Merge tag 'flex-array-conversions-5.8-rc2' of git://git./linux/kernel/git/gustavoars/linux
Pull flexible-array member conversions from Gustavo A. R. Silva:
"Replace zero-length arrays with flexible-array members.
Notice that all of these patches have been baking in linux-next for
two development cycles now.
There is a regular need in the kernel to provide a way to declare
having a dynamically sized set of trailing elements in a structure.
Kernel code should always use “flexible array members”[1] for these
cases. The older style of one-element or zero-length arrays should no
longer be used[2].
C99 introduced “flexible array members”, which lacks a numeric size
for the array declaration entirely:
struct something {
size_t count;
struct foo items[];
};
This is the way the kernel expects dynamically sized trailing elements
to be declared. It allows the compiler to generate errors when the
flexible array does not occur last in the structure, which helps to
prevent some kind of undefined behavior[3] bugs from being
inadvertently introduced to the codebase.
It also allows the compiler to correctly analyze array sizes (via
sizeof(), CONFIG_FORTIFY_SOURCE, and CONFIG_UBSAN_BOUNDS). For
instance, there is no mechanism that warns us that the following
application of the sizeof() operator to a zero-length array always
results in zero:
struct something {
size_t count;
struct foo items[0];
};
struct something *instance;
instance = kmalloc(struct_size(instance, items, count), GFP_KERNEL);
instance->count = count;
size = sizeof(instance->items) * instance->count;
memcpy(instance->items, source, size);
At the last line of code above, size turns out to be zero, when one
might have thought it represents the total size in bytes of the
dynamic memory recently allocated for the trailing array items. Here
are a couple examples of this issue[4][5].
Instead, flexible array members have incomplete type, and so the
sizeof() operator may not be applied[6], so any misuse of such
operators will be immediately noticed at build time.
The cleanest and least error-prone way to implement this is through
the use of a flexible array member:
struct something {
size_t count;
struct foo items[];
};
struct something *instance;
instance = kmalloc(struct_size(instance, items, count), GFP_KERNEL);
instance->count = count;
size = sizeof(instance->items[0]) * instance->count;
memcpy(instance->items, source, size);
instead"
[1] https://en.wikipedia.org/wiki/Flexible_array_member
[2] https://github.com/KSPP/linux/issues/21
[3] commit
76497732932f ("cxgb3/l2t: Fix undefined behaviour")
[4] commit
f2cd32a443da ("rndis_wlan: Remove logically dead code")
[5] commit
ab91c2a89f86 ("tpm: eventlog: Replace zero-length array with flexible-array member")
[6] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
* tag 'flex-array-conversions-5.8-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux: (41 commits)
w1: Replace zero-length array with flexible-array
tracing/probe: Replace zero-length array with flexible-array
soc: ti: Replace zero-length array with flexible-array
tifm: Replace zero-length array with flexible-array
dmaengine: tegra-apb: Replace zero-length array with flexible-array
stm class: Replace zero-length array with flexible-array
Squashfs: Replace zero-length array with flexible-array
ASoC: SOF: Replace zero-length array with flexible-array
ima: Replace zero-length array with flexible-array
sctp: Replace zero-length array with flexible-array
phy: samsung: Replace zero-length array with flexible-array
RxRPC: Replace zero-length array with flexible-array
rapidio: Replace zero-length array with flexible-array
media: pwc: Replace zero-length array with flexible-array
firmware: pcdp: Replace zero-length array with flexible-array
oprofile: Replace zero-length array with flexible-array
block: Replace zero-length array with flexible-array
tools/testing/nvdimm: Replace zero-length array with flexible-array
libata: Replace zero-length array with flexible-array
kprobes: Replace zero-length array with flexible-array
...