Copyright 2010 Intel Corporation
Contributor: Pierre-Louis Bossart <pierre-louis.bossart@intel.com>
Copyright 2012 Niels Ole Salscheider <niels_ole@salscheider-online.de>
+ Contributor: Alexander E. Patrakov <patrakov@gmail.com>
+ Copyright 2020 Christopher Snowhill <kode54@gmail.com>
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
#include <config.h>
#endif
+#include <math.h>
+
+#include <fftw3.h>
+
#include <pulse/gccmacro.h>
#include <pulse/xmalloc.h>
#include <pulsecore/sound-file.h>
#include <pulsecore/resampler.h>
-#include <math.h>
-PA_MODULE_AUTHOR("Niels Ole Salscheider");
+PA_MODULE_AUTHOR("Christopher Snowhill");
PA_MODULE_DESCRIPTION(_("Virtual surround sink"));
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(false);
"use_volume_sharing=<yes or no> "
"force_flat_volume=<yes or no> "
"hrir=/path/to/left_hrir.wav "
+ "hrir_left=/path/to/left_hrir.wav "
+ "hrir_right=/path/to/optional/right_hrir.wav "
"autoloaded=<set if this module is being loaded automatically> "
));
struct userdata {
pa_module *module;
- /* FIXME: Uncomment this and take "autoloaded" as a modarg if this is a filter */
- /* bool autoloaded; */
+ bool autoloaded;
pa_sink *sink;
pa_sink_input *sink_input;
- pa_memblockq *memblockq;
+ pa_memblockq *memblockq_sink;
bool auto_desc;
- unsigned channels;
- unsigned hrir_channels;
- unsigned fs, sink_fs;
+ size_t fftlen;
+ size_t hrir_samples;
+ size_t inputs;
- unsigned *mapping_left;
- unsigned *mapping_right;
-
- unsigned hrir_samples;
- float *hrir_data;
-
- float *input_buffer;
- int input_buffer_offset;
-
- bool autoloaded;
+ fftwf_plan *p_fw, p_bw;
+ fftwf_complex *f_in, *f_out, **f_ir;
+ float *revspace, *outspace[2], **inspace;
};
+#define BLOCK_SIZE (512)
+
static const char* const valid_modargs[] = {
"sink_name",
"sink_properties",
"channel_map",
"use_volume_sharing",
"force_flat_volume",
- "hrir",
"autoloaded",
+ "hrir",
+ "hrir_left",
+ "hrir_right",
NULL
};
+/* Vector size of 4 floats */
+#define v_size 4
+static void * alloc(size_t x, size_t s) {
+ size_t f;
+ float *t;
+
+ f = PA_ROUND_UP(x*s, sizeof(float)*v_size);
+ pa_assert_se(t = fftwf_malloc(f));
+ pa_memzero(t, f);
+
+ return t;
+}
+
+static size_t sink_input_samples(size_t nbytes)
+{
+ return nbytes / 8;
+}
+
+static size_t sink_input_bytes(size_t nsamples)
+{
+ return nsamples * 8;
+}
+
+static size_t sink_samples(const struct userdata *u, size_t nbytes)
+{
+ return nbytes / (u->inputs * 4);
+}
+
+static size_t sink_bytes(const struct userdata *u, size_t nsamples)
+{
+ return nsamples * (u->inputs * 4);
+}
+
+/* Mirror channels for symmetrical impulse */
+static pa_channel_position_t mirror_channel(pa_channel_position_t channel) {
+ switch (channel) {
+ case PA_CHANNEL_POSITION_FRONT_LEFT:
+ return PA_CHANNEL_POSITION_FRONT_RIGHT;
+
+ case PA_CHANNEL_POSITION_FRONT_RIGHT:
+ return PA_CHANNEL_POSITION_FRONT_LEFT;
+
+ case PA_CHANNEL_POSITION_REAR_LEFT:
+ return PA_CHANNEL_POSITION_REAR_RIGHT;
+
+ case PA_CHANNEL_POSITION_REAR_RIGHT:
+ return PA_CHANNEL_POSITION_REAR_LEFT;
+
+ case PA_CHANNEL_POSITION_SIDE_LEFT:
+ return PA_CHANNEL_POSITION_SIDE_RIGHT;
+
+ case PA_CHANNEL_POSITION_SIDE_RIGHT:
+ return PA_CHANNEL_POSITION_SIDE_LEFT;
+
+ case PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER:
+ return PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER;
+
+ case PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER:
+ return PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER;
+
+ case PA_CHANNEL_POSITION_TOP_FRONT_LEFT:
+ return PA_CHANNEL_POSITION_TOP_FRONT_RIGHT;
+
+ case PA_CHANNEL_POSITION_TOP_FRONT_RIGHT:
+ return PA_CHANNEL_POSITION_TOP_FRONT_LEFT;
+
+ case PA_CHANNEL_POSITION_TOP_REAR_LEFT:
+ return PA_CHANNEL_POSITION_TOP_REAR_RIGHT;
+
+ case PA_CHANNEL_POSITION_TOP_REAR_RIGHT:
+ return PA_CHANNEL_POSITION_TOP_REAR_LEFT;
+
+ default:
+ return channel;
+ }
+}
+
+/* Normalize the hrir */
+static void normalize_hrir(float * hrir_data, unsigned hrir_samples, unsigned hrir_channels) {
+ /* normalize hrir to avoid audible clipping
+ *
+ * The following heuristic tries to avoid audible clipping. It cannot avoid
+ * clipping in the worst case though, because the scaling factor would
+ * become too large resulting in a too quiet signal.
+ * The idea of the heuristic is to avoid clipping when a single click is
+ * played back on all channels. The scaling factor describes the additional
+ * factor that is necessary to avoid clipping for "normal" signals.
+ *
+ * This algorithm doesn't pretend to be perfect, it's just something that
+ * appears to work (not too quiet, no audible clipping) on the material that
+ * it has been tested on. If you find a real-world example where this
+ * algorithm results in audible clipping, please write a patch that adjusts
+ * the scaling factor constants or improves the algorithm (or if you can't
+ * write a patch, at least report the problem to the PulseAudio mailing list
+ * or bug tracker). */
+
+ const float scaling_factor = 2.5;
+
+ float hrir_sum, hrir_max;
+ unsigned i, j;
+
+ hrir_max = 0;
+ for (i = 0; i < hrir_samples; i++) {
+ hrir_sum = 0;
+ for (j = 0; j < hrir_channels; j++)
+ hrir_sum += fabs(hrir_data[i * hrir_channels + j]);
+
+ if (hrir_sum > hrir_max)
+ hrir_max = hrir_sum;
+ }
+
+ for (i = 0; i < hrir_samples; i++) {
+ for (j = 0; j < hrir_channels; j++)
+ hrir_data[i * hrir_channels + j] /= hrir_max * scaling_factor;
+ }
+}
+
+/* Normalize a stereo hrir */
+static void normalize_hrir_stereo(float * hrir_data, float * hrir_right_data, unsigned hrir_samples, unsigned hrir_channels) {
+ const float scaling_factor = 2.5;
+
+ float hrir_sum, hrir_max;
+ unsigned i, j;
+
+ hrir_max = 0;
+ for (i = 0; i < hrir_samples; i++) {
+ hrir_sum = 0;
+ for (j = 0; j < hrir_channels; j++) {
+ hrir_sum += fabs(hrir_data[i * hrir_channels + j]);
+ hrir_sum += fabs(hrir_right_data[i * hrir_channels + j]);
+ }
+
+ if (hrir_sum > hrir_max)
+ hrir_max = hrir_sum;
+ }
+
+ for (i = 0; i < hrir_samples; i++) {
+ for (j = 0; j < hrir_channels; j++) {
+ hrir_data[i * hrir_channels + j] /= hrir_max * scaling_factor;
+ hrir_right_data[i * hrir_channels + j] /= hrir_max * scaling_factor;
+ }
+ }
+}
+
/* Called from I/O thread context */
static int sink_process_msg_cb(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
* sink input is first shut down, the sink second. */
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) {
- *((int64_t*) data) = 0;
+ *((pa_usec_t*) data) = 0;
return 0;
}
- *((int64_t*) data) =
+ *((pa_usec_t*) data) =
/* Get the latency of the master sink */
pa_sink_get_latency_within_thread(u->sink_input->sink, true) +
/* Called from I/O thread context */
static void sink_request_rewind_cb(pa_sink *s) {
struct userdata *u;
+ size_t nbytes_sink, nbytes_input;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state))
return;
+ nbytes_sink = s->thread_info.rewind_nbytes + pa_memblockq_get_length(u->memblockq_sink);
+ nbytes_input = sink_input_bytes(sink_samples(u, nbytes_sink));
+
/* Just hand this one over to the master sink */
- pa_sink_input_request_rewind(u->sink_input,
- s->thread_info.rewind_nbytes +
- pa_memblockq_get_length(u->memblockq), true, false, false);
+ pa_sink_input_request_rewind(u->sink_input, nbytes_input, true, false, false);
}
/* Called from I/O thread context */
pa_sink_input_set_mute(u->sink_input, s->muted, s->save_muted);
}
+static size_t memblockq_missing(pa_memblockq *bq) {
+ size_t l, tlength;
+ pa_assert(bq);
+
+ tlength = pa_memblockq_get_tlength(bq);
+ if ((l = pa_memblockq_get_length(bq)) >= tlength)
+ return 0;
+
+ l = tlength - l;
+ return l >= pa_memblockq_get_minreq(bq) ? l : 0;
+}
+
/* Called from I/O thread context */
-static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
+static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes_input, pa_memchunk *chunk) {
struct userdata *u;
float *src, *dst;
- unsigned n;
+ int c, ear;
+ size_t s, bytes_missing, fftlen;
pa_memchunk tchunk;
-
- unsigned j, k, l;
- float sum_right, sum_left;
- float current_sample;
+ float fftlen_if, *revspace;
pa_sink_input_assert_ref(i);
pa_assert(chunk);
pa_assert_se(u = i->userdata);
- if (!PA_SINK_IS_LINKED(u->sink->thread_info.state))
- return -1;
-
/* Hmm, process any rewind request that might be queued up */
pa_sink_process_rewind(u->sink, 0);
- while (pa_memblockq_peek(u->memblockq, &tchunk) < 0) {
+ while ((bytes_missing = memblockq_missing(u->memblockq_sink)) != 0) {
pa_memchunk nchunk;
- pa_sink_render(u->sink, nbytes * u->sink_fs / u->fs, &nchunk);
- pa_memblockq_push(u->memblockq, &nchunk);
+ pa_sink_render(u->sink, bytes_missing, &nchunk);
+ pa_memblockq_push(u->memblockq_sink, &nchunk);
pa_memblock_unref(nchunk.memblock);
}
- tchunk.length = PA_MIN(nbytes * u->sink_fs / u->fs, tchunk.length);
- pa_assert(tchunk.length > 0);
+ pa_memblockq_rewind(u->memblockq_sink, sink_bytes(u, u->fftlen - BLOCK_SIZE));
+ pa_memblockq_peek_fixed_size(u->memblockq_sink, sink_bytes(u, u->fftlen), &tchunk);
- n = (unsigned) (tchunk.length / u->sink_fs);
+ pa_memblockq_drop(u->memblockq_sink, tchunk.length);
- pa_assert(n > 0);
+ /* Now tchunk contains enough data to perform the FFT
+ * This should be equal to u->fftlen */
chunk->index = 0;
- chunk->length = n * u->fs;
+ chunk->length = sink_input_bytes(BLOCK_SIZE);
chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length);
- pa_memblockq_drop(u->memblockq, n * u->sink_fs);
-
src = pa_memblock_acquire_chunk(&tchunk);
- dst = pa_memblock_acquire(chunk->memblock);
- for (l = 0; l < n; l++) {
- memcpy(((char*) u->input_buffer) + u->input_buffer_offset * u->sink_fs, ((char *) src) + l * u->sink_fs, u->sink_fs);
+ for (c = 0; c < u->inputs; c++) {
+ for (s = 0, fftlen = u->fftlen; s < fftlen; s++) {
+ u->inspace[c][s] = src[s * u->inputs + c];
+ }
+ }
+
+ pa_memblock_release(tchunk.memblock);
+ pa_memblock_unref(tchunk.memblock);
+
+ fftlen_if = 1.0f / (float)u->fftlen;
+ revspace = u->revspace + u->fftlen - BLOCK_SIZE;
+
+ pa_memzero(u->outspace[0], BLOCK_SIZE * 4);
+ pa_memzero(u->outspace[1], BLOCK_SIZE * 4);
+
+ for (c = 0; c < u->inputs; c++) {
+ fftwf_complex *f_in = u->f_in;
+ fftwf_complex *f_out = u->f_out;
- sum_right = 0;
- sum_left = 0;
+ fftwf_execute(u->p_fw[c]);
- /* fold the input buffer with the impulse response */
- for (j = 0; j < u->hrir_samples; j++) {
- for (k = 0; k < u->channels; k++) {
- current_sample = u->input_buffer[((u->input_buffer_offset + j) % u->hrir_samples) * u->channels + k];
+ for (ear = 0; ear < 2; ear++) {
+ fftwf_complex *f_ir = u->f_ir[c * 2 + ear];
+ float *outspace = u->outspace[ear];
- sum_left += current_sample * u->hrir_data[j * u->hrir_channels + u->mapping_left[k]];
- sum_right += current_sample * u->hrir_data[j * u->hrir_channels + u->mapping_right[k]];
+ for (s = 0, fftlen = u->fftlen / 2 + 1; s < fftlen; s++) {
+ float re = f_ir[s][0] * f_in[s][0] - f_ir[s][1] * f_in[s][1];
+ float im = f_ir[s][1] * f_in[s][0] + f_ir[s][0] * f_in[s][1];
+ f_out[s][0] = re;
+ f_out[s][1] = im;
}
+
+ fftwf_execute(u->p_bw);
+
+ for (s = 0, fftlen = BLOCK_SIZE; s < fftlen; ++s)
+ outspace[s] += revspace[s] * fftlen_if;
}
+ }
+
+ dst = pa_memblock_acquire_chunk(chunk);
+
+ for (s = 0, fftlen = BLOCK_SIZE; s < fftlen; s++) {
+ float output;
+ float *outspace = u->outspace[0];
- dst[2 * l] = PA_CLAMP_UNLIKELY(sum_left, -1.0f, 1.0f);
- dst[2 * l + 1] = PA_CLAMP_UNLIKELY(sum_right, -1.0f, 1.0f);
+ output = outspace[s];
+ if (output < -1.0) output = -1.0;
+ if (output > 1.0) output = 1.0;
+ dst[s * 2 + 0] = output;
- u->input_buffer_offset--;
- if (u->input_buffer_offset < 0)
- u->input_buffer_offset += u->hrir_samples;
+ outspace = u->outspace[1];
+
+ output = outspace[s];
+ if (output < -1.0) output = -1.0;
+ if (output > 1.0) output = 1.0;
+ dst[s * 2 + 1] = output;
}
- pa_memblock_release(tchunk.memblock);
pa_memblock_release(chunk->memblock);
- pa_memblock_unref(tchunk.memblock);
-
return 0;
}
/* Called from I/O thread context */
-static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
+static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes_input) {
struct userdata *u;
size_t amount = 0;
+ size_t nbytes_sink;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
- /* If the sink is not yet linked, there is nothing to rewind */
- if (!PA_SINK_IS_LINKED(u->sink->thread_info.state))
- return;
+ nbytes_sink = sink_bytes(u, sink_input_samples(nbytes_input));
if (u->sink->thread_info.rewind_nbytes > 0) {
size_t max_rewrite;
- max_rewrite = nbytes * u->sink_fs / u->fs + pa_memblockq_get_length(u->memblockq);
- amount = PA_MIN(u->sink->thread_info.rewind_nbytes * u->sink_fs / u->fs, max_rewrite);
+ max_rewrite = nbytes_sink + pa_memblockq_get_length(u->memblockq_sink);
+ amount = PA_MIN(u->sink->thread_info.rewind_nbytes, max_rewrite);
u->sink->thread_info.rewind_nbytes = 0;
if (amount > 0) {
- pa_memblockq_seek(u->memblockq, - (int64_t) amount, PA_SEEK_RELATIVE, true);
-
- /* Reset the input buffer */
- memset(u->input_buffer, 0, u->hrir_samples * u->sink_fs);
- u->input_buffer_offset = 0;
+ pa_memblockq_seek(u->memblockq_sink, - (int64_t) amount, PA_SEEK_RELATIVE, true);
}
}
pa_sink_process_rewind(u->sink, amount);
- pa_memblockq_rewind(u->memblockq, nbytes * u->sink_fs / u->fs);
+
+ pa_memblockq_rewind(u->memblockq_sink, nbytes_sink);
}
/* Called from I/O thread context */
-static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
+static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes_input) {
struct userdata *u;
+ size_t nbytes_sink, nbytes_memblockq;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
+ nbytes_sink = sink_bytes(u, sink_input_samples(nbytes_input));
+ nbytes_memblockq = sink_bytes(u, sink_input_samples(nbytes_input) + u->fftlen);
+
/* FIXME: Too small max_rewind:
* https://bugs.freedesktop.org/show_bug.cgi?id=53709 */
- pa_memblockq_set_maxrewind(u->memblockq, nbytes * u->sink_fs / u->fs);
- pa_sink_set_max_rewind_within_thread(u->sink, nbytes * u->sink_fs / u->fs);
+ pa_memblockq_set_maxrewind(u->memblockq_sink, nbytes_memblockq);
+ pa_sink_set_max_rewind_within_thread(u->sink, nbytes_sink);
}
/* Called from I/O thread context */
-static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
+static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes_input) {
struct userdata *u;
+ size_t nbytes_sink;
+
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
- pa_sink_set_max_request_within_thread(u->sink, nbytes * u->sink_fs / u->fs);
+ nbytes_sink = sink_bytes(u, sink_input_samples(nbytes_input));
+
+ nbytes_sink = PA_ROUND_UP(nbytes_sink, sink_bytes(u, BLOCK_SIZE));
+ pa_sink_set_max_request_within_thread(u->sink, nbytes_sink);
}
/* Called from I/O thread context */
/* Called from I/O thread context */
static void sink_input_attach_cb(pa_sink_input *i) {
struct userdata *u;
+ size_t max_request;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency);
- pa_sink_set_max_request_within_thread(u->sink, pa_sink_input_get_max_request(i) * u->sink_fs / u->fs);
+ max_request = sink_bytes(u, sink_input_samples(pa_sink_input_get_max_request(i)));
+ max_request = PA_ROUND_UP(max_request, sink_bytes(u, BLOCK_SIZE));
+ pa_sink_set_max_request_within_thread(u->sink, max_request);
/* FIXME: Too small max_rewind:
* https://bugs.freedesktop.org/show_bug.cgi?id=53709 */
- pa_sink_set_max_rewind_within_thread(u->sink, pa_sink_input_get_max_rewind(i) * u->sink_fs / u->fs);
+ pa_sink_set_max_rewind_within_thread(u->sink, sink_bytes(u, sink_input_samples(pa_sink_input_get_max_rewind(i))));
- if (PA_SINK_IS_LINKED(u->sink->thread_info.state))
- pa_sink_attach_within_thread(u->sink);
+ pa_sink_attach_within_thread(u->sink);
}
/* Called from main context */
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
- /* The order here matters! We first kill the sink so that streams
- * can properly be moved away while the sink input is still connected
- * to the master. */
+ /* The order here matters! We first kill the sink input, followed
+ * by the sink. That means the sink callbacks must be protected
+ * against an unconnected sink input! */
pa_sink_input_cork(u->sink_input, true);
- pa_sink_unlink(u->sink);
pa_sink_input_unlink(u->sink_input);
+ pa_sink_unlink(u->sink);
pa_sink_input_unref(u->sink_input);
u->sink_input = NULL;
pa_sink_mute_changed(u->sink, i->muted);
}
-static pa_channel_position_t mirror_channel(pa_channel_position_t channel) {
- switch (channel) {
- case PA_CHANNEL_POSITION_FRONT_LEFT:
- return PA_CHANNEL_POSITION_FRONT_RIGHT;
-
- case PA_CHANNEL_POSITION_FRONT_RIGHT:
- return PA_CHANNEL_POSITION_FRONT_LEFT;
-
- case PA_CHANNEL_POSITION_REAR_LEFT:
- return PA_CHANNEL_POSITION_REAR_RIGHT;
-
- case PA_CHANNEL_POSITION_REAR_RIGHT:
- return PA_CHANNEL_POSITION_REAR_LEFT;
-
- case PA_CHANNEL_POSITION_SIDE_LEFT:
- return PA_CHANNEL_POSITION_SIDE_RIGHT;
-
- case PA_CHANNEL_POSITION_SIDE_RIGHT:
- return PA_CHANNEL_POSITION_SIDE_LEFT;
-
- case PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER:
- return PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER;
-
- case PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER:
- return PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER;
-
- case PA_CHANNEL_POSITION_TOP_FRONT_LEFT:
- return PA_CHANNEL_POSITION_TOP_FRONT_RIGHT;
-
- case PA_CHANNEL_POSITION_TOP_FRONT_RIGHT:
- return PA_CHANNEL_POSITION_TOP_FRONT_LEFT;
-
- case PA_CHANNEL_POSITION_TOP_REAR_LEFT:
- return PA_CHANNEL_POSITION_TOP_REAR_RIGHT;
-
- case PA_CHANNEL_POSITION_TOP_REAR_RIGHT:
- return PA_CHANNEL_POSITION_TOP_REAR_LEFT;
-
- default:
- return channel;
- }
-}
-
-static void normalize_hrir(struct userdata *u) {
- /* normalize hrir to avoid audible clipping
- *
- * The following heuristic tries to avoid audible clipping. It cannot avoid
- * clipping in the worst case though, because the scaling factor would
- * become too large resulting in a too quiet signal.
- * The idea of the heuristic is to avoid clipping when a single click is
- * played back on all channels. The scaling factor describes the additional
- * factor that is necessary to avoid clipping for "normal" signals.
- *
- * This algorithm doesn't pretend to be perfect, it's just something that
- * appears to work (not too quiet, no audible clipping) on the material that
- * it has been tested on. If you find a real-world example where this
- * algorithm results in audible clipping, please write a patch that adjusts
- * the scaling factor constants or improves the algorithm (or if you can't
- * write a patch, at least report the problem to the PulseAudio mailing list
- * or bug tracker). */
-
- const float scaling_factor = 2.5;
-
- float hrir_sum, hrir_max;
- unsigned i, j;
-
- hrir_max = 0;
- for (i = 0; i < u->hrir_samples; i++) {
- hrir_sum = 0;
- for (j = 0; j < u->hrir_channels; j++)
- hrir_sum += fabs(u->hrir_data[i * u->hrir_channels + j]);
-
- if (hrir_sum > hrir_max)
- hrir_max = hrir_sum;
- }
-
- for (i = 0; i < u->hrir_samples; i++) {
- for (j = 0; j < u->hrir_channels; j++)
- u->hrir_data[i * u->hrir_channels + j] /= hrir_max * scaling_factor;
- }
-}
-
int pa__init(pa_module*m) {
struct userdata *u;
- pa_sample_spec ss, sink_input_ss;
- pa_channel_map map, sink_input_map;
+ pa_sample_spec ss_input, ss_output;
+ pa_channel_map map_output;
pa_modargs *ma;
const char *master_name;
- pa_sink *master = NULL;
+ const char *hrir_left_file;
+ const char *hrir_right_file;
+ pa_sink *master=NULL;
pa_sink_input_new_data sink_input_data;
pa_sink_new_data sink_data;
bool use_volume_sharing = true;
bool force_flat_volume = false;
pa_memchunk silence;
+ const char* z;
+ unsigned i, j, ear, found_channel_left, found_channel_right;
+
+ pa_sample_spec ss;
+ pa_channel_map map;
+
+ float *hrir_data=NULL, *hrir_right_data=NULL;
+ float *hrir_temp_data;
+ size_t hrir_samples;
+ size_t hrir_copied_length, hrir_total_length;
+ int hrir_channels;
+ int fftlen;
+
+ float *impulse_temp=NULL;
- const char *hrir_file;
- unsigned i, j, found_channel_left, found_channel_right;
- float *hrir_data;
+ unsigned *mapping_left=NULL;
+ unsigned *mapping_right=NULL;
- pa_sample_spec hrir_ss;
- pa_channel_map hrir_map;
+ fftwf_plan p;
- pa_sample_spec hrir_temp_ss;
- pa_memchunk hrir_temp_chunk, hrir_temp_chunk_resampled;
+ pa_channel_map hrir_map, hrir_right_map;
+
+ pa_sample_spec hrir_left_temp_ss;
+ pa_memchunk hrir_left_temp_chunk, hrir_left_temp_chunk_resampled;
pa_resampler *resampler;
- size_t hrir_copied_length, hrir_total_length;
- hrir_temp_chunk.memblock = NULL;
- hrir_temp_chunk_resampled.memblock = NULL;
+ pa_sample_spec hrir_right_temp_ss;
+ pa_memchunk hrir_right_temp_chunk, hrir_right_temp_chunk_resampled;
pa_assert(m);
+ hrir_left_temp_chunk.memblock = NULL;
+ hrir_left_temp_chunk_resampled.memblock = NULL;
+ hrir_right_temp_chunk.memblock = NULL;
+ hrir_right_temp_chunk_resampled.memblock = NULL;
+
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("Failed to parse module arguments.");
goto fail;
"please use the 'sink_master' argument instead.");
}
- master = pa_namereg_get(m->core, master_name, PA_NAMEREG_SINK);
- if (!master) {
- pa_log("Master sink not found.");
+ if (!(master = pa_namereg_get(m->core, master_name, PA_NAMEREG_SINK))) {
+ pa_log("Master sink not found");
goto fail;
}
- pa_assert(master);
+ hrir_left_file = pa_modargs_get_value(ma, "hrir_left", NULL);
+ if (!hrir_left_file) {
+ hrir_left_file = pa_modargs_get_value(ma, "hrir", NULL);
+ if (!hrir_left_file) {
+ pa_log("Either the 'hrir' or 'hrir_left' module arguments are required.");
+ goto fail;
+ }
+ }
- u = pa_xnew0(struct userdata, 1);
- u->module = m;
- m->userdata = u;
+ hrir_right_file = pa_modargs_get_value(ma, "hrir_right", NULL);
- /* Initialize hrir and input buffer */
- /* this is the hrir file for the left ear! */
- if (!(hrir_file = pa_modargs_get_value(ma, "hrir", NULL))) {
- pa_log("The mandatory 'hrir' module argument is missing.");
- goto fail;
- }
+ pa_assert(master);
- if (pa_sound_file_load(master->core->mempool, hrir_file, &hrir_temp_ss, &hrir_map, &hrir_temp_chunk, NULL) < 0) {
+ if (pa_sound_file_load(master->core->mempool, hrir_left_file, &hrir_left_temp_ss, &hrir_map, &hrir_left_temp_chunk, NULL) < 0) {
pa_log("Cannot load hrir file.");
goto fail;
}
- /* sample spec / map of hrir */
- hrir_ss.format = PA_SAMPLE_FLOAT32;
- hrir_ss.rate = master->sample_spec.rate;
- hrir_ss.channels = hrir_temp_ss.channels;
+ if (hrir_right_file) {
+ if (pa_sound_file_load(master->core->mempool, hrir_right_file, &hrir_right_temp_ss, &hrir_right_map, &hrir_right_temp_chunk, NULL) < 0) {
+ pa_log("Cannot load hrir_right file.");
+ goto fail;
+ }
+ if (!pa_sample_spec_equal(&hrir_left_temp_ss, &hrir_right_temp_ss)) {
+ pa_log("Both hrir_left and hrir_right must have the same sample format");
+ goto fail;
+ }
+ if (!pa_channel_map_equal(&hrir_map, &hrir_right_map)) {
+ pa_log("Both hrir_left and hrir_right must have the same channel layout");
+ goto fail;
+ }
+ }
+
+ ss_input.format = PA_SAMPLE_FLOAT32NE;
+ ss_input.rate = master->sample_spec.rate;
+ ss_input.channels = hrir_left_temp_ss.channels;
- /* sample spec of sink */
- ss = hrir_ss;
+ ss = ss_input;
map = hrir_map;
if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) {
pa_log("Invalid sample format specification or channel map");
goto fail;
}
- ss.format = PA_SAMPLE_FLOAT32;
- hrir_ss.rate = ss.rate;
- u->channels = ss.channels;
+
+ ss.format = PA_SAMPLE_FLOAT32NE;
+ ss_input.rate = ss.rate;
+ ss_input.channels = ss.channels;
+
+ ss_output = ss_input;
+ ss_output.channels = 2;
if (pa_modargs_get_value_boolean(ma, "use_volume_sharing", &use_volume_sharing) < 0) {
pa_log("use_volume_sharing= expects a boolean argument");
goto fail;
}
- /* sample spec / map of sink input */
- pa_channel_map_init_stereo(&sink_input_map);
- sink_input_ss.channels = 2;
- sink_input_ss.format = PA_SAMPLE_FLOAT32;
- sink_input_ss.rate = ss.rate;
+ pa_channel_map_init_stereo(&map_output);
- u->sink_fs = pa_frame_size(&ss);
- u->fs = pa_frame_size(&sink_input_ss);
+ u = pa_xnew0(struct userdata, 1);
+ u->module = m;
+ m->userdata = u;
/* Create sink */
pa_sink_new_data_init(&sink_data);
sink_data.module = m;
if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL))))
sink_data.name = pa_sprintf_malloc("%s.vsurroundsink", master->name);
- pa_sink_new_data_set_sample_spec(&sink_data, &ss);
+ pa_sink_new_data_set_sample_spec(&sink_data, &ss_input);
pa_sink_new_data_set_channel_map(&sink_data, &map);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter");
}
if ((u->auto_desc = !pa_proplist_contains(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION))) {
- const char *z;
-
z = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION);
pa_proplist_setf(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "Virtual Surround Sink %s on %s", sink_data.name, z ? z : master->name);
}
pa_sink_set_set_volume_callback(u->sink, sink_set_volume_cb);
pa_sink_enable_decibel_volume(u->sink, true);
}
- /* Normally this flag would be enabled automatically be we can force it. */
+ /* Normally this flag would be enabled automatically but we can force it. */
if (force_flat_volume)
u->sink->flags |= PA_SINK_FLAT_VOLUME;
u->sink->userdata = u;
sink_input_data.origin_sink = u->sink;
pa_proplist_setf(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Virtual Surround Sink Stream from %s", pa_proplist_gets(u->sink->proplist, PA_PROP_DEVICE_DESCRIPTION));
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter");
- pa_sink_input_new_data_set_sample_spec(&sink_input_data, &sink_input_ss);
- pa_sink_input_new_data_set_channel_map(&sink_input_data, &sink_input_map);
- sink_input_data.flags |= PA_SINK_INPUT_START_CORKED;
+ pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss_output);
+ pa_sink_input_new_data_set_channel_map(&sink_input_data, &map_output);
pa_sink_input_new(&u->sink_input, m->core, &sink_input_data);
pa_sink_input_new_data_done(&sink_input_data);
u->sink->input_to_master = u->sink_input;
pa_sink_input_get_silence(u->sink_input, &silence);
- u->memblockq = pa_memblockq_new("module-virtual-surround-sink memblockq", 0, MEMBLOCKQ_MAXLENGTH, 0, &ss, 1, 1, 0, &silence);
- pa_memblock_unref(silence.memblock);
- /* resample hrir */
- resampler = pa_resampler_new(u->sink->core->mempool, &hrir_temp_ss, &hrir_map, &hrir_ss, &hrir_map, u->sink->core->lfe_crossover_freq,
+ resampler = pa_resampler_new(u->sink->core->mempool, &hrir_left_temp_ss, &hrir_map, &ss_input, &hrir_map, u->sink->core->lfe_crossover_freq,
PA_RESAMPLER_SRC_SINC_BEST_QUALITY, PA_RESAMPLER_NO_REMAP);
- u->hrir_samples = hrir_temp_chunk.length / pa_frame_size(&hrir_temp_ss) * hrir_ss.rate / hrir_temp_ss.rate;
- if (u->hrir_samples > 64) {
- u->hrir_samples = 64;
- pa_log("The (resampled) hrir contains more than 64 samples. Only the first 64 samples will be used to limit processor usage.");
- }
+ hrir_samples = hrir_left_temp_chunk.length / pa_frame_size(&hrir_left_temp_ss) * ss_input.rate / hrir_left_temp_ss.rate;
- hrir_total_length = u->hrir_samples * pa_frame_size(&hrir_ss);
- u->hrir_channels = hrir_ss.channels;
+ hrir_total_length = hrir_samples * pa_frame_size(&ss_input);
+ hrir_channels = ss_input.channels;
- u->hrir_data = (float *) pa_xmalloc(hrir_total_length);
+ hrir_data = (float *) pa_xmalloc(hrir_total_length);
hrir_copied_length = 0;
+ u->hrir_samples = hrir_samples;
+ u->inputs = hrir_channels;
+
/* add silence to the hrir until we get enough samples out of the resampler */
while (hrir_copied_length < hrir_total_length) {
- pa_resampler_run(resampler, &hrir_temp_chunk, &hrir_temp_chunk_resampled);
- if (hrir_temp_chunk.memblock != hrir_temp_chunk_resampled.memblock) {
+ pa_resampler_run(resampler, &hrir_left_temp_chunk, &hrir_left_temp_chunk_resampled);
+ if (hrir_left_temp_chunk.memblock != hrir_left_temp_chunk_resampled.memblock) {
/* Silence input block */
- pa_silence_memblock(hrir_temp_chunk.memblock, &hrir_temp_ss);
+ pa_silence_memblock(hrir_left_temp_chunk.memblock, &hrir_left_temp_ss);
}
- if (hrir_temp_chunk_resampled.memblock) {
+ if (hrir_left_temp_chunk_resampled.memblock) {
/* Copy hrir data */
- hrir_data = (float *) pa_memblock_acquire(hrir_temp_chunk_resampled.memblock);
+ hrir_temp_data = (float *) pa_memblock_acquire(hrir_left_temp_chunk_resampled.memblock);
- if (hrir_total_length - hrir_copied_length >= hrir_temp_chunk_resampled.length) {
- memcpy(u->hrir_data + hrir_copied_length, hrir_data, hrir_temp_chunk_resampled.length);
- hrir_copied_length += hrir_temp_chunk_resampled.length;
+ if (hrir_total_length - hrir_copied_length >= hrir_left_temp_chunk_resampled.length) {
+ memcpy(hrir_data + hrir_copied_length, hrir_temp_data, hrir_left_temp_chunk_resampled.length);
+ hrir_copied_length += hrir_left_temp_chunk_resampled.length;
} else {
- memcpy(u->hrir_data + hrir_copied_length, hrir_data, hrir_total_length - hrir_copied_length);
+ memcpy(hrir_data + hrir_copied_length, hrir_temp_data, hrir_total_length - hrir_copied_length);
hrir_copied_length = hrir_total_length;
}
- pa_memblock_release(hrir_temp_chunk_resampled.memblock);
- pa_memblock_unref(hrir_temp_chunk_resampled.memblock);
- hrir_temp_chunk_resampled.memblock = NULL;
+ pa_memblock_release(hrir_left_temp_chunk_resampled.memblock);
+ pa_memblock_unref(hrir_left_temp_chunk_resampled.memblock);
+ hrir_left_temp_chunk_resampled.memblock = NULL;
}
}
- pa_resampler_free(resampler);
+ pa_memblock_unref(hrir_left_temp_chunk.memblock);
+ hrir_left_temp_chunk.memblock = NULL;
- pa_memblock_unref(hrir_temp_chunk.memblock);
- hrir_temp_chunk.memblock = NULL;
+ if (hrir_right_file) {
+ pa_resampler_reset(resampler);
- if (hrir_map.channels < map.channels) {
- pa_log("hrir file does not have enough channels!");
- goto fail;
+ hrir_right_data = (float *) pa_xmalloc(hrir_total_length);
+ hrir_copied_length = 0;
+
+ while (hrir_copied_length < hrir_total_length) {
+ pa_resampler_run(resampler, &hrir_right_temp_chunk, &hrir_right_temp_chunk_resampled);
+ if (hrir_right_temp_chunk.memblock != hrir_right_temp_chunk_resampled.memblock) {
+ /* Silence input block */
+ pa_silence_memblock(hrir_right_temp_chunk.memblock, &hrir_right_temp_ss);
+ }
+
+ if (hrir_right_temp_chunk_resampled.memblock) {
+ /* Copy hrir data */
+ hrir_temp_data = (float *) pa_memblock_acquire(hrir_right_temp_chunk_resampled.memblock);
+
+ if (hrir_total_length - hrir_copied_length >= hrir_right_temp_chunk_resampled.length) {
+ memcpy(hrir_right_data + hrir_copied_length, hrir_temp_data, hrir_right_temp_chunk_resampled.length);
+ hrir_copied_length += hrir_right_temp_chunk_resampled.length;
+ } else {
+ memcpy(hrir_right_data + hrir_copied_length, hrir_temp_data, hrir_total_length - hrir_copied_length);
+ hrir_copied_length = hrir_total_length;
+ }
+
+ pa_memblock_release(hrir_right_temp_chunk_resampled.memblock);
+ pa_memblock_unref(hrir_right_temp_chunk_resampled.memblock);
+ hrir_right_temp_chunk_resampled.memblock = NULL;
+ }
+ }
+
+ pa_memblock_unref(hrir_right_temp_chunk.memblock);
+ hrir_right_temp_chunk.memblock = NULL;
}
- normalize_hrir(u);
+ pa_resampler_free(resampler);
+
+ if (hrir_right_data)
+ normalize_hrir_stereo(hrir_data, hrir_right_data, hrir_samples, hrir_channels);
+ else
+ normalize_hrir(hrir_data, hrir_samples, hrir_channels);
/* create mapping between hrir and input */
- u->mapping_left = (unsigned *) pa_xnew0(unsigned, u->channels);
- u->mapping_right = (unsigned *) pa_xnew0(unsigned, u->channels);
+ mapping_left = (unsigned *) pa_xnew0(unsigned, hrir_channels);
+ mapping_right = (unsigned *) pa_xnew0(unsigned, hrir_channels);
for (i = 0; i < map.channels; i++) {
found_channel_left = 0;
found_channel_right = 0;
for (j = 0; j < hrir_map.channels; j++) {
if (hrir_map.map[j] == map.map[i]) {
- u->mapping_left[i] = j;
+ mapping_left[i] = j;
found_channel_left = 1;
}
if (hrir_map.map[j] == mirror_channel(map.map[i])) {
- u->mapping_right[i] = j;
+ mapping_right[i] = j;
found_channel_right = 1;
}
}
}
}
- u->input_buffer = pa_xmalloc0(u->hrir_samples * u->sink_fs);
- u->input_buffer_offset = 0;
+ fftlen = (hrir_samples + BLOCK_SIZE + 1); /* Grow a bit for overlap */
+ {
+ /* Round up to a power of two */
+ int pow = 1;
+ while (fftlen > 2) { pow++; fftlen /= 2; }
+ fftlen = 2 << pow;
+ }
+
+ u->fftlen = fftlen;
+
+ u->f_in = (fftwf_complex*) alloc(sizeof(fftwf_complex), (fftlen/2+1));
+ u->f_out = (fftwf_complex*) alloc(sizeof(fftwf_complex), (fftlen/2+1));
+
+ u->f_ir = (fftwf_complex**) alloc(sizeof(fftwf_complex*), (hrir_channels*2));
+ for (i = 0, j = hrir_channels*2; i < j; i++)
+ u->f_ir[i] = (fftwf_complex*) alloc(sizeof(fftwf_complex), (fftlen/2+1));
+
+ u->revspace = (float*) alloc(sizeof(float), fftlen);
+
+ u->outspace[0] = (float*) alloc(sizeof(float), BLOCK_SIZE);
+ u->outspace[1] = (float*) alloc(sizeof(float), BLOCK_SIZE);
+
+ u->inspace = (float**) alloc(sizeof(float*), hrir_channels);
+ for (i = 0; i < hrir_channels; i++)
+ u->inspace[i] = (float*) alloc(sizeof(float), fftlen);
+
+ u->p_fw = (fftwf_plan*) alloc(sizeof(fftwf_plan), hrir_channels);
+ for (i = 0; i < hrir_channels; i++)
+ pa_assert_se(u->p_fw[i] = fftwf_plan_dft_r2c_1d(fftlen, u->inspace[i], u->f_in, FFTW_ESTIMATE));
+
+ pa_assert_se(u->p_bw = fftwf_plan_dft_c2r_1d(fftlen, u->f_out, u->revspace, FFTW_ESTIMATE));
+
+ impulse_temp = (float*) alloc(sizeof(float), fftlen);
+
+ if (hrir_right_data) {
+ for (i = 0; i < hrir_channels; i++) {
+ for (ear = 0; ear < 2; ear++) {
+ size_t index = i * 2 + ear;
+ size_t impulse_index = mapping_left[i];
+ float *impulse = (ear == 0) ? hrir_data : hrir_right_data;
+ for (j = 0; j < hrir_samples; j++) {
+ impulse_temp[j] = impulse[j * hrir_channels + impulse_index];
+ }
+
+ p = fftwf_plan_dft_r2c_1d(fftlen, impulse_temp, u->f_ir[index], FFTW_ESTIMATE);
+ if (p) {
+ fftwf_execute(p);
+ fftwf_destroy_plan(p);
+ } else {
+ pa_log("fftw plan creation failed for %s ear speaker index %d", (ear == 0) ? "left" : "right", i);
+ goto fail;
+ }
+ }
+ }
+ } else {
+ for (i = 0; i < hrir_channels; i++) {
+ for (ear = 0; ear < 2; ear++) {
+ size_t index = i * 2 + ear;
+ size_t impulse_index = (ear == 0) ? mapping_left[i] : mapping_right[i];
+ for (j = 0; j < hrir_samples; j++) {
+ impulse_temp[j] = hrir_data[j * hrir_channels + impulse_index];
+ }
+
+ p = fftwf_plan_dft_r2c_1d(fftlen, impulse_temp, u->f_ir[index], FFTW_ESTIMATE);
+ if (p) {
+ fftwf_execute(p);
+ fftwf_destroy_plan(p);
+ } else {
+ pa_log("fftw plan creation failed for %s ear speaker index %d", (ear == 0) ? "left" : "right", i);
+ goto fail;
+ }
+ }
+ }
+ }
+
+ pa_xfree(impulse_temp);
+
+ pa_xfree(hrir_data);
+ if (hrir_right_data)
+ pa_xfree(hrir_right_data);
+
+ pa_xfree(mapping_left);
+ pa_xfree(mapping_right);
+
+ u->memblockq_sink = pa_memblockq_new("module-virtual-surround-sink memblockq (input)", 0, MEMBLOCKQ_MAXLENGTH, sink_bytes(u, BLOCK_SIZE), &ss_input, 0, 0, sink_bytes(u, u->fftlen), &silence);
+ pa_memblock_unref(silence.memblock);
+
+ pa_memblockq_seek(u->memblockq_sink, sink_bytes(u, u->fftlen - BLOCK_SIZE), PA_SEEK_RELATIVE, false);
+ pa_memblockq_flush_read(u->memblockq_sink);
- /* The order here is important. The input must be put first,
- * otherwise streams might attach to the sink before the sink
- * input is attached to the master. */
- pa_sink_input_put(u->sink_input);
pa_sink_put(u->sink);
- pa_sink_input_cork(u->sink_input, false);
+ pa_sink_input_put(u->sink_input);
pa_modargs_free(ma);
+
return 0;
fail:
- if (hrir_temp_chunk.memblock)
- pa_memblock_unref(hrir_temp_chunk.memblock);
+ if (impulse_temp)
+ pa_xfree(impulse_temp);
+
+ if (mapping_left)
+ pa_xfree(mapping_left);
+
+ if (mapping_right)
+ pa_xfree(mapping_right);
+
+ if (hrir_data)
+ pa_xfree(hrir_data);
- if (hrir_temp_chunk_resampled.memblock)
- pa_memblock_unref(hrir_temp_chunk_resampled.memblock);
+ if (hrir_right_data)
+ pa_xfree(hrir_right_data);
+
+ if (hrir_left_temp_chunk.memblock)
+ pa_memblock_unref(hrir_left_temp_chunk.memblock);
+
+ if (hrir_left_temp_chunk_resampled.memblock)
+ pa_memblock_unref(hrir_left_temp_chunk_resampled.memblock);
+
+ if (hrir_right_temp_chunk.memblock)
+ pa_memblock_unref(hrir_right_temp_chunk.memblock);
+
+ if (hrir_right_temp_chunk_resampled.memblock)
+ pa_memblock_unref(hrir_right_temp_chunk_resampled.memblock);
if (ma)
pa_modargs_free(ma);
}
void pa__done(pa_module*m) {
+ size_t i, j;
struct userdata *u;
pa_assert(m);
* destruction order! */
if (u->sink_input)
- pa_sink_input_cork(u->sink_input, true);
+ pa_sink_input_unlink(u->sink_input);
if (u->sink)
pa_sink_unlink(u->sink);
- if (u->sink_input) {
- pa_sink_input_unlink(u->sink_input);
+ if (u->sink_input)
pa_sink_input_unref(u->sink_input);
- }
if (u->sink)
pa_sink_unref(u->sink);
- if (u->memblockq)
- pa_memblockq_free(u->memblockq);
+ if (u->memblockq_sink)
+ pa_memblockq_free(u->memblockq_sink);
- if (u->hrir_data)
- pa_xfree(u->hrir_data);
+ if (u->p_fw) {
+ for (i = 0, j = u->inputs; i < j; i++) {
+ if (u->p_fw[i])
+ fftwf_destroy_plan(u->p_fw[i]);
+ }
+ fftwf_free(u->p_fw);
+ }
- if (u->input_buffer)
- pa_xfree(u->input_buffer);
+ if (u->p_bw)
+ fftwf_destroy_plan(u->p_bw);
- if (u->mapping_left)
- pa_xfree(u->mapping_left);
- if (u->mapping_right)
- pa_xfree(u->mapping_right);
+ if (u->f_ir) {
+ for (i = 0, j = u->inputs * 2; i < j; i++) {
+ if (u->f_ir[i])
+ fftwf_free(u->f_ir[i]);
+ }
+ fftwf_free(u->f_ir);
+ }
+
+ if (u->f_out)
+ fftwf_free(u->f_out);
+
+ if (u->f_in)
+ fftwf_free(u->f_in);
+
+ if (u->revspace)
+ fftwf_free(u->revspace);
+
+ if (u->outspace[0])
+ fftwf_free(u->outspace[0]);
+ if (u->outspace[1])
+ fftwf_free(u->outspace[1]);
+
+ if (u->inspace) {
+ for (i = 0, j = u->inputs; i < j; i++) {
+ if (u->inspace[i])
+ fftwf_free(u->inspace[i]);
+ }
+ fftwf_free(u->inspace);
+ }
pa_xfree(u);
}