X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=lib%2Flpc.c;h=798f4cf0766418856ad02c77ebdc9e583a8a01e6;hb=46e70fa6573e206c2555cd99a53204ffd6bf58fd;hp=63e510f6e0da60b48073e8ba6ec3a7b60914b0f3;hpb=c8676ddad27bd857f24274cefcd3a8ddb7c49188;p=platform%2Fupstream%2Flibvorbis.git diff --git a/lib/lpc.c b/lib/lpc.c index 63e510f..798f4cf 100644 --- a/lib/lpc.c +++ b/lib/lpc.c @@ -1,18 +1,16 @@ /******************************************************************** * * - * THIS FILE IS PART OF THE Ogg Vorbis SOFTWARE CODEC SOURCE CODE. * - * USE, DISTRIBUTION AND REPRODUCTION OF THIS SOURCE IS GOVERNED BY * - * THE GNU PUBLIC LICENSE 2, WHICH IS INCLUDED WITH THIS SOURCE. * - * PLEASE READ THESE TERMS DISTRIBUTING. * + * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. * + * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * + * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * + * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * * * - * THE OggSQUISH SOURCE CODE IS (C) COPYRIGHT 1994-2000 * - * by Monty and The XIPHOPHORUS Company * - * http://www.xiph.org/ * + * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 * + * by the Xiph.Org Foundation http://www.xiph.org/ * * * ******************************************************************** function: LPC low level routines - last mod: $Id: lpc.c,v 1.19 2000/05/01 05:46:23 jon Exp $ ********************************************************************/ @@ -59,30 +57,34 @@ Carsten Bormann /* Input : n elements of time doamin data Output: m lpc coefficients, excitation energy */ -double vorbis_lpc_from_data(double *data,double *lpc,int n,int m){ - double *aut=alloca(sizeof(double)*(m+1)); +float vorbis_lpc_from_data(float *data,float *lpci,int n,int m){ + double *aut=alloca(sizeof(*aut)*(m+1)); + double *lpc=alloca(sizeof(*lpc)*(m)); double error; + double epsilon; int i,j; /* autocorrelation, p+1 lag coefficients */ - j=m+1; while(j--){ - double d=0; - for(i=j;iln; - int m=l->m; - double *work=alloca(sizeof(double)*(n+n)); - double fscale=.5/n; - int i,j; - - /* input is a real curve. make it complex-real */ - /* This mixes phase, but the LPC generation doesn't care. */ - for(i=0;ifft,work); - - /* The autocorrelation will not be circular. Shift, else we lose - most of the power in the edges. */ - - for(i=0,j=n/2;in=n; - l->ln=mapped; - l->m=m; - - l->linearmap=malloc(n*sizeof(int)); - l->barknorm=malloc(mapped*sizeof(double)); - - /* we choose a scaling constant so that: - floor(bark(rate/2-1)*C)=mapped-1 - floor(bark(rate/2)*C)=mapped */ - - scale=mapped/toBARK(rate/2.); - - /* the mapping from a linear scale to a smaller bark scale is - straightforward. We do *not* make sure that the linear mapping - does not skip bark-scale bins; the decoder simply skips them and - the encoder may do what it wishes in filling them. They're - necessary in some mapping combinations to keep the scale spacing - accurate */ - { - int last=-1; - for(i=0;i=mapped)val=mapped; /* guard against the approximation */ - l->linearmap[i]=val; - last=val; - } - } - - /* 'Normalization' is just making sure that power isn't lost in the - log scale by virtue of compressing the scale in higher - frequencies. We figure the weight of bands in proportion to - their linear/bark width ratio below, again, authoritatively. We - use computed width (not the number of actual bins above) for - smoothness in the scale; they should agree closely */ - - /* keep it 0. to 1., else the dynamic range starts spreading through - all the squaring... */ - - for(i=0;ibarknorm[i]=(fromBARK((i+1)/scale)-fromBARK(i/scale)); - for(i=0;ibarknorm[i]/=l->barknorm[mapped-1]; - - /* we cheat decoding the LPC spectrum via FFTs */ - - drft_init(&l->fft,mapped*2); - -} - -void lpc_clear(lpc_lookup *l){ - if(l){ - if(l->barknorm)free(l->barknorm); - if(l->linearmap)free(l->linearmap); - drft_clear(&l->fft); - } -} - - -/* less efficient than the decode side (written for clarity). We're - not bottlenecked here anyway */ -static int frameno=-1; - -double vorbis_curve_to_lpc(double *curve,double *lpc,lpc_lookup *l){ - /* map the input curve to a bark-scale curve for encoding */ - - int mapped=l->ln; - double *work=alloca(sizeof(double)*mapped); - int i,j,last=0; - - frameno++; - _analysis_output("lpc_pre",frameno,curve,l->n); - - memset(work,0,sizeof(double)*mapped); - - /* Only the decode side is behavior-specced; for now in the encoder, - we select the maximum value of each band as representative (this - helps make sure peaks don't go out of range. In error terms, - selecting min would make more sense, but the codebook is trained - numerically, so we don't actually lose. We'd still want to - use the original curve for error and noise estimation */ - - for(i=0;in;i++){ - int bark=l->linearmap[i]; - if(work[bark]last+1){ - /* If the bark scale is climbing rapidly, some bins may end up - going unused. This isn't a waste actually; it keeps the - scale resolution even so that the LPC generator has an easy - time. However, if we leave the bins empty we lose energy. - So, fill 'em in. The decoder does not do anything with he - unused bins, so we can fill them anyway we like to end up - with a better spectral curve */ - - /* we'll always have a bin zero, so we don't need to guard init */ - long span=bark-last; - for(j=1;jln); - for(i=0;ibarknorm[i]; - _analysis_output("lpc_prelognorm",frameno,work,l->ln); - - return vorbis_lpc_from_spectrum(work,lpc,l); -} - + if(i&1)lpc[j]+=lpc[j]*r; -/* One can do this the long way by generating the transfer function in - the time domain and taking the forward FFT of the result. The - results from direct calculation are cleaner and faster. + error*=1.-r*r; - This version does a linear curve generation and then later - interpolates the log curve from the linear curve. */ - -void _vlpc_de_helper(double *curve,double *lpc,double amp, - lpc_lookup *l){ - int i; - memset(curve,0,sizeof(double)*l->ln*2); - if(amp==0)return; - - for(i=0;im;i++){ - curve[i*2+1]=lpc[i]/(4*amp); - curve[i*2+2]=-lpc[i]/(4*amp); } - drft_backward(&l->fft,curve); /* reappropriated ;-) */ + done: + /* slightly damp the filter */ { - int l2=l->ln*2; - double unit=1./amp; - curve[0]=(1./(curve[0]*2+unit)); - for(i=1;iln;i++){ - double real=(curve[i]+curve[l2-i]); - double imag=(curve[i]-curve[l2-i]); - - double a = real + unit; - curve[i] = 1.0 / FAST_HYPOT(a, imag); + double g = .99; + double damp = g; + for(j=0;jln*2)); - int i; - - if(amp==0){ - memset(curve,0,sizeof(double)*l->n); - return; - } - _vlpc_de_helper(lcurve,lpc,amp,l); - _analysis_output("lpc_lognorm",frameno,lcurve,l->ln); - - for(i=0;iln;i++)lcurve[i]/=l->barknorm[i]; - _analysis_output("lpc_log",frameno,lcurve,l->ln); - for(i=0;in;i++)curve[i]=lcurve[l->linearmap[i]]; - _analysis_output("lpc",frameno,curve,l->n); - -} -/* subtract or add an lpc filter to data. Vorbis doesn't actually use this. */ + for(j=0;j