X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=isl_equalities.c;h=da36c3d1e0246c99d9532b1d29dd513e2e010fe9;hb=baee941de1964a2cab64c34b627d5ab767060a79;hp=68d2c89a6cdaa8aead8580b9ee0ac6bede0e4622;hpb=a2bc9bfd1c851340ab4ab10878ff35d5d545fc77;p=platform%2Fupstream%2Fisl.git diff --git a/isl_equalities.c b/isl_equalities.c index 68d2c89..da36c3d 100644 --- a/isl_equalities.c +++ b/isl_equalities.c @@ -1,16 +1,20 @@ /* * Copyright 2008-2009 Katholieke Universiteit Leuven + * Copyright 2010 INRIA Saclay * - * Use of this software is governed by the GNU LGPLv2.1 license + * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium + * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, + * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France */ #include #include #include "isl_map_private.h" #include "isl_equalities.h" +#include /* Given a set of modulo constraints * @@ -374,6 +378,59 @@ error: /* Given a set of equalities * + * B(y) + A x = 0 (*) + * + * compute and return an affine transformation T, + * + * y = T y' + * + * that bijectively maps the integer vectors y' to integer + * vectors y that satisfy the modulo constraints for some value of x. + * + * Let [H 0] be the Hermite Normal Form of A, i.e., + * + * A = [H 0] Q + * + * Then y is a solution of (*) iff + * + * H^-1 B(y) (= - [I 0] Q x) + * + * is an integer vector. Let d be the common denominator of H^-1. + * We impose + * + * d H^-1 B(y) = 0 mod d + * + * and compute the solution using isl_mat_parameter_compression. + */ +__isl_give isl_mat *isl_mat_parameter_compression_ext(__isl_take isl_mat *B, + __isl_take isl_mat *A) +{ + isl_ctx *ctx; + isl_vec *d; + int n_row, n_col; + + if (!A) + return isl_mat_free(B); + + ctx = isl_mat_get_ctx(A); + n_row = A->n_row; + n_col = A->n_col; + A = isl_mat_left_hermite(A, 0, NULL, NULL); + A = isl_mat_drop_cols(A, n_row, n_col - n_row); + A = isl_mat_lin_to_aff(A); + A = isl_mat_right_inverse(A); + d = isl_vec_alloc(ctx, n_row); + if (A) + d = isl_vec_set(d, A->row[0][0]); + A = isl_mat_drop_rows(A, 0, 1); + A = isl_mat_drop_cols(A, 0, 1); + B = isl_mat_product(A, B); + + return isl_mat_parameter_compression(B, d); +} + +/* Given a set of equalities + * * M x - c = 0 * * this function computes a unimodular transformation from a lower-dimensional @@ -413,8 +470,8 @@ error: * * x2' = Q2 x */ -struct isl_mat *isl_mat_variable_compression(struct isl_mat *B, - struct isl_mat **T2) +__isl_give isl_mat *isl_mat_variable_compression(__isl_take isl_mat *B, + __isl_give isl_mat **T2) { int i; struct isl_mat *H = NULL, *C = NULL, *H1, *U = NULL, *U1, *U2, *TC; @@ -670,20 +727,15 @@ int isl_set_dim_residue_class(struct isl_set *set, isl_int_init(r); for (i = 1; i < set->n; ++i) { - if (isl_basic_set_dim_residue_class(set->p[0], pos, &m, &r) < 0) + if (isl_basic_set_dim_residue_class(set->p[i], pos, &m, &r) < 0) goto error; isl_int_gcd(*modulo, *modulo, m); + isl_int_sub(m, *residue, r); + isl_int_gcd(*modulo, *modulo, m); if (!isl_int_is_zero(*modulo)) isl_int_fdiv_r(*residue, *residue, *modulo); if (isl_int_is_one(*modulo)) break; - if (!isl_int_is_zero(*modulo)) - isl_int_fdiv_r(r, r, *modulo); - if (isl_int_ne(*residue, r)) { - isl_int_set_si(*modulo, 1); - isl_int_set_si(*residue, 0); - break; - } } isl_int_clear(m); @@ -695,3 +747,35 @@ error: isl_int_clear(r); return -1; } + +/* Check if dimension "dim" belongs to a residue class + * i_dim \equiv r mod m + * with m != 1 and if so return m in *modulo and r in *residue. + * As a special case, when i_dim has a fixed value v, then + * *modulo is set to 0 and *residue to v. + * + * If i_dim does not belong to such a residue class, then *modulo + * is set to 1 and *residue is set to 0. + */ +int isl_set_dim_residue_class_val(__isl_keep isl_set *set, + int pos, __isl_give isl_val **modulo, __isl_give isl_val **residue) +{ + *modulo = NULL; + *residue = NULL; + if (!set) + return -1; + *modulo = isl_val_alloc(isl_set_get_ctx(set)); + *residue = isl_val_alloc(isl_set_get_ctx(set)); + if (!*modulo || !*residue) + goto error; + if (isl_set_dim_residue_class(set, pos, + &(*modulo)->n, &(*residue)->n) < 0) + goto error; + isl_int_set_si((*modulo)->d, 1); + isl_int_set_si((*residue)->d, 1); + return 0; +error: + isl_val_free(*modulo); + isl_val_free(*residue); + return -1; +}