X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=isl_sample.c;h=c6a0f314425b0bc2d4683589997a3034b652abe0;hb=de51a9bc4da5dd3f1f9f57c2362da6f9752c44e0;hp=f66182fbdc1a1236a151aa83ea7880b91d039e9f;hpb=0ac9d8167135ae27ea5019bf5d6cc653da9eeea3;p=platform%2Fupstream%2Fisl.git diff --git a/isl_sample.c b/isl_sample.c index f66182f..c6a0f31 100644 --- a/isl_sample.c +++ b/isl_sample.c @@ -1,10 +1,34 @@ +/* + * Copyright 2008-2009 Katholieke Universiteit Leuven + * + * Use of this software is governed by the MIT license + * + * Written by Sven Verdoolaege, K.U.Leuven, Departement + * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium + */ + +#include +#include #include "isl_sample.h" #include "isl_sample_piplib.h" -#include "isl_vec.h" -#include "isl_mat.h" -#include "isl_seq.h" -#include "isl_map_private.h" +#include +#include +#include #include "isl_equalities.h" +#include "isl_tab.h" +#include "isl_basis_reduction.h" +#include +#include +#include + +static struct isl_vec *empty_sample(struct isl_basic_set *bset) +{ + struct isl_vec *vec; + + vec = isl_vec_alloc(bset->ctx, 0); + isl_basic_set_free(bset); + return vec; +} /* Construct a zero sample of the same dimension as bset. * As a special case, if bset is zero-dimensional, this @@ -25,8 +49,7 @@ static struct isl_vec *zero_sample(struct isl_basic_set *bset) return sample; } -static struct isl_vec *interval_sample(struct isl_ctx *ctx, - struct isl_basic_set *bset) +static struct isl_vec *interval_sample(struct isl_basic_set *bset) { int i; isl_int t; @@ -35,13 +58,32 @@ static struct isl_vec *interval_sample(struct isl_ctx *ctx, bset = isl_basic_set_simplify(bset); if (!bset) return NULL; - if (bset->n_eq > 0) - return isl_basic_set_sample(bset); - if (bset->n_ineq == 0) + if (isl_basic_set_plain_is_empty(bset)) + return empty_sample(bset); + if (bset->n_eq == 0 && bset->n_ineq == 0) return zero_sample(bset); - sample = isl_vec_alloc(ctx, 2); + sample = isl_vec_alloc(bset->ctx, 2); + if (!sample) + goto error; + if (!bset) + return NULL; isl_int_set_si(sample->block.data[0], 1); + + if (bset->n_eq > 0) { + isl_assert(bset->ctx, bset->n_eq == 1, goto error); + isl_assert(bset->ctx, bset->n_ineq == 0, goto error); + if (isl_int_is_one(bset->eq[0][1])) + isl_int_neg(sample->el[1], bset->eq[0][0]); + else { + isl_assert(bset->ctx, isl_int_is_negone(bset->eq[0][1]), + goto error); + isl_int_set(sample->el[1], bset->eq[0][0]); + } + isl_basic_set_free(bset); + return sample; + } + isl_int_init(t); if (isl_int_is_one(bset->ineq[0][1])) isl_int_neg(sample->block.data[1], bset->ineq[0][0]); @@ -56,31 +98,46 @@ static struct isl_vec *interval_sample(struct isl_ctx *ctx, isl_int_clear(t); if (i < bset->n_ineq) { isl_vec_free(sample); - sample = isl_vec_alloc(ctx, 0); + return empty_sample(bset); } isl_basic_set_free(bset); return sample; +error: + isl_basic_set_free(bset); + isl_vec_free(sample); + return NULL; } -static struct isl_mat *independent_bounds(struct isl_ctx *ctx, - struct isl_basic_set *bset) +static struct isl_mat *independent_bounds(struct isl_basic_set *bset) { int i, j, n; struct isl_mat *dirs = NULL; + struct isl_mat *bounds = NULL; unsigned dim; if (!bset) return NULL; dim = isl_basic_set_n_dim(bset); + bounds = isl_mat_alloc(bset->ctx, 1+dim, 1+dim); + if (!bounds) + return NULL; + + isl_int_set_si(bounds->row[0][0], 1); + isl_seq_clr(bounds->row[0]+1, dim); + bounds->n_row = 1; + if (bset->n_ineq == 0) - return isl_mat_alloc(ctx, 0, dim); + return bounds; - dirs = isl_mat_alloc(ctx, dim, dim); - if (!dirs) + dirs = isl_mat_alloc(bset->ctx, dim, dim); + if (!dirs) { + isl_mat_free(bounds); return NULL; + } isl_seq_cpy(dirs->row[0], bset->ineq[0]+1, dirs->n_col); + isl_seq_cpy(bounds->row[1], bset->ineq[0], bounds->n_col); for (j = 1, n = 1; n < dim && j < bset->n_ineq; ++j) { int pos; @@ -112,91 +169,1299 @@ static struct isl_mat *independent_bounds(struct isl_ctx *ctx, dirs->row[i] = t; } ++n; + isl_seq_cpy(bounds->row[n], bset->ineq[j], bounds->n_col); } - dirs->n_row = n; - return dirs; + isl_mat_free(dirs); + bounds->n_row = 1+n; + return bounds; } -static struct isl_basic_set *remove_lineality(struct isl_ctx *ctx, - struct isl_basic_set *bset, struct isl_mat *bounds, struct isl_mat **T) +static void swap_inequality(struct isl_basic_set *bset, int a, int b) +{ + isl_int *t = bset->ineq[a]; + bset->ineq[a] = bset->ineq[b]; + bset->ineq[b] = t; +} + +/* Skew into positive orthant and project out lineality space. + * + * We perform a unimodular transformation that turns a selected + * maximal set of linearly independent bounds into constraints + * on the first dimensions that impose that these first dimensions + * are non-negative. In particular, the constraint matrix is lower + * triangular with positive entries on the diagonal and negative + * entries below. + * If "bset" has a lineality space then these constraints (and therefore + * all constraints in bset) only involve the first dimensions. + * The remaining dimensions then do not appear in any constraints and + * we can select any value for them, say zero. We therefore project + * out this final dimensions and plug in the value zero later. This + * is accomplished by simply dropping the final columns of + * the unimodular transformation. + */ +static struct isl_basic_set *isl_basic_set_skew_to_positive_orthant( + struct isl_basic_set *bset, struct isl_mat **T) { struct isl_mat *U = NULL; + struct isl_mat *bounds = NULL; + int i, j; unsigned old_dim, new_dim; - old_dim = isl_basic_set_n_dim(bset); - new_dim = bounds->n_row; *T = NULL; - bounds = isl_mat_left_hermite(ctx, bounds, 0, &U, NULL); + if (!bset) + return NULL; + + isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error); + isl_assert(bset->ctx, bset->n_div == 0, goto error); + isl_assert(bset->ctx, bset->n_eq == 0, goto error); + + old_dim = isl_basic_set_n_dim(bset); + /* Try to move (multiples of) unit rows up. */ + for (i = 0, j = 0; i < bset->n_ineq; ++i) { + int pos = isl_seq_first_non_zero(bset->ineq[i]+1, old_dim); + if (pos < 0) + continue; + if (isl_seq_first_non_zero(bset->ineq[i]+1+pos+1, + old_dim-pos-1) >= 0) + continue; + if (i != j) + swap_inequality(bset, i, j); + ++j; + } + bounds = independent_bounds(bset); + if (!bounds) + goto error; + new_dim = bounds->n_row - 1; + bounds = isl_mat_left_hermite(bounds, 1, &U, NULL); if (!bounds) goto error; - U = isl_mat_lin_to_aff(ctx, U); - U = isl_mat_drop_cols(ctx, U, 1 + new_dim, old_dim - new_dim); - bset = isl_basic_set_preimage(bset, isl_mat_copy(ctx, U)); + U = isl_mat_drop_cols(U, 1 + new_dim, old_dim - new_dim); + bset = isl_basic_set_preimage(bset, isl_mat_copy(U)); if (!bset) goto error; *T = U; - isl_mat_free(ctx, bounds); + isl_mat_free(bounds); return bset; error: - isl_mat_free(ctx, bounds); - isl_mat_free(ctx, U); + isl_mat_free(bounds); + isl_mat_free(U); isl_basic_set_free(bset); return NULL; } -struct isl_vec *isl_basic_set_sample(struct isl_basic_set *bset) +/* Find a sample integer point, if any, in bset, which is known + * to have equalities. If bset contains no integer points, then + * return a zero-length vector. + * We simply remove the known equalities, compute a sample + * in the resulting bset, using the specified recurse function, + * and then transform the sample back to the original space. + */ +static struct isl_vec *sample_eq(struct isl_basic_set *bset, + struct isl_vec *(*recurse)(struct isl_basic_set *)) { + struct isl_mat *T; + struct isl_vec *sample; + + if (!bset) + return NULL; + + bset = isl_basic_set_remove_equalities(bset, &T, NULL); + sample = recurse(bset); + if (!sample || sample->size == 0) + isl_mat_free(T); + else + sample = isl_mat_vec_product(T, sample); + return sample; +} + +/* Return a matrix containing the equalities of the tableau + * in constraint form. The tableau is assumed to have + * an associated bset that has been kept up-to-date. + */ +static struct isl_mat *tab_equalities(struct isl_tab *tab) +{ + int i, j; + int n_eq; + struct isl_mat *eq; + struct isl_basic_set *bset; + + if (!tab) + return NULL; + + bset = isl_tab_peek_bset(tab); + isl_assert(tab->mat->ctx, bset, return NULL); + + n_eq = tab->n_var - tab->n_col + tab->n_dead; + if (tab->empty || n_eq == 0) + return isl_mat_alloc(tab->mat->ctx, 0, tab->n_var); + if (n_eq == tab->n_var) + return isl_mat_identity(tab->mat->ctx, tab->n_var); + + eq = isl_mat_alloc(tab->mat->ctx, n_eq, tab->n_var); + if (!eq) + return NULL; + for (i = 0, j = 0; i < tab->n_con; ++i) { + if (tab->con[i].is_row) + continue; + if (tab->con[i].index >= 0 && tab->con[i].index >= tab->n_dead) + continue; + if (i < bset->n_eq) + isl_seq_cpy(eq->row[j], bset->eq[i] + 1, tab->n_var); + else + isl_seq_cpy(eq->row[j], + bset->ineq[i - bset->n_eq] + 1, tab->n_var); + ++j; + } + isl_assert(bset->ctx, j == n_eq, goto error); + return eq; +error: + isl_mat_free(eq); + return NULL; +} + +/* Compute and return an initial basis for the bounded tableau "tab". + * + * If the tableau is either full-dimensional or zero-dimensional, + * the we simply return an identity matrix. + * Otherwise, we construct a basis whose first directions correspond + * to equalities. + */ +static struct isl_mat *initial_basis(struct isl_tab *tab) +{ + int n_eq; + struct isl_mat *eq; + struct isl_mat *Q; + + tab->n_unbounded = 0; + tab->n_zero = n_eq = tab->n_var - tab->n_col + tab->n_dead; + if (tab->empty || n_eq == 0 || n_eq == tab->n_var) + return isl_mat_identity(tab->mat->ctx, 1 + tab->n_var); + + eq = tab_equalities(tab); + eq = isl_mat_left_hermite(eq, 0, NULL, &Q); + if (!eq) + return NULL; + isl_mat_free(eq); + + Q = isl_mat_lin_to_aff(Q); + return Q; +} + +/* Compute the minimum of the current ("level") basis row over "tab" + * and store the result in position "level" of "min". + */ +static enum isl_lp_result compute_min(isl_ctx *ctx, struct isl_tab *tab, + __isl_keep isl_vec *min, int level) +{ + return isl_tab_min(tab, tab->basis->row[1 + level], + ctx->one, &min->el[level], NULL, 0); +} + +/* Compute the maximum of the current ("level") basis row over "tab" + * and store the result in position "level" of "max". + */ +static enum isl_lp_result compute_max(isl_ctx *ctx, struct isl_tab *tab, + __isl_keep isl_vec *max, int level) +{ + enum isl_lp_result res; + unsigned dim = tab->n_var; + + isl_seq_neg(tab->basis->row[1 + level] + 1, + tab->basis->row[1 + level] + 1, dim); + res = isl_tab_min(tab, tab->basis->row[1 + level], + ctx->one, &max->el[level], NULL, 0); + isl_seq_neg(tab->basis->row[1 + level] + 1, + tab->basis->row[1 + level] + 1, dim); + isl_int_neg(max->el[level], max->el[level]); + + return res; +} + +/* Perform a greedy search for an integer point in the set represented + * by "tab", given that the minimal rational value (rounded up to the + * nearest integer) at "level" is smaller than the maximal rational + * value (rounded down to the nearest integer). + * + * Return 1 if we have found an integer point (if tab->n_unbounded > 0 + * then we may have only found integer values for the bounded dimensions + * and it is the responsibility of the caller to extend this solution + * to the unbounded dimensions). + * Return 0 if greedy search did not result in a solution. + * Return -1 if some error occurred. + * + * We assign a value half-way between the minimum and the maximum + * to the current dimension and check if the minimal value of the + * next dimension is still smaller than (or equal) to the maximal value. + * We continue this process until either + * - the minimal value (rounded up) is greater than the maximal value + * (rounded down). In this case, greedy search has failed. + * - we have exhausted all bounded dimensions, meaning that we have + * found a solution. + * - the sample value of the tableau is integral. + * - some error has occurred. + */ +static int greedy_search(isl_ctx *ctx, struct isl_tab *tab, + __isl_keep isl_vec *min, __isl_keep isl_vec *max, int level) +{ + struct isl_tab_undo *snap; + enum isl_lp_result res; + + snap = isl_tab_snap(tab); + + do { + isl_int_add(tab->basis->row[1 + level][0], + min->el[level], max->el[level]); + isl_int_fdiv_q_ui(tab->basis->row[1 + level][0], + tab->basis->row[1 + level][0], 2); + isl_int_neg(tab->basis->row[1 + level][0], + tab->basis->row[1 + level][0]); + if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0) + return -1; + isl_int_set_si(tab->basis->row[1 + level][0], 0); + + if (++level >= tab->n_var - tab->n_unbounded) + return 1; + if (isl_tab_sample_is_integer(tab)) + return 1; + + res = compute_min(ctx, tab, min, level); + if (res == isl_lp_error) + return -1; + if (res != isl_lp_ok) + isl_die(ctx, isl_error_internal, + "expecting bounded rational solution", + return -1); + res = compute_max(ctx, tab, max, level); + if (res == isl_lp_error) + return -1; + if (res != isl_lp_ok) + isl_die(ctx, isl_error_internal, + "expecting bounded rational solution", + return -1); + } while (isl_int_le(min->el[level], max->el[level])); + + if (isl_tab_rollback(tab, snap) < 0) + return -1; + + return 0; +} + +/* Given a tableau representing a set, find and return + * an integer point in the set, if there is any. + * + * We perform a depth first search + * for an integer point, by scanning all possible values in the range + * attained by a basis vector, where an initial basis may have been set + * by the calling function. Otherwise an initial basis that exploits + * the equalities in the tableau is created. + * tab->n_zero is currently ignored and is clobbered by this function. + * + * The tableau is allowed to have unbounded direction, but then + * the calling function needs to set an initial basis, with the + * unbounded directions last and with tab->n_unbounded set + * to the number of unbounded directions. + * Furthermore, the calling functions needs to add shifted copies + * of all constraints involving unbounded directions to ensure + * that any feasible rational value in these directions can be rounded + * up to yield a feasible integer value. + * In particular, let B define the given basis x' = B x + * and let T be the inverse of B, i.e., X = T x'. + * Let a x + c >= 0 be a constraint of the set represented by the tableau, + * or a T x' + c >= 0 in terms of the given basis. Assume that + * the bounded directions have an integer value, then we can safely + * round up the values for the unbounded directions if we make sure + * that x' not only satisfies the original constraint, but also + * the constraint "a T x' + c + s >= 0" with s the sum of all + * negative values in the last n_unbounded entries of "a T". + * The calling function therefore needs to add the constraint + * a x + c + s >= 0. The current function then scans the first + * directions for an integer value and once those have been found, + * it can compute "T ceil(B x)" to yield an integer point in the set. + * Note that during the search, the first rows of B may be changed + * by a basis reduction, but the last n_unbounded rows of B remain + * unaltered and are also not mixed into the first rows. + * + * The search is implemented iteratively. "level" identifies the current + * basis vector. "init" is true if we want the first value at the current + * level and false if we want the next value. + * + * At the start of each level, we first check if we can find a solution + * using greedy search. If not, we continue with the exhaustive search. + * + * The initial basis is the identity matrix. If the range in some direction + * contains more than one integer value, we perform basis reduction based + * on the value of ctx->opt->gbr + * - ISL_GBR_NEVER: never perform basis reduction + * - ISL_GBR_ONCE: only perform basis reduction the first + * time such a range is encountered + * - ISL_GBR_ALWAYS: always perform basis reduction when + * such a range is encountered + * + * When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis + * reduction computation to return early. That is, as soon as it + * finds a reasonable first direction. + */ +struct isl_vec *isl_tab_sample(struct isl_tab *tab) +{ + unsigned dim; + unsigned gbr; struct isl_ctx *ctx; - struct isl_mat *bounds; + struct isl_vec *sample; + struct isl_vec *min; + struct isl_vec *max; + enum isl_lp_result res; + int level; + int init; + int reduced; + struct isl_tab_undo **snap; + + if (!tab) + return NULL; + if (tab->empty) + return isl_vec_alloc(tab->mat->ctx, 0); + + if (!tab->basis) + tab->basis = initial_basis(tab); + if (!tab->basis) + return NULL; + isl_assert(tab->mat->ctx, tab->basis->n_row == tab->n_var + 1, + return NULL); + isl_assert(tab->mat->ctx, tab->basis->n_col == tab->n_var + 1, + return NULL); + + ctx = tab->mat->ctx; + dim = tab->n_var; + gbr = ctx->opt->gbr; + + if (tab->n_unbounded == tab->n_var) { + sample = isl_tab_get_sample_value(tab); + sample = isl_mat_vec_product(isl_mat_copy(tab->basis), sample); + sample = isl_vec_ceil(sample); + sample = isl_mat_vec_inverse_product(isl_mat_copy(tab->basis), + sample); + return sample; + } + + if (isl_tab_extend_cons(tab, dim + 1) < 0) + return NULL; + + min = isl_vec_alloc(ctx, dim); + max = isl_vec_alloc(ctx, dim); + snap = isl_alloc_array(ctx, struct isl_tab_undo *, dim); + + if (!min || !max || !snap) + goto error; + + level = 0; + init = 1; + reduced = 0; + + while (level >= 0) { + if (init) { + int choice; + + res = compute_min(ctx, tab, min, level); + if (res == isl_lp_error) + goto error; + if (res != isl_lp_ok) + isl_die(ctx, isl_error_internal, + "expecting bounded rational solution", + goto error); + if (isl_tab_sample_is_integer(tab)) + break; + res = compute_max(ctx, tab, max, level); + if (res == isl_lp_error) + goto error; + if (res != isl_lp_ok) + isl_die(ctx, isl_error_internal, + "expecting bounded rational solution", + goto error); + if (isl_tab_sample_is_integer(tab)) + break; + choice = isl_int_lt(min->el[level], max->el[level]); + if (choice) { + int g; + g = greedy_search(ctx, tab, min, max, level); + if (g < 0) + goto error; + if (g) + break; + } + if (!reduced && choice && + ctx->opt->gbr != ISL_GBR_NEVER) { + unsigned gbr_only_first; + if (ctx->opt->gbr == ISL_GBR_ONCE) + ctx->opt->gbr = ISL_GBR_NEVER; + tab->n_zero = level; + gbr_only_first = ctx->opt->gbr_only_first; + ctx->opt->gbr_only_first = + ctx->opt->gbr == ISL_GBR_ALWAYS; + tab = isl_tab_compute_reduced_basis(tab); + ctx->opt->gbr_only_first = gbr_only_first; + if (!tab || !tab->basis) + goto error; + reduced = 1; + continue; + } + reduced = 0; + snap[level] = isl_tab_snap(tab); + } else + isl_int_add_ui(min->el[level], min->el[level], 1); + + if (isl_int_gt(min->el[level], max->el[level])) { + level--; + init = 0; + if (level >= 0) + if (isl_tab_rollback(tab, snap[level]) < 0) + goto error; + continue; + } + isl_int_neg(tab->basis->row[1 + level][0], min->el[level]); + if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0) + goto error; + isl_int_set_si(tab->basis->row[1 + level][0], 0); + if (level + tab->n_unbounded < dim - 1) { + ++level; + init = 1; + continue; + } + break; + } + + if (level >= 0) { + sample = isl_tab_get_sample_value(tab); + if (!sample) + goto error; + if (tab->n_unbounded && !isl_int_is_one(sample->el[0])) { + sample = isl_mat_vec_product(isl_mat_copy(tab->basis), + sample); + sample = isl_vec_ceil(sample); + sample = isl_mat_vec_inverse_product( + isl_mat_copy(tab->basis), sample); + } + } else + sample = isl_vec_alloc(ctx, 0); + + ctx->opt->gbr = gbr; + isl_vec_free(min); + isl_vec_free(max); + free(snap); + return sample; +error: + ctx->opt->gbr = gbr; + isl_vec_free(min); + isl_vec_free(max); + free(snap); + return NULL; +} + +static struct isl_vec *sample_bounded(struct isl_basic_set *bset); + +/* Compute a sample point of the given basic set, based on the given, + * non-trivial factorization. + */ +static __isl_give isl_vec *factored_sample(__isl_take isl_basic_set *bset, + __isl_take isl_factorizer *f) +{ + int i, n; + isl_vec *sample = NULL; + isl_ctx *ctx; + unsigned nparam; + unsigned nvar; + + ctx = isl_basic_set_get_ctx(bset); + if (!ctx) + goto error; + + nparam = isl_basic_set_dim(bset, isl_dim_param); + nvar = isl_basic_set_dim(bset, isl_dim_set); + + sample = isl_vec_alloc(ctx, 1 + isl_basic_set_total_dim(bset)); + if (!sample) + goto error; + isl_int_set_si(sample->el[0], 1); + + bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset); + + for (i = 0, n = 0; i < f->n_group; ++i) { + isl_basic_set *bset_i; + isl_vec *sample_i; + + bset_i = isl_basic_set_copy(bset); + bset_i = isl_basic_set_drop_constraints_involving(bset_i, + nparam + n + f->len[i], nvar - n - f->len[i]); + bset_i = isl_basic_set_drop_constraints_involving(bset_i, + nparam, n); + bset_i = isl_basic_set_drop(bset_i, isl_dim_set, + n + f->len[i], nvar - n - f->len[i]); + bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n); + + sample_i = sample_bounded(bset_i); + if (!sample_i) + goto error; + if (sample_i->size == 0) { + isl_basic_set_free(bset); + isl_factorizer_free(f); + isl_vec_free(sample); + return sample_i; + } + isl_seq_cpy(sample->el + 1 + nparam + n, + sample_i->el + 1, f->len[i]); + isl_vec_free(sample_i); + + n += f->len[i]; + } + + f->morph = isl_morph_inverse(f->morph); + sample = isl_morph_vec(isl_morph_copy(f->morph), sample); + + isl_basic_set_free(bset); + isl_factorizer_free(f); + return sample; +error: + isl_basic_set_free(bset); + isl_factorizer_free(f); + isl_vec_free(sample); + return NULL; +} + +/* Given a basic set that is known to be bounded, find and return + * an integer point in the basic set, if there is any. + * + * After handling some trivial cases, we construct a tableau + * and then use isl_tab_sample to find a sample, passing it + * the identity matrix as initial basis. + */ +static struct isl_vec *sample_bounded(struct isl_basic_set *bset) +{ unsigned dim; + struct isl_ctx *ctx; + struct isl_vec *sample; + struct isl_tab *tab = NULL; + isl_factorizer *f; + + if (!bset) + return NULL; + + if (isl_basic_set_plain_is_empty(bset)) + return empty_sample(bset); + + dim = isl_basic_set_total_dim(bset); + if (dim == 0) + return zero_sample(bset); + if (dim == 1) + return interval_sample(bset); + if (bset->n_eq > 0) + return sample_eq(bset, sample_bounded); + + f = isl_basic_set_factorizer(bset); + if (!f) + goto error; + if (f->n_group != 0) + return factored_sample(bset, f); + isl_factorizer_free(f); + + ctx = bset->ctx; + + tab = isl_tab_from_basic_set(bset, 1); + if (tab && tab->empty) { + isl_tab_free(tab); + ISL_F_SET(bset, ISL_BASIC_SET_EMPTY); + sample = isl_vec_alloc(bset->ctx, 0); + isl_basic_set_free(bset); + return sample; + } + + if (!ISL_F_ISSET(bset, ISL_BASIC_SET_NO_IMPLICIT)) + if (isl_tab_detect_implicit_equalities(tab) < 0) + goto error; + + sample = isl_tab_sample(tab); + if (!sample) + goto error; + + if (sample->size > 0) { + isl_vec_free(bset->sample); + bset->sample = isl_vec_copy(sample); + } + + isl_basic_set_free(bset); + isl_tab_free(tab); + return sample; +error: + isl_basic_set_free(bset); + isl_tab_free(tab); + return NULL; +} + +/* Given a basic set "bset" and a value "sample" for the first coordinates + * of bset, plug in these values and drop the corresponding coordinates. + * + * We do this by computing the preimage of the transformation + * + * [ 1 0 ] + * x = [ s 0 ] x' + * [ 0 I ] + * + * where [1 s] is the sample value and I is the identity matrix of the + * appropriate dimension. + */ +static struct isl_basic_set *plug_in(struct isl_basic_set *bset, + struct isl_vec *sample) +{ + int i; + unsigned total; + struct isl_mat *T; + + if (!bset || !sample) + goto error; + + total = isl_basic_set_total_dim(bset); + T = isl_mat_alloc(bset->ctx, 1 + total, 1 + total - (sample->size - 1)); + if (!T) + goto error; + + for (i = 0; i < sample->size; ++i) { + isl_int_set(T->row[i][0], sample->el[i]); + isl_seq_clr(T->row[i] + 1, T->n_col - 1); + } + for (i = 0; i < T->n_col - 1; ++i) { + isl_seq_clr(T->row[sample->size + i], T->n_col); + isl_int_set_si(T->row[sample->size + i][1 + i], 1); + } + isl_vec_free(sample); + + bset = isl_basic_set_preimage(bset, T); + return bset; +error: + isl_basic_set_free(bset); + isl_vec_free(sample); + return NULL; +} + +/* Given a basic set "bset", return any (possibly non-integer) point + * in the basic set. + */ +static struct isl_vec *rational_sample(struct isl_basic_set *bset) +{ + struct isl_tab *tab; + struct isl_vec *sample; + if (!bset) return NULL; + tab = isl_tab_from_basic_set(bset, 0); + sample = isl_tab_get_sample_value(tab); + isl_tab_free(tab); + + isl_basic_set_free(bset); + + return sample; +} + +/* Given a linear cone "cone" and a rational point "vec", + * construct a polyhedron with shifted copies of the constraints in "cone", + * i.e., a polyhedron with "cone" as its recession cone, such that each + * point x in this polyhedron is such that the unit box positioned at x + * lies entirely inside the affine cone 'vec + cone'. + * Any rational point in this polyhedron may therefore be rounded up + * to yield an integer point that lies inside said affine cone. + * + * Denote the constraints of cone by " >= 0" and the rational + * point "vec" by v/d. + * Let b_i = . Then the affine cone 'vec + cone' is given + * by - b/d >= 0. + * The polyhedron - ceil{b/d} >= 0 is a subset of this affine cone. + * We prefer this polyhedron over the actual affine cone because it doesn't + * require a scaling of the constraints. + * If each of the vertices of the unit cube positioned at x lies inside + * this polyhedron, then the whole unit cube at x lies inside the affine cone. + * We therefore impose that x' = x + \sum e_i, for any selection of unit + * vectors lies inside the polyhedron, i.e., + * + * - ceil{b/d} = + sum a_i - ceil{b/d} >= 0 + * + * The most stringent of these constraints is the one that selects + * all negative a_i, so the polyhedron we are looking for has constraints + * + * + sum_{a_i < 0} a_i - ceil{b/d} >= 0 + * + * Note that if cone were known to have only non-negative rays + * (which can be accomplished by a unimodular transformation), + * then we would only have to check the points x' = x + e_i + * and we only have to add the smallest negative a_i (if any) + * instead of the sum of all negative a_i. + */ +static struct isl_basic_set *shift_cone(struct isl_basic_set *cone, + struct isl_vec *vec) +{ + int i, j, k; + unsigned total; + + struct isl_basic_set *shift = NULL; + + if (!cone || !vec) + goto error; + + isl_assert(cone->ctx, cone->n_eq == 0, goto error); + + total = isl_basic_set_total_dim(cone); + + shift = isl_basic_set_alloc_space(isl_basic_set_get_space(cone), + 0, 0, cone->n_ineq); + + for (i = 0; i < cone->n_ineq; ++i) { + k = isl_basic_set_alloc_inequality(shift); + if (k < 0) + goto error; + isl_seq_cpy(shift->ineq[k] + 1, cone->ineq[i] + 1, total); + isl_seq_inner_product(shift->ineq[k] + 1, vec->el + 1, total, + &shift->ineq[k][0]); + isl_int_cdiv_q(shift->ineq[k][0], + shift->ineq[k][0], vec->el[0]); + isl_int_neg(shift->ineq[k][0], shift->ineq[k][0]); + for (j = 0; j < total; ++j) { + if (isl_int_is_nonneg(shift->ineq[k][1 + j])) + continue; + isl_int_add(shift->ineq[k][0], + shift->ineq[k][0], shift->ineq[k][1 + j]); + } + } + + isl_basic_set_free(cone); + isl_vec_free(vec); + + return isl_basic_set_finalize(shift); +error: + isl_basic_set_free(shift); + isl_basic_set_free(cone); + isl_vec_free(vec); + return NULL; +} + +/* Given a rational point vec in a (transformed) basic set, + * such that cone is the recession cone of the original basic set, + * "round up" the rational point to an integer point. + * + * We first check if the rational point just happens to be integer. + * If not, we transform the cone in the same way as the basic set, + * pick a point x in this cone shifted to the rational point such that + * the whole unit cube at x is also inside this affine cone. + * Then we simply round up the coordinates of x and return the + * resulting integer point. + */ +static struct isl_vec *round_up_in_cone(struct isl_vec *vec, + struct isl_basic_set *cone, struct isl_mat *U) +{ + unsigned total; + + if (!vec || !cone || !U) + goto error; + + isl_assert(vec->ctx, vec->size != 0, goto error); + if (isl_int_is_one(vec->el[0])) { + isl_mat_free(U); + isl_basic_set_free(cone); + return vec; + } + + total = isl_basic_set_total_dim(cone); + cone = isl_basic_set_preimage(cone, U); + cone = isl_basic_set_remove_dims(cone, isl_dim_set, + 0, total - (vec->size - 1)); + + cone = shift_cone(cone, vec); + + vec = rational_sample(cone); + vec = isl_vec_ceil(vec); + return vec; +error: + isl_mat_free(U); + isl_vec_free(vec); + isl_basic_set_free(cone); + return NULL; +} + +/* Concatenate two integer vectors, i.e., two vectors with denominator + * (stored in element 0) equal to 1. + */ +static struct isl_vec *vec_concat(struct isl_vec *vec1, struct isl_vec *vec2) +{ + struct isl_vec *vec; + + if (!vec1 || !vec2) + goto error; + isl_assert(vec1->ctx, vec1->size > 0, goto error); + isl_assert(vec2->ctx, vec2->size > 0, goto error); + isl_assert(vec1->ctx, isl_int_is_one(vec1->el[0]), goto error); + isl_assert(vec2->ctx, isl_int_is_one(vec2->el[0]), goto error); + + vec = isl_vec_alloc(vec1->ctx, vec1->size + vec2->size - 1); + if (!vec) + goto error; + + isl_seq_cpy(vec->el, vec1->el, vec1->size); + isl_seq_cpy(vec->el + vec1->size, vec2->el + 1, vec2->size - 1); + + isl_vec_free(vec1); + isl_vec_free(vec2); + + return vec; +error: + isl_vec_free(vec1); + isl_vec_free(vec2); + return NULL; +} + +/* Give a basic set "bset" with recession cone "cone", compute and + * return an integer point in bset, if any. + * + * If the recession cone is full-dimensional, then we know that + * bset contains an infinite number of integer points and it is + * fairly easy to pick one of them. + * If the recession cone is not full-dimensional, then we first + * transform bset such that the bounded directions appear as + * the first dimensions of the transformed basic set. + * We do this by using a unimodular transformation that transforms + * the equalities in the recession cone to equalities on the first + * dimensions. + * + * The transformed set is then projected onto its bounded dimensions. + * Note that to compute this projection, we can simply drop all constraints + * involving any of the unbounded dimensions since these constraints + * cannot be combined to produce a constraint on the bounded dimensions. + * To see this, assume that there is such a combination of constraints + * that produces a constraint on the bounded dimensions. This means + * that some combination of the unbounded dimensions has both an upper + * bound and a lower bound in terms of the bounded dimensions, but then + * this combination would be a bounded direction too and would have been + * transformed into a bounded dimensions. + * + * We then compute a sample value in the bounded dimensions. + * If no such value can be found, then the original set did not contain + * any integer points and we are done. + * Otherwise, we plug in the value we found in the bounded dimensions, + * project out these bounded dimensions and end up with a set with + * a full-dimensional recession cone. + * A sample point in this set is computed by "rounding up" any + * rational point in the set. + * + * The sample points in the bounded and unbounded dimensions are + * then combined into a single sample point and transformed back + * to the original space. + */ +__isl_give isl_vec *isl_basic_set_sample_with_cone( + __isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone) +{ + unsigned total; + unsigned cone_dim; + struct isl_mat *M, *U; + struct isl_vec *sample; + struct isl_vec *cone_sample; + struct isl_ctx *ctx; + struct isl_basic_set *bounded; + + if (!bset || !cone) + goto error; + ctx = bset->ctx; - if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY)) { + total = isl_basic_set_total_dim(cone); + cone_dim = total - cone->n_eq; + + M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total); + M = isl_mat_left_hermite(M, 0, &U, NULL); + if (!M) + goto error; + isl_mat_free(M); + + U = isl_mat_lin_to_aff(U); + bset = isl_basic_set_preimage(bset, isl_mat_copy(U)); + + bounded = isl_basic_set_copy(bset); + bounded = isl_basic_set_drop_constraints_involving(bounded, + total - cone_dim, cone_dim); + bounded = isl_basic_set_drop_dims(bounded, total - cone_dim, cone_dim); + sample = sample_bounded(bounded); + if (!sample || sample->size == 0) { isl_basic_set_free(bset); - return isl_vec_alloc(ctx, 0); + isl_basic_set_free(cone); + isl_mat_free(U); + return sample; + } + bset = plug_in(bset, isl_vec_copy(sample)); + cone_sample = rational_sample(bset); + cone_sample = round_up_in_cone(cone_sample, cone, isl_mat_copy(U)); + sample = vec_concat(sample, cone_sample); + sample = isl_mat_vec_product(U, sample); + return sample; +error: + isl_basic_set_free(cone); + isl_basic_set_free(bset); + return NULL; +} + +static void vec_sum_of_neg(struct isl_vec *v, isl_int *s) +{ + int i; + + isl_int_set_si(*s, 0); + + for (i = 0; i < v->size; ++i) + if (isl_int_is_neg(v->el[i])) + isl_int_add(*s, *s, v->el[i]); +} + +/* Given a tableau "tab", a tableau "tab_cone" that corresponds + * to the recession cone and the inverse of a new basis U = inv(B), + * with the unbounded directions in B last, + * add constraints to "tab" that ensure any rational value + * in the unbounded directions can be rounded up to an integer value. + * + * The new basis is given by x' = B x, i.e., x = U x'. + * For any rational value of the last tab->n_unbounded coordinates + * in the update tableau, the value that is obtained by rounding + * up this value should be contained in the original tableau. + * For any constraint "a x + c >= 0", we therefore need to add + * a constraint "a x + c + s >= 0", with s the sum of all negative + * entries in the last elements of "a U". + * + * Since we are not interested in the first entries of any of the "a U", + * we first drop the columns of U that correpond to bounded directions. + */ +static int tab_shift_cone(struct isl_tab *tab, + struct isl_tab *tab_cone, struct isl_mat *U) +{ + int i; + isl_int v; + struct isl_basic_set *bset = NULL; + + if (tab && tab->n_unbounded == 0) { + isl_mat_free(U); + return 0; + } + isl_int_init(v); + if (!tab || !tab_cone || !U) + goto error; + bset = isl_tab_peek_bset(tab_cone); + U = isl_mat_drop_cols(U, 0, tab->n_var - tab->n_unbounded); + for (i = 0; i < bset->n_ineq; ++i) { + int ok; + struct isl_vec *row = NULL; + if (isl_tab_is_equality(tab_cone, tab_cone->n_eq + i)) + continue; + row = isl_vec_alloc(bset->ctx, tab_cone->n_var); + if (!row) + goto error; + isl_seq_cpy(row->el, bset->ineq[i] + 1, tab_cone->n_var); + row = isl_vec_mat_product(row, isl_mat_copy(U)); + if (!row) + goto error; + vec_sum_of_neg(row, &v); + isl_vec_free(row); + if (isl_int_is_zero(v)) + continue; + tab = isl_tab_extend(tab, 1); + isl_int_add(bset->ineq[i][0], bset->ineq[i][0], v); + ok = isl_tab_add_ineq(tab, bset->ineq[i]) >= 0; + isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], v); + if (!ok) + goto error; + } + + isl_mat_free(U); + isl_int_clear(v); + return 0; +error: + isl_mat_free(U); + isl_int_clear(v); + return -1; +} + +/* Compute and return an initial basis for the possibly + * unbounded tableau "tab". "tab_cone" is a tableau + * for the corresponding recession cone. + * Additionally, add constraints to "tab" that ensure + * that any rational value for the unbounded directions + * can be rounded up to an integer value. + * + * If the tableau is bounded, i.e., if the recession cone + * is zero-dimensional, then we just use inital_basis. + * Otherwise, we construct a basis whose first directions + * correspond to equalities, followed by bounded directions, + * i.e., equalities in the recession cone. + * The remaining directions are then unbounded. + */ +int isl_tab_set_initial_basis_with_cone(struct isl_tab *tab, + struct isl_tab *tab_cone) +{ + struct isl_mat *eq; + struct isl_mat *cone_eq; + struct isl_mat *U, *Q; + + if (!tab || !tab_cone) + return -1; + + if (tab_cone->n_col == tab_cone->n_dead) { + tab->basis = initial_basis(tab); + return tab->basis ? 0 : -1; } + eq = tab_equalities(tab); + if (!eq) + return -1; + tab->n_zero = eq->n_row; + cone_eq = tab_equalities(tab_cone); + eq = isl_mat_concat(eq, cone_eq); + if (!eq) + return -1; + tab->n_unbounded = tab->n_var - (eq->n_row - tab->n_zero); + eq = isl_mat_left_hermite(eq, 0, &U, &Q); + if (!eq) + return -1; + isl_mat_free(eq); + tab->basis = isl_mat_lin_to_aff(Q); + if (tab_shift_cone(tab, tab_cone, U) < 0) + return -1; + if (!tab->basis) + return -1; + return 0; +} + +/* Compute and return a sample point in bset using generalized basis + * reduction. We first check if the input set has a non-trivial + * recession cone. If so, we perform some extra preprocessing in + * sample_with_cone. Otherwise, we directly perform generalized basis + * reduction. + */ +static struct isl_vec *gbr_sample(struct isl_basic_set *bset) +{ + unsigned dim; + struct isl_basic_set *cone; + + dim = isl_basic_set_total_dim(bset); + + cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset)); + if (!cone) + goto error; + + if (cone->n_eq < dim) + return isl_basic_set_sample_with_cone(bset, cone); + + isl_basic_set_free(cone); + return sample_bounded(bset); +error: + isl_basic_set_free(bset); + return NULL; +} + +static struct isl_vec *pip_sample(struct isl_basic_set *bset) +{ + struct isl_mat *T; + struct isl_ctx *ctx; + struct isl_vec *sample; + + bset = isl_basic_set_skew_to_positive_orthant(bset, &T); + if (!bset) + return NULL; + + ctx = bset->ctx; + sample = isl_pip_basic_set_sample(bset); + + if (sample && sample->size != 0) + sample = isl_mat_vec_product(T, sample); + else + isl_mat_free(T); + + return sample; +} + +static struct isl_vec *basic_set_sample(struct isl_basic_set *bset, int bounded) +{ + struct isl_ctx *ctx; + unsigned dim; + if (!bset) + return NULL; + + ctx = bset->ctx; + if (isl_basic_set_plain_is_empty(bset)) + return empty_sample(bset); + dim = isl_basic_set_n_dim(bset); isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error); isl_assert(ctx, bset->n_div == 0, goto error); - if (bset->n_eq > 0) { - struct isl_mat *T; - struct isl_vec *sample; - - bset = isl_basic_set_remove_equalities(bset, &T, NULL); - sample = isl_basic_set_sample(bset); - if (sample && sample->size != 0) - sample = isl_mat_vec_product(ctx, T, sample); - else - isl_mat_free(ctx, T); - return sample; + if (bset->sample && bset->sample->size == 1 + dim) { + int contains = isl_basic_set_contains(bset, bset->sample); + if (contains < 0) + goto error; + if (contains) { + struct isl_vec *sample = isl_vec_copy(bset->sample); + isl_basic_set_free(bset); + return sample; + } } + isl_vec_free(bset->sample); + bset->sample = NULL; + + if (bset->n_eq > 0) + return sample_eq(bset, bounded ? isl_basic_set_sample_bounded + : isl_basic_set_sample_vec); if (dim == 0) return zero_sample(bset); if (dim == 1) - return interval_sample(ctx, bset); - bounds = independent_bounds(ctx, bset); - if (!bounds) + return interval_sample(bset); + + switch (bset->ctx->opt->ilp_solver) { + case ISL_ILP_PIP: + return pip_sample(bset); + case ISL_ILP_GBR: + return bounded ? sample_bounded(bset) : gbr_sample(bset); + } + isl_assert(bset->ctx, 0, ); +error: + isl_basic_set_free(bset); + return NULL; +} + +__isl_give isl_vec *isl_basic_set_sample_vec(__isl_take isl_basic_set *bset) +{ + return basic_set_sample(bset, 0); +} + +/* Compute an integer sample in "bset", where the caller guarantees + * that "bset" is bounded. + */ +struct isl_vec *isl_basic_set_sample_bounded(struct isl_basic_set *bset) +{ + return basic_set_sample(bset, 1); +} + +__isl_give isl_basic_set *isl_basic_set_from_vec(__isl_take isl_vec *vec) +{ + int i; + int k; + struct isl_basic_set *bset = NULL; + struct isl_ctx *ctx; + unsigned dim; + + if (!vec) + return NULL; + ctx = vec->ctx; + isl_assert(ctx, vec->size != 0, goto error); + + bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0); + if (!bset) goto error; - if (bounds->n_row == dim) - isl_mat_free(ctx, bounds); - else { - struct isl_mat *T; - struct isl_vec *sample; + dim = isl_basic_set_n_dim(bset); + for (i = dim - 1; i >= 0; --i) { + k = isl_basic_set_alloc_equality(bset); + if (k < 0) + goto error; + isl_seq_clr(bset->eq[k], 1 + dim); + isl_int_neg(bset->eq[k][0], vec->el[1 + i]); + isl_int_set(bset->eq[k][1 + i], vec->el[0]); + } + bset->sample = vec; - bset = remove_lineality(ctx, bset, bounds, &T); - sample = isl_basic_set_sample(bset); - if (sample && sample->size != 0) - sample = isl_mat_vec_product(ctx, T, sample); - else - isl_mat_free(ctx, T); + return bset; +error: + isl_basic_set_free(bset); + isl_vec_free(vec); + return NULL; +} + +__isl_give isl_basic_map *isl_basic_map_sample(__isl_take isl_basic_map *bmap) +{ + struct isl_basic_set *bset; + struct isl_vec *sample_vec; + + bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap)); + sample_vec = isl_basic_set_sample_vec(bset); + if (!sample_vec) + goto error; + if (sample_vec->size == 0) { + struct isl_basic_map *sample; + sample = isl_basic_map_empty_like(bmap); + isl_vec_free(sample_vec); + isl_basic_map_free(bmap); return sample; } - return isl_pip_basic_set_sample(bset); + bset = isl_basic_set_from_vec(sample_vec); + return isl_basic_map_overlying_set(bset, bmap); error: - isl_basic_set_free(bset); + isl_basic_map_free(bmap); + return NULL; +} + +__isl_give isl_basic_set *isl_basic_set_sample(__isl_take isl_basic_set *bset) +{ + return isl_basic_map_sample(bset); +} + +__isl_give isl_basic_map *isl_map_sample(__isl_take isl_map *map) +{ + int i; + isl_basic_map *sample = NULL; + + if (!map) + goto error; + + for (i = 0; i < map->n; ++i) { + sample = isl_basic_map_sample(isl_basic_map_copy(map->p[i])); + if (!sample) + goto error; + if (!ISL_F_ISSET(sample, ISL_BASIC_MAP_EMPTY)) + break; + isl_basic_map_free(sample); + } + if (i == map->n) + sample = isl_basic_map_empty_like_map(map); + isl_map_free(map); + return sample; +error: + isl_map_free(map); + return NULL; +} + +__isl_give isl_basic_set *isl_set_sample(__isl_take isl_set *set) +{ + return (isl_basic_set *) isl_map_sample((isl_map *)set); +} + +__isl_give isl_point *isl_basic_set_sample_point(__isl_take isl_basic_set *bset) +{ + isl_vec *vec; + isl_space *dim; + + dim = isl_basic_set_get_space(bset); + bset = isl_basic_set_underlying_set(bset); + vec = isl_basic_set_sample_vec(bset); + + return isl_point_alloc(dim, vec); +} + +__isl_give isl_point *isl_set_sample_point(__isl_take isl_set *set) +{ + int i; + isl_point *pnt; + + if (!set) + return NULL; + + for (i = 0; i < set->n; ++i) { + pnt = isl_basic_set_sample_point(isl_basic_set_copy(set->p[i])); + if (!pnt) + goto error; + if (!isl_point_is_void(pnt)) + break; + isl_point_free(pnt); + } + if (i == set->n) + pnt = isl_point_void(isl_set_get_space(set)); + + isl_set_free(set); + return pnt; +error: + isl_set_free(set); return NULL; }