libbpf: Add BPF-side of USDT support
Add BPF-side implementation of libbpf-provided USDT support. This
consists of single header library, usdt.bpf.h, which is meant to be used
from user's BPF-side source code. This header is added to the list of
installed libbpf header, along bpf_helpers.h and others.
BPF-side implementation consists of two BPF maps:
- spec map, which contains "a USDT spec" which encodes information
necessary to be able to fetch USDT arguments and other information
(argument count, user-provided cookie value, etc) at runtime;
- IP-to-spec-ID map, which is only used on kernels that don't support
BPF cookie feature. It allows to lookup spec ID based on the place
in user application that triggers USDT program.
These maps have default sizes, 256 and 1024, which are chosen
conservatively to not waste a lot of space, but handling a lot of common
cases. But there could be cases when user application needs to either
trace a lot of different USDTs, or USDTs are heavily inlined and their
arguments are located in a lot of differing locations. For such cases it
might be necessary to size those maps up, which libbpf allows to do by
overriding BPF_USDT_MAX_SPEC_CNT and BPF_USDT_MAX_IP_CNT macros.
It is an important aspect to keep in mind. Single USDT (user-space
equivalent of kernel tracepoint) can have multiple USDT "call sites".
That is, single logical USDT is triggered from multiple places in user
application. This can happen due to function inlining. Each such inlined
instance of USDT invocation can have its own unique USDT argument
specification (instructions about the location of the value of each of
USDT arguments). So while USDT looks very similar to usual uprobe or
kernel tracepoint, under the hood it's actually a collection of uprobes,
each potentially needing different spec to know how to fetch arguments.
User-visible API consists of three helper functions:
- bpf_usdt_arg_cnt(), which returns number of arguments of current USDT;
- bpf_usdt_arg(), which reads value of specified USDT argument (by
it's zero-indexed position) and returns it as 64-bit value;
- bpf_usdt_cookie(), which functions like BPF cookie for USDT
programs; this is necessary as libbpf doesn't allow specifying actual
BPF cookie and utilizes it internally for USDT support implementation.
Each bpf_usdt_xxx() APIs expect struct pt_regs * context, passed into
BPF program. On kernels that don't support BPF cookie it is used to
fetch absolute IP address of the underlying uprobe.
usdt.bpf.h also provides BPF_USDT() macro, which functions like
BPF_PROG() and BPF_KPROBE() and allows much more user-friendly way to
get access to USDT arguments, if USDT definition is static and known to
the user. It is expected that majority of use cases won't have to use
bpf_usdt_arg_cnt() and bpf_usdt_arg() directly and BPF_USDT() will cover
all their needs.
Last, usdt.bpf.h is utilizing BPF CO-RE for one single purpose: to
detect kernel support for BPF cookie. If BPF CO-RE dependency is
undesirable, user application can redefine BPF_USDT_HAS_BPF_COOKIE to
either a boolean constant (or equivalently zero and non-zero), or even
point it to its own .rodata variable that can be specified from user's
application user-space code. It is important that
BPF_USDT_HAS_BPF_COOKIE is known to BPF verifier as static value (thus
.rodata and not just .data), as otherwise BPF code will still contain
bpf_get_attach_cookie() BPF helper call and will fail validation at
runtime, if not dead-code eliminated.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Alan Maguire <alan.maguire@oracle.com>
Link: https://lore.kernel.org/bpf/20220404234202.331384-2-andrii@kernel.org