X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=isl_equalities.c;h=9589032c25a85c1110a8f98f74bef78671e33c85;hb=63fb8a7f484648c3caa25351c8c94ac2395ec563;hp=fa8ee58d651c3fe4a1c1a2a460fe63be898866c9;hpb=f76aa4201b6c75734aaca36626bc8afbfdf7e155;p=platform%2Fupstream%2Fisl.git diff --git a/isl_equalities.c b/isl_equalities.c index fa8ee58..9589032 100644 --- a/isl_equalities.c +++ b/isl_equalities.c @@ -1,10 +1,13 @@ /* * Copyright 2008-2009 Katholieke Universiteit Leuven + * Copyright 2010 INRIA Saclay * - * Use of this software is governed by the GNU LGPLv2.1 license + * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium + * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, + * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France */ #include @@ -374,6 +377,59 @@ error: /* Given a set of equalities * + * B(y) + A x = 0 (*) + * + * compute and return an affine transformation T, + * + * y = T y' + * + * that bijectively maps the integer vectors y' to integer + * vectors y that satisfy the modulo constraints for some value of x. + * + * Let [H 0] be the Hermite Normal Form of A, i.e., + * + * A = [H 0] Q + * + * Then y is a solution of (*) iff + * + * H^-1 B(y) (= - [I 0] Q x) + * + * is an integer vector. Let d be the common denominator of H^-1. + * We impose + * + * d H^-1 B(y) = 0 mod d + * + * and compute the solution using isl_mat_parameter_compression. + */ +__isl_give isl_mat *isl_mat_parameter_compression_ext(__isl_take isl_mat *B, + __isl_take isl_mat *A) +{ + isl_ctx *ctx; + isl_vec *d; + int n_row, n_col; + + if (!A) + return isl_mat_free(B); + + ctx = isl_mat_get_ctx(A); + n_row = A->n_row; + n_col = A->n_col; + A = isl_mat_left_hermite(A, 0, NULL, NULL); + A = isl_mat_drop_cols(A, n_row, n_col - n_row); + A = isl_mat_lin_to_aff(A); + A = isl_mat_right_inverse(A); + d = isl_vec_alloc(ctx, n_row); + if (A) + d = isl_vec_set(d, A->row[0][0]); + A = isl_mat_drop_rows(A, 0, 1); + A = isl_mat_drop_cols(A, 0, 1); + B = isl_mat_product(A, B); + + return isl_mat_parameter_compression(B, d); +} + +/* Given a set of equalities + * * M x - c = 0 * * this function computes a unimodular transformation from a lower-dimensional @@ -413,8 +469,8 @@ error: * * x2' = Q2 x */ -struct isl_mat *isl_mat_variable_compression(struct isl_mat *B, - struct isl_mat **T2) +__isl_give isl_mat *isl_mat_variable_compression(__isl_take isl_mat *B, + __isl_give isl_mat **T2) { int i; struct isl_mat *H = NULL, *C = NULL, *H1, *U = NULL, *U1, *U2, *TC; @@ -575,7 +631,7 @@ int isl_basic_set_dim_residue_class(struct isl_basic_set *bset, if (!bset || !modulo || !residue) return -1; - if (isl_basic_set_fast_dim_is_fixed(bset, pos, residue)) { + if (isl_basic_set_plain_dim_is_fixed(bset, pos, residue)) { isl_int_set_si(*modulo, 0); return 0; } @@ -670,20 +726,15 @@ int isl_set_dim_residue_class(struct isl_set *set, isl_int_init(r); for (i = 1; i < set->n; ++i) { - if (isl_basic_set_dim_residue_class(set->p[0], pos, &m, &r) < 0) + if (isl_basic_set_dim_residue_class(set->p[i], pos, &m, &r) < 0) goto error; isl_int_gcd(*modulo, *modulo, m); + isl_int_sub(m, *residue, r); + isl_int_gcd(*modulo, *modulo, m); if (!isl_int_is_zero(*modulo)) isl_int_fdiv_r(*residue, *residue, *modulo); if (isl_int_is_one(*modulo)) break; - if (!isl_int_is_zero(*modulo)) - isl_int_fdiv_r(r, r, *modulo); - if (isl_int_ne(*residue, r)) { - isl_int_set_si(*modulo, 1); - isl_int_set_si(*residue, 0); - break; - } } isl_int_clear(m);