i32*
- %0 = inttoptr i128 %x to i32*
- ret i32* %0
+ %0 = inttoptr i128 %x to i32*
+ ret i32* %0
}
; PR3574
-; CHECK: f0
-; CHECK: %1 = zext i32 %a0 to i64
-; CHECK: ret i64 %1
define i64 @f0(i32 %a0) nounwind {
- %t0 = inttoptr i32 %a0 to i8*
- %t1 = ptrtoint i8* %t0 to i64
- ret i64 %t1
+; CHECK-LABEL: @f0(
+; CHECK-NEXT: [[TMP1:%.*]] = zext i32 [[A0:%.*]] to i64
+; CHECK-NEXT: ret i64 [[TMP1]]
+;
+ %t0 = inttoptr i32 %a0 to i8*
+ %t1 = ptrtoint i8* %t0 to i64
+ ret i64 %t1
}
define <4 x i32> @test4(<4 x i8*> %arg) nounwind {
; CHECK-LABEL: @test4(
-; CHECK: ptrtoint <4 x i8*> %arg to <4 x i64>
-; CHECK: trunc <4 x i64> %1 to <4 x i32>
+; CHECK-NEXT: [[TMP1:%.*]] = ptrtoint <4 x i8*> [[ARG:%.*]] to <4 x i64>
+; CHECK-NEXT: [[P1:%.*]] = trunc <4 x i64> [[TMP1]] to <4 x i32>
+; CHECK-NEXT: ret <4 x i32> [[P1]]
+;
%p1 = ptrtoint <4 x i8*> %arg to <4 x i32>
ret <4 x i32> %p1
}
+define <vscale x 4 x i32> @testvscale4(<vscale x 4 x i8*> %arg) nounwind {
+; CHECK-LABEL: @testvscale4(
+; CHECK-NEXT: [[TMP1:%.*]] = ptrtoint <vscale x 4 x i8*> [[ARG:%.*]] to <vscale x 4 x i64>
+; CHECK-NEXT: [[P1:%.*]] = trunc <vscale x 4 x i64> [[TMP1]] to <vscale x 4 x i32>
+; CHECK-NEXT: ret <vscale x 4 x i32> [[P1]]
+;
+ %p1 = ptrtoint <vscale x 4 x i8*> %arg to <vscale x 4 x i32>
+ ret <vscale x 4 x i32> %p1
+}
+
define <4 x i128> @test5(<4 x i8*> %arg) nounwind {
; CHECK-LABEL: @test5(
-; CHECK: ptrtoint <4 x i8*> %arg to <4 x i64>
-; CHECK: zext <4 x i64> %1 to <4 x i128>
+; CHECK-NEXT: [[TMP1:%.*]] = ptrtoint <4 x i8*> [[ARG:%.*]] to <4 x i64>
+; CHECK-NEXT: [[P1:%.*]] = zext <4 x i64> [[TMP1]] to <4 x i128>
+; CHECK-NEXT: ret <4 x i128> [[P1]]
+;
%p1 = ptrtoint <4 x i8*> %arg to <4 x i128>
ret <4 x i128> %p1
}
define <4 x i8*> @test6(<4 x i32> %arg) nounwind {
; CHECK-LABEL: @test6(
-; CHECK: zext <4 x i32> %arg to <4 x i64>
-; CHECK: inttoptr <4 x i64> %1 to <4 x i8*>
+; CHECK-NEXT: [[TMP1:%.*]] = zext <4 x i32> [[ARG:%.*]] to <4 x i64>
+; CHECK-NEXT: [[P1:%.*]] = inttoptr <4 x i64> [[TMP1]] to <4 x i8*>
+; CHECK-NEXT: ret <4 x i8*> [[P1]]
+;
%p1 = inttoptr <4 x i32> %arg to <4 x i8*>
ret <4 x i8*> %p1
}
define <4 x i8*> @test7(<4 x i128> %arg) nounwind {
; CHECK-LABEL: @test7(
-; CHECK: trunc <4 x i128> %arg to <4 x i64>
-; CHECK: inttoptr <4 x i64> %1 to <4 x i8*>
+; CHECK-NEXT: [[TMP1:%.*]] = trunc <4 x i128> [[ARG:%.*]] to <4 x i64>
+; CHECK-NEXT: [[P1:%.*]] = inttoptr <4 x i64> [[TMP1]] to <4 x i8*>
+; CHECK-NEXT: ret <4 x i8*> [[P1]]
+;
%p1 = inttoptr <4 x i128> %arg to <4 x i8*>
ret <4 x i8*> %p1
}
ret i32 %t
}
+define i32 @vscale_shrinkExtractElt_i64_to_i32_0(<vscale x 3 x i64> %x) {
+; LE-LABEL: @vscale_shrinkExtractElt_i64_to_i32_0(
+; LE-NEXT: [[TMP1:%.*]] = bitcast <vscale x 3 x i64> [[X:%.*]] to <vscale x 6 x i32>
+; LE-NEXT: [[T:%.*]] = extractelement <vscale x 6 x i32> [[TMP1]], i32 0
+; LE-NEXT: ret i32 [[T]]
+;
+; BE-LABEL: @vscale_shrinkExtractElt_i64_to_i32_0(
+; BE-NEXT: [[TMP1:%.*]] = bitcast <vscale x 3 x i64> [[X:%.*]] to <vscale x 6 x i32>
+; BE-NEXT: [[T:%.*]] = extractelement <vscale x 6 x i32> [[TMP1]], i32 1
+; BE-NEXT: ret i32 [[T]]
+;
+ %e = extractelement <vscale x 3 x i64> %x, i32 0
+ %t = trunc i64 %e to i32
+ ret i32 %t
+}
+
+
define i32 @shrinkExtractElt_i64_to_i32_1(<3 x i64> %x) {
; LE-LABEL: @shrinkExtractElt_i64_to_i32_1(
; LE-NEXT: [[TMP1:%.*]] = bitcast <3 x i64> [[X:%.*]] to <6 x i32>
ret float %r
}
+define float @testvscale6(<vscale x 4 x float> %X) {
+; CHECK-LABEL: @testvscale6(
+; CHECK-NEXT: [[T:%.*]] = shufflevector <vscale x 4 x float> [[X:%.*]], <vscale x 4 x float> undef, <vscale x 4 x i32> zeroinitializer
+; CHECK-NEXT: [[R:%.*]] = extractelement <vscale x 4 x float> [[T]], i32 0
+; CHECK-NEXT: ret float [[R]]
+;
+ %X1 = bitcast <vscale x 4 x float> %X to <vscale x 4 x i32>
+ %t = shufflevector <vscale x 4 x i32> %X1, <vscale x 4 x i32> undef, <vscale x 4 x i32> zeroinitializer
+ %t2 = bitcast <vscale x 4 x i32> %t to <vscale x 4 x float>
+ %r = extractelement <vscale x 4 x float> %t2, i32 0
+ ret float %r
+}
+
+
define <4 x float> @test7(<4 x float> %x) {
; CHECK-LABEL: @test7(
; CHECK-NEXT: [[R:%.*]] = shufflevector <4 x float> [[X:%.*]], <4 x float> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef>