X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=isl_tab_pip.c;h=f6e238a26a6a2180e7ae80438914d65ad2502787;hb=f6cbdb2ed96a00ac5aa0136c06605bd552d33d84;hp=4758106803d774368802f99a24779a0691a5f3be;hpb=5838a24b6ca93204c2e7422550426d8885558bf2;p=platform%2Fupstream%2Fisl.git diff --git a/isl_tab_pip.c b/isl_tab_pip.c index 4758106..f6e238a 100644 --- a/isl_tab_pip.c +++ b/isl_tab_pip.c @@ -1,7 +1,21 @@ +/* + * Copyright 2008-2009 Katholieke Universiteit Leuven + * Copyright 2010 INRIA Saclay + * + * Use of this software is governed by the GNU LGPLv2.1 license + * + * Written by Sven Verdoolaege, K.U.Leuven, Departement + * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium + * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, + * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France + */ + +#include #include "isl_map_private.h" -#include "isl_seq.h" +#include #include "isl_tab.h" #include "isl_sample.h" +#include /* * The implementation of parametric integer linear programming in this file @@ -12,7 +26,7 @@ * The strategy used for obtaining a feasible solution is different * from the one used in isl_tab.c. In particular, in isl_tab.c, * upon finding a constraint that is not yet satisfied, we pivot - * in a row that increases the constant term of row holding the + * in a row that increases the constant term of the row holding the * constraint, making sure the sample solution remains feasible * for all the constraints it already satisfied. * Here, we always pivot in the row holding the constraint, @@ -26,10 +40,10 @@ * then the initial sample value may be chosen equal to zero. * However, we will not make this assumption. Instead, we apply * the "big parameter" trick. Any variable x is then not directly - * used in the tableau, but instead it its represented by another + * used in the tableau, but instead it is represented by another * variable x' = M + x, where M is an arbitrarily large (positive) * value. x' is therefore always non-negative, whatever the value of x. - * Taking as initial smaple value x' = 0 corresponds to x = -M, + * Taking as initial sample value x' = 0 corresponds to x = -M, * which is always smaller than any possible value of x. * * The big parameter trick is used in the main tableau and @@ -71,9 +85,8 @@ struct isl_context_op { /* return index of a div that corresponds to "div" */ int (*get_div)(struct isl_context *context, struct isl_tab *tab, struct isl_vec *div); - /* add div "div" to context and return index and non-negativity */ - int (*add_div)(struct isl_context *context, struct isl_vec *div, - int *nonneg); + /* add div "div" to context and return non-negativity */ + int (*add_div)(struct isl_context *context, struct isl_vec *div); int (*detect_equalities)(struct isl_context *context, struct isl_tab *tab); /* return row index of "best" split */ @@ -440,17 +453,17 @@ static void sol_add(struct isl_sol *sol, struct isl_tab *tab) isl_seq_clr(mat->row[1 + row], mat->n_col); if (!tab->var[i].is_row) { - /* no unbounded */ - isl_assert(mat->ctx, !tab->M, goto error2); + if (tab->M) + isl_die(mat->ctx, isl_error_invalid, + "unbounded optimum", goto error2); continue; } r = tab->var[i].index; - /* no unbounded */ - if (tab->M) - isl_assert(mat->ctx, isl_int_eq(tab->mat->row[r][2], - tab->mat->row[r][0]), - goto error2); + if (tab->M && + isl_int_ne(tab->mat->row[r][2], tab->mat->row[r][0])) + isl_die(mat->ctx, isl_error_invalid, + "unbounded optimum", goto error2); isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]); isl_int_divexact(m, tab->mat->row[r][0], m); scale_rows(mat, m, 1 + row); @@ -486,7 +499,7 @@ error2: error: isl_basic_set_free(bset); isl_mat_free(mat); - sol_free(sol); + sol->error = 1; } struct isl_sol_map { @@ -497,6 +510,8 @@ struct isl_sol_map { static void sol_map_free(struct isl_sol_map *sol_map) { + if (!sol_map) + return; if (sol_map->sol.context) sol_map->sol.context->op->free(sol_map->sol.context); isl_map_free(sol_map->map); @@ -523,7 +538,7 @@ static void sol_map_add_empty(struct isl_sol_map *sol, sol->empty = isl_set_grow(sol->empty, 1); bset = isl_basic_set_simplify(bset); bset = isl_basic_set_finalize(bset); - sol->empty = isl_set_add(sol->empty, isl_basic_set_copy(bset)); + sol->empty = isl_set_add_basic_set(sol->empty, isl_basic_set_copy(bset)); if (!sol->empty) goto error; isl_basic_set_free(bset); @@ -539,6 +554,18 @@ static void sol_map_add_empty_wrap(struct isl_sol *sol, sol_map_add_empty((struct isl_sol_map *)sol, bset); } +/* Add bset to sol's empty, but only if we are actually collecting + * the empty set. + */ +static void sol_map_add_empty_if_needed(struct isl_sol_map *sol, + struct isl_basic_set *bset) +{ + if (sol->empty) + sol_map_add_empty(sol, bset); + else + isl_basic_set_free(bset); +} + /* Given a basic map "dom" that represents the context and an affine * matrix "M" that maps the dimensions of the context to the * output variables, construct a basic map with the same parameters @@ -621,7 +648,7 @@ static void sol_map_add(struct isl_sol_map *sol, bmap = isl_basic_map_simplify(bmap); bmap = isl_basic_map_finalize(bmap); sol->map = isl_map_grow(sol->map, 1); - sol->map = isl_map_add(sol->map, bmap); + sol->map = isl_map_add_basic_map(sol->map, bmap); if (!sol->map) goto error; isl_basic_set_free(dom); @@ -1050,7 +1077,7 @@ error: } /* Return the first known violated constraint, i.e., a non-negative - * contraint that currently has an either obviously negative value + * constraint that currently has an either obviously negative value * or a previously determined to be negative value. * * If any constraint has a negative coefficient for the big parameter, @@ -1064,8 +1091,11 @@ static int first_neg(struct isl_tab *tab) for (row = tab->n_redundant; row < tab->n_row; ++row) { if (!isl_tab_var_from_row(tab, row)->is_nonneg) continue; - if (isl_int_is_neg(tab->mat->row[row][2])) - return row; + if (!isl_int_is_neg(tab->mat->row[row][2])) + continue; + if (tab->row_sign) + tab->row_sign[row] = isl_tab_row_neg; + return row; } for (row = tab->n_redundant; row < tab->n_row; ++row) { if (!isl_tab_var_from_row(tab, row)->is_nonneg) @@ -1083,9 +1113,45 @@ static int first_neg(struct isl_tab *tab) return -1; } +/* Check whether the invariant that all columns are lexico-positive + * is satisfied. This function is not called from the current code + * but is useful during debugging. + */ +static void check_lexpos(struct isl_tab *tab) +{ + unsigned off = 2 + tab->M; + int col; + int var; + int row; + + for (col = tab->n_dead; col < tab->n_col; ++col) { + if (tab->col_var[col] >= 0 && + (tab->col_var[col] < tab->n_param || + tab->col_var[col] >= tab->n_var - tab->n_div)) + continue; + for (var = tab->n_param; var < tab->n_var - tab->n_div; ++var) { + if (!tab->var[var].is_row) { + if (tab->var[var].index == col) + break; + else + continue; + } + row = tab->var[var].index; + if (isl_int_is_zero(tab->mat->row[row][off + col])) + continue; + if (isl_int_is_pos(tab->mat->row[row][off + col])) + break; + fprintf(stderr, "lexneg column %d (row %d)\n", + col, row); + } + if (var >= tab->n_var - tab->n_div) + fprintf(stderr, "zero column %d\n", col); + } +} + /* Resolve all known or obviously violated constraints through pivoting. * In particular, as long as we can find any violated constraint, we - * look for a pivoting column that would result in the lexicographicallly + * look for a pivoting column that would result in the lexicographically * smallest increment in the sample point. If there is no such column * then the tableau is infeasible. */ @@ -1100,8 +1166,11 @@ static struct isl_tab *restore_lexmin(struct isl_tab *tab) return tab; while ((row = first_neg(tab)) != -1) { col = lexmin_pivot_col(tab, row); - if (col >= tab->n_col) - return isl_tab_mark_empty(tab); + if (col >= tab->n_col) { + if (isl_tab_mark_empty(tab) < 0) + goto error; + return tab; + } if (col < 0) goto error; if (isl_tab_pivot(tab, row, col) < 0) @@ -1194,8 +1263,6 @@ static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq) if (isl_tab_kill_col(tab, i) < 0) goto error; tab->n_eq++; - - tab = restore_lexmin(tab); } return tab; @@ -1243,8 +1310,11 @@ static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq) row = tab->con[r1].index; if (is_constant(tab, row)) { if (!isl_int_is_zero(tab->mat->row[row][1]) || - (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) - return isl_tab_mark_empty(tab); + (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) { + if (isl_tab_mark_empty(tab) < 0) + goto error; + return tab; + } if (isl_tab_rollback(tab, snap) < 0) goto error; return tab; @@ -1273,30 +1343,18 @@ static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq) } else if (!tab->con[r2].is_row) { if (isl_tab_kill_col(tab, tab->con[r2].index) < 0) goto error; - } else if (isl_int_is_zero(tab->mat->row[tab->con[r1].index][1])) { - unsigned off = 2 + tab->M; - int i; - int row = tab->con[r1].index; - i = isl_seq_first_non_zero(tab->mat->row[row]+off+tab->n_dead, - tab->n_col - tab->n_dead); - if (i != -1) { - if (isl_tab_pivot(tab, row, tab->n_dead + i) < 0) - goto error; - if (isl_tab_kill_col(tab, tab->n_dead + i) < 0) - goto error; - } } - if (tab->bset) { - tab->bset = isl_basic_set_add_ineq(tab->bset, eq); - if (isl_tab_push(tab, isl_tab_undo_bset_ineq) < 0) + if (tab->bmap) { + tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq); + if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0) goto error; isl_seq_neg(eq, eq, 1 + tab->n_var); - tab->bset = isl_basic_set_add_ineq(tab->bset, eq); + tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq); isl_seq_neg(eq, eq, 1 + tab->n_var); - if (isl_tab_push(tab, isl_tab_undo_bset_ineq) < 0) + if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0) goto error; - if (!tab->bset) + if (!tab->bmap) goto error; } @@ -1315,11 +1373,11 @@ static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq) if (!tab) return NULL; - if (tab->bset) { - tab->bset = isl_basic_set_add_ineq(tab->bset, ineq); - if (isl_tab_push(tab, isl_tab_undo_bset_ineq) < 0) + if (tab->bmap) { + tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq); + if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0) goto error; - if (!tab->bset) + if (!tab->bmap) goto error; } r = isl_tab_add_row(tab, ineq); @@ -1404,8 +1462,9 @@ static int integer_constant(struct isl_tab *tab, int row) #define I_PAR 1 << 1 #define I_VAR 1 << 2 -/* Check for first (non-parameter) variable that is non-integer and - * therefore requires a cut. +/* Check for next (non-parameter) variable after "var" (first if var == -1) + * that is non-integer and therefore requires a cut and return + * the index of the variable. * For parametric tableaus, there are three parts in a row, * the constant, the coefficients of the parameters and the rest. * For each part, we check whether the coefficients in that part @@ -1414,16 +1473,16 @@ static int integer_constant(struct isl_tab *tab, int row) * current sample value is integral and no cut is required * (irrespective of whether the variable part is integral). */ -static int first_non_integer(struct isl_tab *tab, int *f) +static int next_non_integer_var(struct isl_tab *tab, int var, int *f) { - int i; + var = var < 0 ? tab->n_param : var + 1; - for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) { + for (; var < tab->n_var - tab->n_div; ++var) { int flags = 0; int row; - if (!tab->var[i].is_row) + if (!tab->var[var].is_row) continue; - row = tab->var[i].index; + row = tab->var[var].index; if (integer_constant(tab, row)) ISL_FL_SET(flags, I_CST); if (integer_parameter(tab, row)) @@ -1433,11 +1492,28 @@ static int first_non_integer(struct isl_tab *tab, int *f) if (integer_variable(tab, row)) ISL_FL_SET(flags, I_VAR); *f = flags; - return row; + return var; } return -1; } +/* Check for first (non-parameter) variable that is non-integer and + * therefore requires a cut and return the corresponding row. + * For parametric tableaus, there are three parts in a row, + * the constant, the coefficients of the parameters and the rest. + * For each part, we check whether the coefficients in that part + * are all integral and if so, set the corresponding flag in *f. + * If the constant and the parameter part are integral, then the + * current sample value is integral and no cut is required + * (irrespective of whether the variable part is integral). + */ +static int first_non_integer_row(struct isl_tab *tab, int *f) +{ + int var = next_non_integer_var(tab, -1, f); + + return var < 0 ? -1 : tab->var[var].index; +} + /* Add a (non-parametric) cut to cut away the non-integral sample * value of the given row. * @@ -1497,15 +1573,17 @@ static int add_cut(struct isl_tab *tab, int row) * sample point is obtained or until the tableau is determined * to be integer infeasible. * As long as there is any non-integer value in the sample point, - * we add an appropriate cut, if possible and resolve the violated - * cut constraint using restore_lexmin. + * we add appropriate cuts, if possible, for each of these + * non-integer values and then resolve the violated + * cut constraints using restore_lexmin. * If one of the corresponding rows is equal to an integral * combination of variables/constraints plus a non-integral constant, - * then there is no way to obtain an integer point an we return + * then there is no way to obtain an integer point and we return * a tableau that is marked empty. */ static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab) { + int var; int row; int flags; @@ -1514,12 +1592,18 @@ static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab) if (tab->empty) return tab; - while ((row = first_non_integer(tab, &flags)) != -1) { - if (ISL_FL_ISSET(flags, I_VAR)) - return isl_tab_mark_empty(tab); - row = add_cut(tab, row); - if (row < 0) - goto error; + while ((var = next_non_integer_var(tab, -1, &flags)) != -1) { + do { + if (ISL_FL_ISSET(flags, I_VAR)) { + if (isl_tab_mark_empty(tab) < 0) + goto error; + return tab; + } + row = tab->var[var].index; + row = add_cut(tab, row); + if (row < 0) + goto error; + } while ((var = next_non_integer_var(tab, var, &flags)) != -1); tab = restore_lexmin(tab); if (!tab || tab->empty) break; @@ -1542,7 +1626,7 @@ static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq) if (!tab) return NULL; - isl_assert(tab->mat->ctx, tab->bset, goto error); + isl_assert(tab->mat->ctx, tab->bmap, goto error); isl_assert(tab->mat->ctx, tab->samples, goto error); isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error); @@ -1641,7 +1725,7 @@ static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq) if (!tab) return -1; - isl_assert(tab->mat->ctx, tab->bset, return -1); + isl_assert(tab->mat->ctx, tab->bmap, return -1); isl_assert(tab->mat->ctx, tab->samples, return -1); isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1); @@ -1659,78 +1743,21 @@ static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq) return i < tab->n_sample; } -/* For a div d = floor(f/m), add the constraints - * - * f - m d >= 0 - * -(f-(m-1)) + m d >= 0 - * - * Note that the second constraint is the negation of - * - * f - m d >= m - */ -static void add_div_constraints(struct isl_context *context, unsigned div) -{ - unsigned total; - unsigned div_pos; - struct isl_vec *ineq; - struct isl_basic_set *bset; - - bset = context->op->peek_basic_set(context); - if (!bset) - goto error; - - total = isl_basic_set_total_dim(bset); - div_pos = 1 + total - bset->n_div + div; - - ineq = ineq_for_div(bset, div); - if (!ineq) - goto error; - - context->op->add_ineq(context, ineq->el, 0, 0); - - isl_seq_neg(ineq->el, bset->div[div] + 1, 1 + total); - isl_int_set(ineq->el[div_pos], bset->div[div][0]); - isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]); - isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); - - context->op->add_ineq(context, ineq->el, 0, 0); - - isl_vec_free(ineq); - - return; -error: - context->op->invalidate(context); -} - -/* Add a div specifed by "div" to the tableau "tab" and return - * the index of the new div. *nonneg is set to 1 if the div - * is obviously non-negative. +/* Add a div specified by "div" to the tableau "tab" and return + * 1 if the div is obviously non-negative. */ static int context_tab_add_div(struct isl_tab *tab, struct isl_vec *div, - int *nonneg) + int (*add_ineq)(void *user, isl_int *), void *user) { int i; int r; - int k; struct isl_mat *samples; + int nonneg; - for (i = 0; i < tab->n_var; ++i) { - if (isl_int_is_zero(div->el[2 + i])) - continue; - if (!tab->var[i].is_nonneg) - break; - } - *nonneg = i == tab->n_var; - - if (isl_tab_extend_cons(tab, 3) < 0) - return -1; - if (isl_tab_extend_vars(tab, 1) < 0) - return -1; - r = isl_tab_allocate_var(tab); + r = isl_tab_add_div(tab, div, add_ineq, user); if (r < 0) return -1; - if (*nonneg) - tab->var[r].is_nonneg = 1; + nonneg = tab->var[r].is_nonneg; tab->var[r].frozen = 1; samples = isl_mat_extend(tab->samples, @@ -1745,16 +1772,7 @@ static int context_tab_add_div(struct isl_tab *tab, struct isl_vec *div, samples->row[i][samples->n_col - 1], div->el[0]); } - tab->bset = isl_basic_set_extend_dim(tab->bset, - isl_basic_set_get_dim(tab->bset), 1, 0, 2); - k = isl_basic_set_alloc_div(tab->bset); - if (k < 0) - return -1; - isl_seq_cpy(tab->bset->div[k], div->el, div->size); - if (isl_tab_push(tab, isl_tab_undo_bset_div) < 0) - return -1; - - return k; + return nonneg; } /* Add a div specified by "div" to both the main tableau and @@ -1767,14 +1785,11 @@ static int add_div(struct isl_tab *tab, struct isl_context *context, struct isl_vec *div) { int r; - int k; int nonneg; - k = context->op->add_div(context, div, &nonneg); - if (k < 0) + if ((nonneg = context->op->add_div(context, div)) < 0) goto error; - add_div_constraints(context, k); if (!context->op->is_ok(context)) goto error; @@ -1797,12 +1812,12 @@ error: static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom) { int i; - unsigned total = isl_basic_set_total_dim(tab->bset); + unsigned total = isl_basic_map_total_dim(tab->bmap); - for (i = 0; i < tab->bset->n_div; ++i) { - if (isl_int_ne(tab->bset->div[i][0], denom)) + for (i = 0; i < tab->bmap->n_div; ++i) { + if (isl_int_ne(tab->bmap->div[i][0], denom)) continue; - if (!isl_seq_eq(tab->bset->div[i] + 1, div, total)) + if (!isl_seq_eq(tab->bmap->div[i] + 1, div, 1 + total)) continue; return i; } @@ -1979,8 +1994,11 @@ static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap, if (!tab->row_sign) goto error; } - if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) - return isl_tab_mark_empty(tab); + if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) { + if (isl_tab_mark_empty(tab) < 0) + goto error; + return tab; + } for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) { tab->var[i].is_nonneg = 1; @@ -1999,6 +2017,8 @@ static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap, if (!tab || tab->empty) return tab; } + if (bmap->n_eq) + tab = restore_lexmin(tab); for (i = 0; i < bmap->n_ineq; ++i) { if (max) isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param, @@ -2051,6 +2071,7 @@ static int best_split(struct isl_tab *tab, struct isl_tab *context_tab) struct isl_tab_undo *snap2; struct isl_vec *ineq = NULL; int r = 0; + int ok; if (!isl_tab_var_from_row(tab, split)->is_nonneg) continue; @@ -2060,8 +2081,10 @@ static int best_split(struct isl_tab *tab, struct isl_tab *context_tab) ineq = get_row_parameter_ineq(tab, split); if (!ineq) return -1; - context_tab = isl_tab_add_ineq(context_tab, ineq->el); + ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0; isl_vec_free(ineq); + if (!ok) + return -1; snap2 = isl_tab_snap(context_tab); @@ -2078,8 +2101,10 @@ static int best_split(struct isl_tab *tab, struct isl_tab *context_tab) ineq = get_row_parameter_ineq(tab, row); if (!ineq) return -1; - context_tab = isl_tab_add_ineq(context_tab, ineq->el); + ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0; isl_vec_free(ineq); + if (!ok) + return -1; var = &context_tab->con[context_tab->n_con - 1]; if (!context_tab->empty && !isl_tab_min_at_most_neg_one(context_tab, var)) @@ -2104,7 +2129,7 @@ static struct isl_basic_set *context_lex_peek_basic_set( struct isl_context_lex *clex = (struct isl_context_lex *)context; if (!clex->tab) return NULL; - return clex->tab->bset; + return isl_tab_peek_bset(clex->tab); } static struct isl_tab *context_lex_peek_tab(struct isl_context *context) @@ -2168,6 +2193,13 @@ error: clex->tab = NULL; } +static int context_lex_add_ineq_wrap(void *user, isl_int *ineq) +{ + struct isl_context *context = (struct isl_context *)user; + context_lex_add_ineq(context, ineq, 0, 0); + return context->op->is_ok(context) ? 0 : -1; +} + /* Check which signs can be obtained by "ineq" on all the currently * active sample values. See row_sign for more information. */ @@ -2177,10 +2209,11 @@ static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq, int i; int sgn; isl_int tmp; - int res = isl_tab_row_unknown; + enum isl_tab_row_sign res = isl_tab_row_unknown; - isl_assert(tab->mat->ctx, tab->samples, return 0); - isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return 0); + isl_assert(tab->mat->ctx, tab->samples, return isl_tab_row_unknown); + isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, + return isl_tab_row_unknown); isl_int_init(tmp); for (i = tab->n_outside; i < tab->n_sample; ++i) { @@ -2249,11 +2282,25 @@ static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab, return get_div(tab, context, div); } -static int context_lex_add_div(struct isl_context *context, struct isl_vec *div, - int *nonneg) +/* Add a div specified by "div" to the context tableau and return + * 1 if the div is obviously non-negative. + * context_tab_add_div will always return 1, because all variables + * in a isl_context_lex tableau are non-negative. + * However, if we are using a big parameter in the context, then this only + * reflects the non-negativity of the variable used to _encode_ the + * div, i.e., div' = M + div, so we can't draw any conclusions. + */ +static int context_lex_add_div(struct isl_context *context, struct isl_vec *div) { struct isl_context_lex *clex = (struct isl_context_lex *)context; - return context_tab_add_div(clex->tab, div, nonneg); + int nonneg; + nonneg = context_tab_add_div(clex->tab, div, + context_lex_add_ineq_wrap, context); + if (nonneg < 0) + return -1; + if (clex->tab->M) + return 0; + return nonneg; } static int context_lex_detect_equalities(struct isl_context *context, @@ -2274,7 +2321,7 @@ static int context_lex_best_split(struct isl_context *context, return -1; r = best_split(tab, clex->tab); - if (isl_tab_rollback(clex->tab, snap) < 0) + if (r >= 0 && isl_tab_rollback(clex->tab, snap) < 0) return -1; return r; @@ -2347,7 +2394,8 @@ static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab, isl_seq_clr(ineq->el, ineq->size); for (i = 0; i < context_tab->n_var; ++i) { isl_int_set_si(ineq->el[1 + i], 1); - context_tab = isl_tab_add_ineq(context_tab, ineq->el); + if (isl_tab_add_ineq(context_tab, ineq->el) < 0) + goto error; var = &context_tab->con[context_tab->n_con - 1]; if (!context_tab->empty && !isl_tab_min_at_most_neg_one(context_tab, var)) { @@ -2381,6 +2429,9 @@ static struct isl_tab *context_lex_detect_nonnegative_parameters( struct isl_context_lex *clex = (struct isl_context_lex *)context; struct isl_tab_undo *snap; + if (!tab) + return NULL; + snap = isl_tab_snap(clex->tab); if (isl_tab_push_basis(clex->tab) < 0) goto error; @@ -2440,7 +2491,8 @@ static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset) tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0); if (!tab) goto error; - tab->bset = bset; + if (isl_tab_track_bset(tab, bset) < 0) + goto error; tab = isl_tab_init_samples(tab); return tab; error: @@ -2484,6 +2536,8 @@ static struct isl_tab *context_gbr_detect_nonnegative_parameters( struct isl_context *context, struct isl_tab *tab) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; + if (!tab) + return NULL; return tab_detect_nonnegative_parameters(tab, cgbr->tab); } @@ -2493,7 +2547,7 @@ static struct isl_basic_set *context_gbr_peek_basic_set( struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; if (!cgbr->tab) return NULL; - return cgbr->tab->bset; + return isl_tab_peek_bset(cgbr->tab); } static struct isl_tab *context_gbr_peek_tab(struct isl_context *context) @@ -2512,7 +2566,7 @@ static void gbr_init_shifted(struct isl_context_gbr *cgbr) { int i, j; struct isl_vec *cst; - struct isl_basic_set *bset = cgbr->tab->bset; + struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab); unsigned dim = isl_basic_set_total_dim(bset); cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq); @@ -2576,7 +2630,7 @@ static struct isl_basic_set *drop_constant_terms(struct isl_basic_set *bset) static int use_shifted(struct isl_context_gbr *cgbr) { - return cgbr->tab->bset->n_eq == 0 && cgbr->tab->bset->n_div == 0; + return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0; } static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr) @@ -2598,13 +2652,14 @@ static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr) } if (!cgbr->cone) { - cgbr->cone = isl_tab_from_recession_cone(cgbr->tab->bset); + bset = isl_tab_peek_bset(cgbr->tab); + cgbr->cone = isl_tab_from_recession_cone(bset, 0); if (!cgbr->cone) return NULL; - cgbr->cone->bset = isl_basic_set_dup(cgbr->tab->bset); + if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0) + return NULL; } - cgbr->cone = isl_tab_detect_implicit_equalities(cgbr->cone); - if (!cgbr->cone) + if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0) return NULL; if (cgbr->cone->n_dead == cgbr->cone->n_col) { @@ -2615,10 +2670,9 @@ static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr) if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) { isl_mat_free(cgbr->tab->basis); cgbr->tab->basis = NULL; - } else { - cgbr->tab->n_zero = 0; - cgbr->tab->n_unbounded = 0; } + cgbr->tab->n_zero = 0; + cgbr->tab->n_unbounded = 0; } snap = isl_tab_snap(cgbr->tab); @@ -2633,13 +2687,13 @@ static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr) return sample; } - cone = isl_basic_set_dup(cgbr->cone->bset); + cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone)); cone = drop_constant_terms(cone); cone = isl_basic_set_update_from_tab(cone, cgbr->cone); cone = isl_basic_set_underlying_set(cone); cone = isl_basic_set_gauss(cone, NULL); - bset = isl_basic_set_dup(cgbr->tab->bset); + bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab)); bset = isl_basic_set_update_from_tab(bset, cgbr->tab); bset = isl_basic_set_underlying_set(bset); bset = isl_basic_set_gauss(bset, NULL); @@ -2663,7 +2717,8 @@ static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr) if (sample->size == 0) { isl_vec_free(sample); - cgbr->tab = isl_tab_mark_empty(cgbr->tab); + if (isl_tab_mark_empty(cgbr->tab) < 0) + goto error; return; } @@ -2685,7 +2740,8 @@ static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq) if (isl_tab_extend_cons(tab, 2) < 0) goto error; - tab = isl_tab_add_eq(tab, eq); + if (isl_tab_add_eq(tab, eq) < 0) + goto error; return tab; error: @@ -2703,7 +2759,8 @@ static void context_gbr_add_eq(struct isl_context *context, isl_int *eq, if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) { if (isl_tab_extend_cons(cgbr->cone, 2) < 0) goto error; - cgbr->cone = isl_tab_add_eq(cgbr->cone, eq); + if (isl_tab_add_eq(cgbr->cone, eq) < 0) + goto error; } if (check) { @@ -2729,12 +2786,13 @@ static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq) if (isl_tab_extend_cons(cgbr->tab, 1) < 0) goto error; - cgbr->tab = isl_tab_add_ineq(cgbr->tab, ineq); + if (isl_tab_add_ineq(cgbr->tab, ineq) < 0) + goto error; if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) { int i; unsigned dim; - dim = isl_basic_set_total_dim(cgbr->tab->bset); + dim = isl_basic_map_total_dim(cgbr->tab->bmap); if (isl_tab_extend_cons(cgbr->shifted, 1) < 0) goto error; @@ -2745,7 +2803,8 @@ static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq) isl_int_add(ineq[0], ineq[0], ineq[1 + i]); } - cgbr->shifted = isl_tab_add_ineq(cgbr->shifted, ineq); + if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0) + goto error; for (i = 0; i < dim; ++i) { if (!isl_int_is_neg(ineq[1 + i])) @@ -2757,7 +2816,8 @@ static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq) if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) { if (isl_tab_extend_cons(cgbr->cone, 1) < 0) goto error; - cgbr->cone = isl_tab_add_ineq(cgbr->cone, ineq); + if (isl_tab_add_ineq(cgbr->cone, ineq) < 0) + goto error; } return; @@ -2790,6 +2850,13 @@ error: cgbr->tab = NULL; } +static int context_gbr_add_ineq_wrap(void *user, isl_int *ineq) +{ + struct isl_context *context = (struct isl_context *)user; + context_gbr_add_ineq(context, ineq, 0, 0); + return context->op->is_ok(context) ? 0 : -1; +} + static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context, isl_int *ineq, int strict) { @@ -2893,20 +2960,20 @@ static void propagate_equalities(struct isl_context_gbr *cgbr, if (!eq) goto error; - if (isl_tab_extend_cons(tab, (cgbr->tab->bset->n_ineq - first)/2) < 0) + if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0) goto error; isl_seq_clr(eq->el + 1 + tab->n_param, tab->n_var - tab->n_param - tab->n_div); - for (i = first; i < cgbr->tab->bset->n_ineq; i += 2) { + for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) { int j; int r; struct isl_tab_undo *snap; snap = isl_tab_snap(tab); - isl_seq_cpy(eq->el, cgbr->tab->bset->ineq[i], 1 + tab->n_param); + isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param); isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div, - cgbr->tab->bset->ineq[i] + 1 + tab->n_param, + cgbr->tab->bmap->ineq[i] + 1 + tab->n_param, tab->n_div); r = isl_tab_add_row(tab, eq->el); @@ -2951,16 +3018,19 @@ static int context_gbr_detect_equalities(struct isl_context *context, ctx = cgbr->tab->mat->ctx; if (!cgbr->cone) { - cgbr->cone = isl_tab_from_recession_cone(cgbr->tab->bset); + struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab); + cgbr->cone = isl_tab_from_recession_cone(bset, 0); if (!cgbr->cone) goto error; - cgbr->cone->bset = isl_basic_set_dup(cgbr->tab->bset); + if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0) + goto error; } - cgbr->cone = isl_tab_detect_implicit_equalities(cgbr->cone); + if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0) + goto error; - n_ineq = cgbr->tab->bset->n_ineq; + n_ineq = cgbr->tab->bmap->n_ineq; cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone); - if (cgbr->tab && cgbr->tab->bset->n_ineq > n_ineq) + if (cgbr->tab && cgbr->tab->bmap->n_ineq > n_ineq) propagate_equalities(cgbr, tab, n_ineq); return 0; @@ -2976,8 +3046,7 @@ static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab, return get_div(tab, context, div); } -static int context_gbr_add_div(struct isl_context *context, struct isl_vec *div, - int *nonneg) +static int context_gbr_add_div(struct isl_context *context, struct isl_vec *div) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; if (cgbr->cone) { @@ -2990,16 +3059,17 @@ static int context_gbr_add_div(struct isl_context *context, struct isl_vec *div, if (isl_tab_allocate_var(cgbr->cone) <0) return -1; - cgbr->cone->bset = isl_basic_set_extend_dim(cgbr->cone->bset, - isl_basic_set_get_dim(cgbr->cone->bset), 1, 0, 2); - k = isl_basic_set_alloc_div(cgbr->cone->bset); + cgbr->cone->bmap = isl_basic_map_extend_dim(cgbr->cone->bmap, + isl_basic_map_get_dim(cgbr->cone->bmap), 1, 0, 2); + k = isl_basic_map_alloc_div(cgbr->cone->bmap); if (k < 0) return -1; - isl_seq_cpy(cgbr->cone->bset->div[k], div->el, div->size); - if (isl_tab_push(cgbr->cone, isl_tab_undo_bset_div) < 0) + isl_seq_cpy(cgbr->cone->bmap->div[k], div->el, div->size); + if (isl_tab_push(cgbr->cone, isl_tab_undo_bmap_div) < 0) return -1; } - return context_tab_add_div(cgbr->tab, div, nonneg); + return context_tab_add_div(cgbr->tab, div, + context_gbr_add_ineq_wrap, context); } static int context_gbr_best_split(struct isl_context *context, @@ -3012,7 +3082,7 @@ static int context_gbr_best_split(struct isl_context *context, snap = isl_tab_snap(cgbr->tab); r = best_split(tab, cgbr->tab); - if (isl_tab_rollback(cgbr->tab, snap) < 0) + if (r >= 0 && isl_tab_rollback(cgbr->tab, snap) < 0) return -1; return r; @@ -3158,8 +3228,8 @@ static struct isl_context *isl_context_gbr_alloc(struct isl_basic_set *dom) cgbr->tab = isl_tab_init_samples(cgbr->tab); if (!cgbr->tab) goto error; - cgbr->tab->bset = isl_basic_set_cow(isl_basic_set_copy(dom)); - if (!cgbr->tab->bset) + if (isl_tab_track_bset(cgbr->tab, + isl_basic_set_cow(isl_basic_set_copy(dom))) < 0) goto error; check_gbr_integer_feasible(cgbr); @@ -3190,9 +3260,12 @@ static struct isl_context *isl_context_alloc(struct isl_basic_set *dom) static struct isl_sol_map *sol_map_init(struct isl_basic_map *bmap, struct isl_basic_set *dom, int track_empty, int max) { - struct isl_sol_map *sol_map; + struct isl_sol_map *sol_map = NULL; - sol_map = isl_calloc_type(bset->ctx, struct isl_sol_map); + if (!bmap) + goto error; + + sol_map = isl_calloc_type(bmap->ctx, struct isl_sol_map); if (!sol_map) goto error; @@ -3332,7 +3405,7 @@ static enum isl_tab_row_sign row_sign(struct isl_tab *tab, struct isl_sol *sol, int row) { struct isl_vec *ineq = NULL; - int res = isl_tab_row_unknown; + enum isl_tab_row_sign res = isl_tab_row_unknown; int critical; int strict; int row2; @@ -3396,7 +3469,7 @@ static enum isl_tab_row_sign row_sign(struct isl_tab *tab, return res; error: isl_vec_free(ineq); - return 0; + return isl_tab_row_unknown; } static void find_solutions(struct isl_sol *sol, struct isl_tab *tab); @@ -3431,7 +3504,8 @@ static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq) find_solutions(sol, tab); - sol->context->op->restore(sol->context, saved); + if (!sol->error) + sol->context->op->restore(sol->context, saved); return; error: sol->error = 1; @@ -3446,7 +3520,7 @@ static void no_sol_in_strict(struct isl_sol *sol, int empty; void *saved; - if (!sol->context) + if (!sol->context || sol->error) goto error; saved = sol->context->op->save(sol->context); @@ -3543,7 +3617,7 @@ error: * coefficient are integral, then there is nothing that can be done * and the tableau has no integral solution. * If, on the other hand, one or more of the other columns have rational - * coeffcients, but the parameter coefficients are all integral, then + * coefficients, but the parameter coefficients are all integral, then * we can perform a regular (non-parametric) cut. * Finally, if there is any parameter coefficient that is non-integral, * then we need to involve the context tableau. There are two cases here. @@ -3580,7 +3654,7 @@ static void find_solutions(struct isl_sol *sol, struct isl_tab *tab) for (; tab && !tab->empty; tab = restore_lexmin(tab)) { int flags; int row; - int sgn; + enum isl_tab_row_sign sgn; int split = -1; int n_split = 0; @@ -3623,7 +3697,8 @@ static void find_solutions(struct isl_sol *sol, struct isl_tab *tab) row = split; isl_seq_neg(ineq->el, ineq->el, ineq->size); isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); - context->op->add_ineq(context, ineq->el, 0, 1); + if (!sol->error) + context->op->add_ineq(context, ineq->el, 0, 1); isl_vec_free(ineq); if (sol->error) goto error; @@ -3631,12 +3706,13 @@ static void find_solutions(struct isl_sol *sol, struct isl_tab *tab) } if (tab->rational) break; - row = first_non_integer(tab, &flags); + row = first_non_integer_row(tab, &flags); if (row < 0) break; if (ISL_FL_ISSET(flags, I_PAR)) { if (ISL_FL_ISSET(flags, I_VAR)) { - tab = isl_tab_mark_empty(tab); + if (isl_tab_mark_empty(tab) < 0) + goto error; break; } row = add_cut(tab, row); @@ -3652,6 +3728,8 @@ static void find_solutions(struct isl_sol *sol, struct isl_tab *tab) if (d < 0) goto error; ineq = ineq_for_div(context->op->peek_basic_set(context), d); + if (!ineq) + goto error; sol_inc_level(sol); no_sol_in_strict(sol, tab, ineq); isl_seq_neg(ineq->el, ineq->el, ineq->size); @@ -3660,6 +3738,8 @@ static void find_solutions(struct isl_sol *sol, struct isl_tab *tab) if (sol->error || !context->op->is_ok(context)) goto error; tab = set_row_cst_to_div(tab, row, d); + if (context->op->is_empty(context)) + break; } else row = add_parametric_cut(tab, row, context); if (row < 0) @@ -3671,7 +3751,7 @@ done: return; error: isl_tab_free(tab); - sol_free(sol); + sol->error = 1; } /* Compute the lexicographic minimum of the set represented by the main @@ -3689,6 +3769,9 @@ static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab) { int row; + if (!tab) + goto error; + sol->level = 0; for (row = tab->n_redundant; row < tab->n_row; ++row) { @@ -3707,6 +3790,8 @@ static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab) + tab->n_param - (tab->n_var - tab->n_div); eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div); + if (!eq) + goto error; get_row_parameter_line(tab, row, eq->el); isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]); eq = isl_vec_normalize(eq); @@ -3740,7 +3825,7 @@ static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab) return; error: isl_tab_free(tab); - sol_free(sol); + sol->error = 1; } static void sol_map_find_solutions(struct isl_sol_map *sol_map, @@ -3825,43 +3910,21 @@ error: return NULL; } -/* Compute the lexicographic minimum (or maximum if "max" is set) - * of "bmap" over the domain "dom" and return the result as a map. - * If "empty" is not NULL, then *empty is assigned a set that - * contains those parts of the domain where there is no solution. - * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL), - * then we compute the rational optimum. Otherwise, we compute - * the integral optimum. +/* Base case of isl_tab_basic_map_partial_lexopt, after removing + * some obvious symmetries. * - * We perform some preprocessing. As the PILP solver does not - * handle implicit equalities very well, we first make sure all - * the equalities are explicitly available. - * We also make sure the divs in the domain are properly order, + * We make sure the divs in the domain are properly ordered, * because they will be added one by one in the given order * during the construction of the solution map. */ -struct isl_map *isl_tab_basic_map_partial_lexopt( - struct isl_basic_map *bmap, struct isl_basic_set *dom, - struct isl_set **empty, int max) +static __isl_give isl_map *basic_map_partial_lexopt_base( + __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, + __isl_give isl_set **empty, int max) { + isl_map *result = NULL; struct isl_tab *tab; - struct isl_map *result = NULL; struct isl_sol_map *sol_map = NULL; struct isl_context *context; - struct isl_basic_map *eq; - - if (empty) - *empty = NULL; - if (!bmap || !dom) - goto error; - - isl_assert(bmap->ctx, - isl_basic_map_compatible_domain(bmap, dom), goto error); - - eq = isl_basic_map_copy(bmap); - eq = isl_basic_map_intersect_domain(eq, isl_basic_set_copy(dom)); - eq = isl_basic_map_affine_hull(eq); - bmap = isl_basic_map_intersect(bmap, eq); if (dom->n_div) { dom = isl_basic_set_order_divs(dom); @@ -3875,8 +3938,8 @@ struct isl_map *isl_tab_basic_map_partial_lexopt( if (isl_basic_set_fast_is_empty(context->op->peek_basic_set(context))) /* nothing */; else if (isl_basic_map_fast_is_empty(bmap)) - sol_map_add_empty(sol_map, - isl_basic_set_dup(context->op->peek_basic_set(context))); + sol_map_add_empty_if_needed(sol_map, + isl_basic_set_copy(context->op->peek_basic_set(context))); else { tab = tab_for_lexmin(bmap, context->op->peek_basic_set(context), 1, max); @@ -3898,6 +3961,515 @@ error: return NULL; } +/* Structure used during detection of parallel constraints. + * n_in: number of "input" variables: isl_dim_param + isl_dim_in + * n_out: number of "output" variables: isl_dim_out + isl_dim_div + * val: the coefficients of the output variables + */ +struct isl_constraint_equal_info { + isl_basic_map *bmap; + unsigned n_in; + unsigned n_out; + isl_int *val; +}; + +/* Check whether the coefficients of the output variables + * of the constraint in "entry" are equal to info->val. + */ +static int constraint_equal(const void *entry, const void *val) +{ + isl_int **row = (isl_int **)entry; + const struct isl_constraint_equal_info *info = val; + + return isl_seq_eq((*row) + 1 + info->n_in, info->val, info->n_out); +} + +/* Check whether "bmap" has a pair of constraints that have + * the same coefficients for the output variables. + * Note that the coefficients of the existentially quantified + * variables need to be zero since the existentially quantified + * of the result are usually not the same as those of the input. + * the isl_dim_out and isl_dim_div dimensions. + * If so, return 1 and return the row indices of the two constraints + * in *first and *second. + */ +static int parallel_constraints(__isl_keep isl_basic_map *bmap, + int *first, int *second) +{ + int i; + isl_ctx *ctx = isl_basic_map_get_ctx(bmap); + struct isl_hash_table *table = NULL; + struct isl_hash_table_entry *entry; + struct isl_constraint_equal_info info; + unsigned n_out; + unsigned n_div; + + ctx = isl_basic_map_get_ctx(bmap); + table = isl_hash_table_alloc(ctx, bmap->n_ineq); + if (!table) + goto error; + + info.n_in = isl_basic_map_dim(bmap, isl_dim_param) + + isl_basic_map_dim(bmap, isl_dim_in); + info.bmap = bmap; + n_out = isl_basic_map_dim(bmap, isl_dim_out); + n_div = isl_basic_map_dim(bmap, isl_dim_div); + info.n_out = n_out + n_div; + for (i = 0; i < bmap->n_ineq; ++i) { + uint32_t hash; + + info.val = bmap->ineq[i] + 1 + info.n_in; + if (isl_seq_first_non_zero(info.val, n_out) < 0) + continue; + if (isl_seq_first_non_zero(info.val + n_out, n_div) >= 0) + continue; + hash = isl_seq_get_hash(info.val, info.n_out); + entry = isl_hash_table_find(ctx, table, hash, + constraint_equal, &info, 1); + if (!entry) + goto error; + if (entry->data) + break; + entry->data = &bmap->ineq[i]; + } + + if (i < bmap->n_ineq) { + *first = ((isl_int **)entry->data) - bmap->ineq; + *second = i; + } + + isl_hash_table_free(ctx, table); + + return i < bmap->n_ineq; +error: + isl_hash_table_free(ctx, table); + return -1; +} + +/* Given a set of upper bounds on the last "input" variable m, + * construct a set that assigns the minimal upper bound to m, i.e., + * construct a set that divides the space into cells where one + * of the upper bounds is smaller than all the others and assign + * this upper bound to m. + * + * In particular, if there are n bounds b_i, then the result + * consists of n basic sets, each one of the form + * + * m = b_i + * b_i <= b_j for j > i + * b_i < b_j for j < i + */ +static __isl_give isl_set *set_minimum(__isl_take isl_dim *dim, + __isl_take isl_mat *var) +{ + int i, j, k; + isl_basic_set *bset = NULL; + isl_ctx *ctx; + isl_set *set = NULL; + + if (!dim || !var) + goto error; + + ctx = isl_dim_get_ctx(dim); + set = isl_set_alloc_dim(isl_dim_copy(dim), + var->n_row, ISL_SET_DISJOINT); + + for (i = 0; i < var->n_row; ++i) { + bset = isl_basic_set_alloc_dim(isl_dim_copy(dim), 0, + 1, var->n_row - 1); + k = isl_basic_set_alloc_equality(bset); + if (k < 0) + goto error; + isl_seq_cpy(bset->eq[k], var->row[i], var->n_col); + isl_int_set_si(bset->eq[k][var->n_col], -1); + for (j = 0; j < var->n_row; ++j) { + if (j == i) + continue; + k = isl_basic_set_alloc_inequality(bset); + if (k < 0) + goto error; + isl_seq_combine(bset->ineq[k], ctx->one, var->row[j], + ctx->negone, var->row[i], + var->n_col); + isl_int_set_si(bset->ineq[k][var->n_col], 0); + if (j < i) + isl_int_sub_ui(bset->ineq[k][0], + bset->ineq[k][0], 1); + } + bset = isl_basic_set_finalize(bset); + set = isl_set_add_basic_set(set, bset); + } + + isl_dim_free(dim); + isl_mat_free(var); + return set; +error: + isl_basic_set_free(bset); + isl_set_free(set); + isl_dim_free(dim); + isl_mat_free(var); + return NULL; +} + +/* Given that the last input variable of "bmap" represents the minimum + * of the bounds in "cst", check whether we need to split the domain + * based on which bound attains the minimum. + * + * A split is needed when the minimum appears in an integer division + * or in an equality. Otherwise, it is only needed if it appears in + * an upper bound that is different from the upper bounds on which it + * is defined. + */ +static int need_split_map(__isl_keep isl_basic_map *bmap, + __isl_keep isl_mat *cst) +{ + int i, j; + unsigned total; + unsigned pos; + + pos = cst->n_col - 1; + total = isl_basic_map_dim(bmap, isl_dim_all); + + for (i = 0; i < bmap->n_div; ++i) + if (!isl_int_is_zero(bmap->div[i][2 + pos])) + return 1; + + for (i = 0; i < bmap->n_eq; ++i) + if (!isl_int_is_zero(bmap->eq[i][1 + pos])) + return 1; + + for (i = 0; i < bmap->n_ineq; ++i) { + if (isl_int_is_nonneg(bmap->ineq[i][1 + pos])) + continue; + if (!isl_int_is_negone(bmap->ineq[i][1 + pos])) + return 1; + if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + pos + 1, + total - pos - 1) >= 0) + return 1; + + for (j = 0; j < cst->n_row; ++j) + if (isl_seq_eq(bmap->ineq[i], cst->row[j], cst->n_col)) + break; + if (j >= cst->n_row) + return 1; + } + + return 0; +} + +static int need_split_set(__isl_keep isl_basic_set *bset, + __isl_keep isl_mat *cst) +{ + return need_split_map((isl_basic_map *)bset, cst); +} + +/* Given a set of which the last set variable is the minimum + * of the bounds in "cst", split each basic set in the set + * in pieces where one of the bounds is (strictly) smaller than the others. + * This subdivision is given in "min_expr". + * The variable is subsequently projected out. + * + * We only do the split when it is needed. + * For example if the last input variable m = min(a,b) and the only + * constraints in the given basic set are lower bounds on m, + * i.e., l <= m = min(a,b), then we can simply project out m + * to obtain l <= a and l <= b, without having to split on whether + * m is equal to a or b. + */ +static __isl_give isl_set *split(__isl_take isl_set *empty, + __isl_take isl_set *min_expr, __isl_take isl_mat *cst) +{ + int n_in; + int i; + isl_dim *dim; + isl_set *res; + + if (!empty || !min_expr || !cst) + goto error; + + n_in = isl_set_dim(empty, isl_dim_set); + dim = isl_set_get_dim(empty); + dim = isl_dim_drop(dim, isl_dim_set, n_in - 1, 1); + res = isl_set_empty(dim); + + for (i = 0; i < empty->n; ++i) { + isl_set *set; + + set = isl_set_from_basic_set(isl_basic_set_copy(empty->p[i])); + if (need_split_set(empty->p[i], cst)) + set = isl_set_intersect(set, isl_set_copy(min_expr)); + set = isl_set_remove_dims(set, isl_dim_set, n_in - 1, 1); + + res = isl_set_union_disjoint(res, set); + } + + isl_set_free(empty); + isl_set_free(min_expr); + isl_mat_free(cst); + return res; +error: + isl_set_free(empty); + isl_set_free(min_expr); + isl_mat_free(cst); + return NULL; +} + +/* Given a map of which the last input variable is the minimum + * of the bounds in "cst", split each basic set in the set + * in pieces where one of the bounds is (strictly) smaller than the others. + * This subdivision is given in "min_expr". + * The variable is subsequently projected out. + * + * The implementation is essentially the same as that of "split". + */ +static __isl_give isl_map *split_domain(__isl_take isl_map *opt, + __isl_take isl_set *min_expr, __isl_take isl_mat *cst) +{ + int n_in; + int i; + isl_dim *dim; + isl_map *res; + + if (!opt || !min_expr || !cst) + goto error; + + n_in = isl_map_dim(opt, isl_dim_in); + dim = isl_map_get_dim(opt); + dim = isl_dim_drop(dim, isl_dim_in, n_in - 1, 1); + res = isl_map_empty(dim); + + for (i = 0; i < opt->n; ++i) { + isl_map *map; + + map = isl_map_from_basic_map(isl_basic_map_copy(opt->p[i])); + if (need_split_map(opt->p[i], cst)) + map = isl_map_intersect_domain(map, + isl_set_copy(min_expr)); + map = isl_map_remove_dims(map, isl_dim_in, n_in - 1, 1); + + res = isl_map_union_disjoint(res, map); + } + + isl_map_free(opt); + isl_set_free(min_expr); + isl_mat_free(cst); + return res; +error: + isl_map_free(opt); + isl_set_free(min_expr); + isl_mat_free(cst); + return NULL; +} + +static __isl_give isl_map *basic_map_partial_lexopt( + __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, + __isl_give isl_set **empty, int max); + +/* Given a basic map with at least two parallel constraints (as found + * by the function parallel_constraints), first look for more constraints + * parallel to the two constraint and replace the found list of parallel + * constraints by a single constraint with as "input" part the minimum + * of the input parts of the list of constraints. Then, recursively call + * basic_map_partial_lexopt (possibly finding more parallel constraints) + * and plug in the definition of the minimum in the result. + * + * More specifically, given a set of constraints + * + * a x + b_i(p) >= 0 + * + * Replace this set by a single constraint + * + * a x + u >= 0 + * + * with u a new parameter with constraints + * + * u <= b_i(p) + * + * Any solution to the new system is also a solution for the original system + * since + * + * a x >= -u >= -b_i(p) + * + * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can + * therefore be plugged into the solution. + */ +static __isl_give isl_map *basic_map_partial_lexopt_symm( + __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, + __isl_give isl_set **empty, int max, int first, int second) +{ + int i, n, k; + int *list = NULL; + unsigned n_in, n_out, n_div; + isl_ctx *ctx; + isl_vec *var = NULL; + isl_mat *cst = NULL; + isl_map *opt; + isl_set *min_expr; + isl_dim *map_dim, *set_dim; + + map_dim = isl_basic_map_get_dim(bmap); + set_dim = empty ? isl_basic_set_get_dim(dom) : NULL; + + n_in = isl_basic_map_dim(bmap, isl_dim_param) + + isl_basic_map_dim(bmap, isl_dim_in); + n_out = isl_basic_map_dim(bmap, isl_dim_all) - n_in; + + ctx = isl_basic_map_get_ctx(bmap); + list = isl_alloc_array(ctx, int, bmap->n_ineq); + var = isl_vec_alloc(ctx, n_out); + if (!list || !var) + goto error; + + list[0] = first; + list[1] = second; + isl_seq_cpy(var->el, bmap->ineq[first] + 1 + n_in, n_out); + for (i = second + 1, n = 2; i < bmap->n_ineq; ++i) { + if (isl_seq_eq(var->el, bmap->ineq[i] + 1 + n_in, n_out)) + list[n++] = i; + } + + cst = isl_mat_alloc(ctx, n, 1 + n_in); + if (!cst) + goto error; + + for (i = 0; i < n; ++i) + isl_seq_cpy(cst->row[i], bmap->ineq[list[i]], 1 + n_in); + + bmap = isl_basic_map_cow(bmap); + if (!bmap) + goto error; + for (i = n - 1; i >= 0; --i) + if (isl_basic_map_drop_inequality(bmap, list[i]) < 0) + goto error; + + bmap = isl_basic_map_add(bmap, isl_dim_in, 1); + bmap = isl_basic_map_extend_constraints(bmap, 0, 1); + k = isl_basic_map_alloc_inequality(bmap); + if (k < 0) + goto error; + isl_seq_clr(bmap->ineq[k], 1 + n_in); + isl_int_set_si(bmap->ineq[k][1 + n_in], 1); + isl_seq_cpy(bmap->ineq[k] + 1 + n_in + 1, var->el, n_out); + bmap = isl_basic_map_finalize(bmap); + + n_div = isl_basic_set_dim(dom, isl_dim_div); + dom = isl_basic_set_add(dom, isl_dim_set, 1); + dom = isl_basic_set_extend_constraints(dom, 0, n); + for (i = 0; i < n; ++i) { + k = isl_basic_set_alloc_inequality(dom); + if (k < 0) + goto error; + isl_seq_cpy(dom->ineq[k], cst->row[i], 1 + n_in); + isl_int_set_si(dom->ineq[k][1 + n_in], -1); + isl_seq_clr(dom->ineq[k] + 1 + n_in + 1, n_div); + } + + min_expr = set_minimum(isl_basic_set_get_dim(dom), isl_mat_copy(cst)); + + isl_vec_free(var); + free(list); + + opt = basic_map_partial_lexopt(bmap, dom, empty, max); + + if (empty) { + *empty = split(*empty, + isl_set_copy(min_expr), isl_mat_copy(cst)); + *empty = isl_set_reset_dim(*empty, set_dim); + } + + opt = split_domain(opt, min_expr, cst); + opt = isl_map_reset_dim(opt, map_dim); + + return opt; +error: + isl_dim_free(map_dim); + isl_dim_free(set_dim); + isl_mat_free(cst); + isl_vec_free(var); + free(list); + isl_basic_set_free(dom); + isl_basic_map_free(bmap); + return NULL; +} + +/* Recursive part of isl_tab_basic_map_partial_lexopt, after detecting + * equalities and removing redundant constraints. + * + * We first check if there are any parallel constraints (left). + * If not, we are in the base case. + * If there are parallel constraints, we replace them by a single + * constraint in basic_map_partial_lexopt_symm and then call + * this function recursively to look for more parallel constraints. + */ +static __isl_give isl_map *basic_map_partial_lexopt( + __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, + __isl_give isl_set **empty, int max) +{ + int par = 0; + int first, second; + + if (!bmap) + goto error; + + if (bmap->ctx->opt->pip_symmetry) + par = parallel_constraints(bmap, &first, &second); + if (par < 0) + goto error; + if (!par) + return basic_map_partial_lexopt_base(bmap, dom, empty, max); + + return basic_map_partial_lexopt_symm(bmap, dom, empty, max, + first, second); +error: + isl_basic_set_free(dom); + isl_basic_map_free(bmap); + return NULL; +} + +/* Compute the lexicographic minimum (or maximum if "max" is set) + * of "bmap" over the domain "dom" and return the result as a map. + * If "empty" is not NULL, then *empty is assigned a set that + * contains those parts of the domain where there is no solution. + * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL), + * then we compute the rational optimum. Otherwise, we compute + * the integral optimum. + * + * We perform some preprocessing. As the PILP solver does not + * handle implicit equalities very well, we first make sure all + * the equalities are explicitly available. + * + * We also add context constraints to the basic map and remove + * redundant constraints. This is only needed because of the + * way we handle simple symmetries. In particular, we currently look + * for symmetries on the constraints, before we set up the main tableau. + * It is then no good to look for symmetries on possibly redundant constraints. + */ +struct isl_map *isl_tab_basic_map_partial_lexopt( + struct isl_basic_map *bmap, struct isl_basic_set *dom, + struct isl_set **empty, int max) +{ + if (empty) + *empty = NULL; + if (!bmap || !dom) + goto error; + + isl_assert(bmap->ctx, + isl_basic_map_compatible_domain(bmap, dom), goto error); + + if (isl_basic_set_dim(dom, isl_dim_all) == 0) + return basic_map_partial_lexopt(bmap, dom, empty, max); + + bmap = isl_basic_map_intersect_domain(bmap, isl_basic_set_copy(dom)); + bmap = isl_basic_map_detect_equalities(bmap); + bmap = isl_basic_map_remove_redundancies(bmap); + + return basic_map_partial_lexopt(bmap, dom, empty, max); +error: + isl_basic_set_free(dom); + isl_basic_map_free(bmap); + return NULL; +} + struct isl_sol_for { struct isl_sol sol; int (*fn)(__isl_take isl_basic_set *dom, @@ -3923,7 +4495,7 @@ static void sol_for_free_wrap(struct isl_sol *sol) * * Instead of constructing a basic map, this function calls a user * defined function with the current context as a basic set and - * an affine matrix reprenting the relation between the input and output. + * an affine matrix representing the relation between the input and output. * The number of rows in this matrix is equal to one plus the number * of output variables. The number of columns is equal to one plus * the total dimension of the context, i.e., the number of parameters, @@ -3967,7 +4539,7 @@ static struct isl_sol_for *sol_for_init(struct isl_basic_map *bmap, int max, struct isl_dim *dom_dim; struct isl_basic_set *dom = NULL; - sol_for = isl_calloc_type(bset->ctx, struct isl_sol_for); + sol_for = isl_calloc_type(bmap->ctx, struct isl_sol_for); if (!sol_for) goto error;