X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=lib%2Flsp.c;h=85880545159506a892dfcf80c0188f23f1ac4ab9;hb=a9eb99a5bd6f2d7da02d6cd13a428baf3a1bf48c;hp=0448de76b3e59b9d4f630bc0cb77b7694ea7c5d9;hpb=117b96ee4431075adc24c09afd0b6251c8ababd6;p=platform%2Fupstream%2Flibvorbis.git diff --git a/lib/lsp.c b/lib/lsp.c index 0448de7..8588054 100644 --- a/lib/lsp.c +++ b/lib/lsp.c @@ -1,165 +1,453 @@ /******************************************************************** * * - * THIS FILE IS PART OF THE Ogg Vorbis SOFTWARE CODEC SOURCE CODE. * - * USE, DISTRIBUTION AND REPRODUCTION OF THIS SOURCE IS GOVERNED BY * - * THE GNU PUBLIC LICENSE 2, WHICH IS INCLUDED WITH THIS SOURCE. * - * PLEASE READ THESE TERMS DISTRIBUTING. * + * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. * + * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * + * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * + * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * * * - * THE OggSQUISH SOURCE CODE IS (C) COPYRIGHT 1994-1999 * - * by 1999 Monty and The XIPHOPHORUS Company * - * http://www.xiph.org/ * + * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 * + * by the Xiph.Org Foundation http://www.xiph.org/ * * * ******************************************************************** function: LSP (also called LSF) conversion routines - author: Monty - modifications by: Monty - last modification date: Aug 03 1999 - The LSP generation code is taken (with minimal modification) from - "On the Computation of the LSP Frequencies" by Joseph Rothweiler - , available at: - - http://www2.xtdl.com/~rothwlr/lsfpaper/lsfpage.html + The LSP generation code is taken (with minimal modification and a + few bugfixes) from "On the Computation of the LSP Frequencies" by + Joseph Rothweiler (see http://www.rothweiler.us for contact info). + The paper is available at: + + http://www.myown1.com/joe/lsf ********************************************************************/ +/* Note that the lpc-lsp conversion finds the roots of polynomial with + an iterative root polisher (CACM algorithm 283). It *is* possible + to confuse this algorithm into not converging; that should only + happen with absurdly closely spaced roots (very sharp peaks in the + LPC f response) which in turn should be impossible in our use of + the code. If this *does* happen anyway, it's a bug in the floor + finder; find the cause of the confusion (probably a single bin + spike or accidental near-float-limit resolution problems) and + correct it. */ + #include #include #include +#include "lsp.h" +#include "os.h" +#include "misc.h" +#include "lookup.h" +#include "scales.h" -void vorbis_lsp_to_lpc(double *lsp,double *lpc,int m){ - int i,j,m2=m/2; - double O[m2],E[m2]; - double A,Ae[m2+1],Ao[m2+1]; - double B,Be[m2],Bo[m2]; - double temp; - - /* even/odd roots setup */ - for(i=0;i>1; + + while(c--){ + q*=ftmp[0]-w; + p*=ftmp[1]-w; + ftmp+=2; + } + + if(m&1){ + /* odd order filter; slightly assymetric */ + /* the last coefficient */ + q*=ftmp[0]-w; + q*=q; + p*=p*(1.f-w*w); + }else{ + /* even order filter; still symmetric */ + q*=q*(1.f+w); + p*=p*(1.f-w); + } - /* set up impulse response */ - for(j=0;j>25])) + if(!(shift=MLOOP_2[(pi|qi)>>19])) + shift=MLOOP_3[(pi|qi)>>16]; + qi=(qi>>shift)*labs(ilsp[j-1]-wi); + pi=(pi>>shift)*labs(ilsp[j]-wi); + qexp+=shift; + } + if(!(shift=MLOOP_1[(pi|qi)>>25])) + if(!(shift=MLOOP_2[(pi|qi)>>19])) + shift=MLOOP_3[(pi|qi)>>16]; + + /* pi,qi normalized collectively, both tracked using qexp */ + + if(m&1){ + /* odd order filter; slightly assymetric */ + /* the last coefficient */ + qi=(qi>>shift)*labs(ilsp[j-1]-wi); + pi=(pi>>shift)<<14; + qexp+=shift; + + if(!(shift=MLOOP_1[(pi|qi)>>25])) + if(!(shift=MLOOP_2[(pi|qi)>>19])) + shift=MLOOP_3[(pi|qi)>>16]; + + pi>>=shift; + qi>>=shift; + qexp+=shift-14*((m+1)>>1); + + pi=((pi*pi)>>16); + qi=((qi*qi)>>16); + qexp=qexp*2+m; + + pi*=(1<<14)-((wi*wi)>>14); + qi+=pi>>14; + + }else{ + /* even order filter; still symmetric */ + + /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't + worth tracking step by step */ + + pi>>=shift; + qi>>=shift; + qexp+=shift-7*m; + + pi=((pi*pi)>>16); + qi=((qi*qi)>>16); + qexp=qexp*2+m; + + pi*=(1<<14)-wi; + qi*=(1<<14)+wi; + qi=(qi+pi)>>14; + } - lpc[i-1]=(A+Ao[j]+B-Ae[j])/2; - Ao[j]=A; - Ae[j]=B; + + + /* we've let the normalization drift because it wasn't important; + however, for the lookup, things must be normalized again. We + need at most one right shift or a number of left shifts */ + + if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */ + qi>>=1; qexp++; + }else + while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/ + qi<<=1; qexp--; + } + + amp=vorbis_fromdBlook_i(ampi* /* n.4 */ + vorbis_invsqlook_i(qi,qexp)- + /* m.8, m+n<=8 */ + ampoffseti); /* 8.12[0] */ + + curve[i]*=amp; + while(map[++i]==k)curve[i]*=amp; } } -static void kw(double *r,int n) { - double s[n/2+1]; - double c[n+1]; - int i, j, k; - - s[0] = 1.0; - s[1] = -2.0; - s[2] = 2.0; - for(i=3;i<=n/2;i++) s[i] = s[i-2]; - - for(k=0;k<=n;k++) { - c[k] = r[k]; - j = 1; - for(i=k+2;i<=n;i+=2) { - c[k] += s[j]*r[i]; - s[j] -= s[j-1]; - j++; +#else + +/* old, nonoptimized but simple version for any poor sap who needs to + figure out what the hell this code does, or wants the other + fraction of a dB precision */ + +/* side effect: changes *lsp to cosines of lsp */ +void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, + float amp,float ampoffset){ + int i; + float wdel=M_PI/ln; + for(i=0;i= i; j--) { + g[j-2] -= g[j]; + g[j] += g[j]; + } + } +} static int comp(const void *a,const void *b){ - return(*(double *)a<*(double *)b); + return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b); +} + +/* Newton-Raphson-Maehly actually functioned as a decent root finder, + but there are root sets for which it gets into limit cycles + (exacerbated by zero suppression) and fails. We can't afford to + fail, even if the failure is 1 in 100,000,000, so we now use + Laguerre and later polish with Newton-Raphson (which can then + afford to fail) */ + +#define EPSILON 10e-7 +static int Laguerre_With_Deflation(float *a,int ord,float *r){ + int i,m; + double *defl=alloca(sizeof(*defl)*(ord+1)); + for(i=0;i<=ord;i++)defl[i]=a[i]; + + for(m=ord;m>0;m--){ + double new=0.f,delta; + + /* iterate a root */ + while(1){ + double p=defl[m],pp=0.f,ppp=0.f,denom; + + /* eval the polynomial and its first two derivatives */ + for(i=m;i>0;i--){ + ppp = new*ppp + pp; + pp = new*pp + p; + p = new*p + defl[i-1]; + } + + /* Laguerre's method */ + denom=(m-1) * ((m-1)*pp*pp - m*p*ppp); + if(denom<0) + return(-1); /* complex root! The LPC generator handed us a bad filter */ + + if(pp>0){ + denom = pp + sqrt(denom); + if(denom-(EPSILON))denom=-(EPSILON); + } + + delta = m*p/denom; + new -= delta; + + if(delta<0.f)delta*=-1; + + if(fabs(delta/new)<10e-12)break; + } + + r[m-1]=new; + + /* forward deflation */ + + for(i=m;i>0;i--) + defl[i-1]+=new*defl[i]; + defl++; + + } + return(0); } -/* CACM algorithm 283. */ -static void cacm283(double *a,int ord,double *r){ - int i, k; - double val, p, delta, error; - double rooti; - - for(i=0; i 1.e-12; ) { - error = 0; - for( i=0; i1e-20){ + error=0; + + for(i=0; i= 0; k--) { - val = val * rooti + a[k]; - if (k != i) p *= rooti - r[k]; + + pp= pp* rooti + p; + p = p * rooti + a[k]; } - delta = val/p; - r[i] -= delta; - error += delta*delta; + + delta = p/pp; + root[i] -= delta; + error+= delta*delta; } + + if(count>40)return(-1); + + count++; } - + /* Replaced the original bubble sort with a real sort. With your help, we can eliminate the bubble sort in our lifetime. --Monty */ - - qsort(r,ord,sizeof(double),comp); + for(i=0; i>1; + int g1_order,g2_order; + float *g1=alloca(sizeof(*g1)*(order2+1)); + float *g2=alloca(sizeof(*g2)*(order2+1)); + float *g1r=alloca(sizeof(*g1r)*(order2+1)); + float *g2r=alloca(sizeof(*g2r)*(order2+1)); int i; + /* even and odd are slightly different base cases */ + g1_order=(m+1)>>1; + g2_order=(m) >>1; + /* Compute the lengths of the x polynomials. */ /* Compute the first half of K & R F1 & F2 polynomials. */ /* Compute half of the symmetric and antisymmetric polynomials. */ /* Remove the roots at +1 and -1. */ - - g1[order2] = 1.0; - for(i=0;ig2_order){ + for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2]; + }else{ + for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1]; + for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1]; + } /* Convert into polynomials in cos(alpha) */ - kw(g1,order2); - kw(g2,order2); + cheby(g1,g1_order); + cheby(g2,g2_order); /* Find the roots of the 2 even polynomials.*/ - - cacm283(g1,order2,g1r); - cacm283(g2,order2,g2r); - - for(i=0;i