X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=isl_equalities.c;h=da36c3d1e0246c99d9532b1d29dd513e2e010fe9;hb=64b09f1d4d4d62c38b97df9e82156a42e544a8c2;hp=f1d10d280b8bbcf9e505f73e8aff0f436508c4a0;hpb=ada1331c1cbbc7d4bb9e9e22a96d81096a00ad65;p=platform%2Fupstream%2Fisl.git diff --git a/isl_equalities.c b/isl_equalities.c index f1d10d2..da36c3d 100644 --- a/isl_equalities.c +++ b/isl_equalities.c @@ -1,16 +1,20 @@ /* * Copyright 2008-2009 Katholieke Universiteit Leuven + * Copyright 2010 INRIA Saclay * - * Use of this software is governed by the GNU LGPLv2.1 license + * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium + * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, + * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France */ -#include "isl_mat.h" -#include "isl_seq.h" +#include +#include #include "isl_map_private.h" #include "isl_equalities.h" +#include /* Given a set of modulo constraints * @@ -85,7 +89,7 @@ static struct isl_mat *particular_solution(struct isl_mat *B, struct isl_vec *d) M = isl_mat_left_hermite(M, 0, &U, NULL); if (!M || !U) goto error; - H = isl_mat_sub_alloc(B->ctx, M->row, 0, B->n_row, 0, B->n_row); + H = isl_mat_sub_alloc(M, 0, B->n_row, 0, B->n_row); H = isl_mat_lin_to_aff(H); C = isl_mat_inverse_product(H, C); if (!C) @@ -98,8 +102,8 @@ static struct isl_mat *particular_solution(struct isl_mat *B, struct isl_vec *d) if (i < B->n_row) cst = isl_mat_alloc(B->ctx, B->n_row, 0); else - cst = isl_mat_sub_alloc(C->ctx, C->row, 1, B->n_row, 0, 1); - T = isl_mat_sub_alloc(U->ctx, U->row, B->n_row, B->n_col - 1, 0, B->n_row); + cst = isl_mat_sub_alloc(C, 1, B->n_row, 0, 1); + T = isl_mat_sub_alloc(U, B->n_row, B->n_col - 1, 0, B->n_row); cst = isl_mat_product(T, cst); isl_mat_free(M); isl_mat_free(C); @@ -184,10 +188,14 @@ static struct isl_mat *parameter_compression_multi( D, U->row[j][k]); } A = isl_mat_left_hermite(A, 0, NULL, NULL); - T = isl_mat_sub_alloc(A->ctx, A->row, 0, A->n_row, 0, A->n_row); + T = isl_mat_sub_alloc(A, 0, A->n_row, 0, A->n_row); T = isl_mat_lin_to_aff(T); + if (!T) + goto error; isl_int_set(T->row[0][0], D); T = isl_mat_right_inverse(T); + if (!T) + goto error; isl_assert(T->ctx, isl_int_is_one(T->row[0][0]), goto error); T = isl_mat_transpose(T); isl_mat_free(A); @@ -249,7 +257,7 @@ error: * then we divide this row of A by the common factor, unless gcd(A_i) = 0. * In the later case, we simply drop the row (in both A and d). * - * If there are no rows left in A, the G is the identity matrix. Otherwise, + * If there are no rows left in A, then G is the identity matrix. Otherwise, * for each row i, we now determine the lattice of integer vectors * that satisfies this row. Let U_i be the unimodular extension of the * row A_i. This unimodular extension exists because gcd(A_i) = 1. @@ -370,14 +378,67 @@ error: /* Given a set of equalities * + * B(y) + A x = 0 (*) + * + * compute and return an affine transformation T, + * + * y = T y' + * + * that bijectively maps the integer vectors y' to integer + * vectors y that satisfy the modulo constraints for some value of x. + * + * Let [H 0] be the Hermite Normal Form of A, i.e., + * + * A = [H 0] Q + * + * Then y is a solution of (*) iff + * + * H^-1 B(y) (= - [I 0] Q x) + * + * is an integer vector. Let d be the common denominator of H^-1. + * We impose + * + * d H^-1 B(y) = 0 mod d + * + * and compute the solution using isl_mat_parameter_compression. + */ +__isl_give isl_mat *isl_mat_parameter_compression_ext(__isl_take isl_mat *B, + __isl_take isl_mat *A) +{ + isl_ctx *ctx; + isl_vec *d; + int n_row, n_col; + + if (!A) + return isl_mat_free(B); + + ctx = isl_mat_get_ctx(A); + n_row = A->n_row; + n_col = A->n_col; + A = isl_mat_left_hermite(A, 0, NULL, NULL); + A = isl_mat_drop_cols(A, n_row, n_col - n_row); + A = isl_mat_lin_to_aff(A); + A = isl_mat_right_inverse(A); + d = isl_vec_alloc(ctx, n_row); + if (A) + d = isl_vec_set(d, A->row[0][0]); + A = isl_mat_drop_rows(A, 0, 1); + A = isl_mat_drop_cols(A, 0, 1); + B = isl_mat_product(A, B); + + return isl_mat_parameter_compression(B, d); +} + +/* Given a set of equalities + * * M x - c = 0 * - * this function computes unimodular transformation from a lower-dimensional + * this function computes a unimodular transformation from a lower-dimensional * space to the original space that bijectively maps the integer points x' * in the lower-dimensional space to the integer points x in the original * space that satisfy the equalities. * - * The input is given as a matrix B = [ -c M ] and the out is a + * The input is given as a matrix B = [ -c M ] and the output is a * matrix that maps [1 x'] to [1 x]. * If T2 is not NULL, then *T2 is set to a matrix mapping [1 x] to [1 x']. * @@ -409,8 +470,8 @@ error: * * x2' = Q2 x */ -struct isl_mat *isl_mat_variable_compression(struct isl_mat *B, - struct isl_mat **T2) +__isl_give isl_mat *isl_mat_variable_compression(__isl_take isl_mat *B, + __isl_give isl_mat **T2) { int i; struct isl_mat *H = NULL, *C = NULL, *H1, *U = NULL, *U1, *U2, *TC; @@ -422,7 +483,7 @@ struct isl_mat *isl_mat_variable_compression(struct isl_mat *B, goto error; dim = B->n_col - 1; - H = isl_mat_sub_alloc(B->ctx, B->row, 0, B->n_row, 1, dim); + H = isl_mat_sub_alloc(B, 0, B->n_row, 1, dim); H = isl_mat_left_hermite(H, 0, &U, T2); if (!H || !U || (T2 && !*T2)) goto error; @@ -437,7 +498,7 @@ struct isl_mat *isl_mat_variable_compression(struct isl_mat *B, goto error; isl_int_set_si(C->row[0][0], 1); isl_mat_sub_neg(C->ctx, C->row+1, B->row, B->n_row, 0, 0, 1); - H1 = isl_mat_sub_alloc(H->ctx, H->row, 0, H->n_row, 0, H->n_row); + H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row); H1 = isl_mat_lin_to_aff(H1); TC = isl_mat_inverse_product(H1, C); if (!TC) @@ -460,10 +521,9 @@ struct isl_mat *isl_mat_variable_compression(struct isl_mat *B, } isl_int_set_si(TC->row[0][0], 1); } - U1 = isl_mat_sub_alloc(U->ctx, U->row, 0, U->n_row, 0, B->n_row); + U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, B->n_row); U1 = isl_mat_lin_to_aff(U1); - U2 = isl_mat_sub_alloc(U->ctx, U->row, 0, U->n_row, - B->n_row, U->n_row - B->n_row); + U2 = isl_mat_sub_alloc(U, 0, U->n_row, B->n_row, U->n_row - B->n_row); U2 = isl_mat_lin_to_aff(U2); isl_mat_free(U); TC = isl_mat_product(U1, TC); @@ -509,7 +569,7 @@ static struct isl_basic_set *compress_variables( if (bset->n_eq == 0) return bset; - B = isl_mat_sub_alloc(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + dim); + B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + dim); TC = isl_mat_variable_compression(B, T2); if (!TC) goto error; @@ -572,7 +632,7 @@ int isl_basic_set_dim_residue_class(struct isl_basic_set *bset, if (!bset || !modulo || !residue) return -1; - if (isl_basic_set_fast_dim_is_fixed(bset, pos, residue)) { + if (isl_basic_set_plain_dim_is_fixed(bset, pos, residue)) { isl_int_set_si(*modulo, 0); return 0; } @@ -580,7 +640,7 @@ int isl_basic_set_dim_residue_class(struct isl_basic_set *bset, ctx = bset->ctx; total = isl_basic_set_total_dim(bset); nparam = isl_basic_set_n_param(bset); - H = isl_mat_sub_alloc(bset->ctx, bset->eq, 0, bset->n_eq, 1, total); + H = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 1, total); H = isl_mat_left_hermite(H, 0, &U, NULL); if (!H) return -1; @@ -601,11 +661,11 @@ int isl_basic_set_dim_residue_class(struct isl_basic_set *bset, goto error; isl_int_set_si(C->row[0][0], 1); isl_mat_sub_neg(C->ctx, C->row+1, bset->eq, bset->n_eq, 0, 0, 1); - H1 = isl_mat_sub_alloc(H->ctx, H->row, 0, H->n_row, 0, H->n_row); + H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row); H1 = isl_mat_lin_to_aff(H1); C = isl_mat_inverse_product(H1, C); isl_mat_free(H); - U1 = isl_mat_sub_alloc(U->ctx, U->row, nparam+pos, 1, 0, bset->n_eq); + U1 = isl_mat_sub_alloc(U, nparam+pos, 1, 0, bset->n_eq); U1 = isl_mat_lin_to_aff(U1); isl_mat_free(U); C = isl_mat_product(U1, C); @@ -667,20 +727,15 @@ int isl_set_dim_residue_class(struct isl_set *set, isl_int_init(r); for (i = 1; i < set->n; ++i) { - if (isl_basic_set_dim_residue_class(set->p[0], pos, &m, &r) < 0) + if (isl_basic_set_dim_residue_class(set->p[i], pos, &m, &r) < 0) goto error; isl_int_gcd(*modulo, *modulo, m); + isl_int_sub(m, *residue, r); + isl_int_gcd(*modulo, *modulo, m); if (!isl_int_is_zero(*modulo)) isl_int_fdiv_r(*residue, *residue, *modulo); if (isl_int_is_one(*modulo)) break; - if (!isl_int_is_zero(*modulo)) - isl_int_fdiv_r(r, r, *modulo); - if (isl_int_ne(*residue, r)) { - isl_int_set_si(*modulo, 1); - isl_int_set_si(*residue, 0); - break; - } } isl_int_clear(m); @@ -692,3 +747,35 @@ error: isl_int_clear(r); return -1; } + +/* Check if dimension "dim" belongs to a residue class + * i_dim \equiv r mod m + * with m != 1 and if so return m in *modulo and r in *residue. + * As a special case, when i_dim has a fixed value v, then + * *modulo is set to 0 and *residue to v. + * + * If i_dim does not belong to such a residue class, then *modulo + * is set to 1 and *residue is set to 0. + */ +int isl_set_dim_residue_class_val(__isl_keep isl_set *set, + int pos, __isl_give isl_val **modulo, __isl_give isl_val **residue) +{ + *modulo = NULL; + *residue = NULL; + if (!set) + return -1; + *modulo = isl_val_alloc(isl_set_get_ctx(set)); + *residue = isl_val_alloc(isl_set_get_ctx(set)); + if (!*modulo || !*residue) + goto error; + if (isl_set_dim_residue_class(set, pos, + &(*modulo)->n, &(*residue)->n) < 0) + goto error; + isl_int_set_si((*modulo)->d, 1); + isl_int_set_si((*residue)->d, 1); + return 0; +error: + isl_val_free(*modulo); + isl_val_free(*residue); + return -1; +}