X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=isl_equalities.c;h=4447d9b15c83baecdc8e2fbd4d7a26f2081bef75;hb=de51a9bc4da5dd3f1f9f57c2362da6f9752c44e0;hp=549c1b8e5b63484a5199dec9396de3f03bfd9cd1;hpb=3f4263c874659483bd16047a64f8491fc1df4ca8;p=platform%2Fupstream%2Fisl.git diff --git a/isl_equalities.c b/isl_equalities.c index 549c1b8..4447d9b 100644 --- a/isl_equalities.c +++ b/isl_equalities.c @@ -1,5 +1,14 @@ -#include "isl_mat.h" -#include "isl_seq.h" +/* + * Copyright 2008-2009 Katholieke Universiteit Leuven + * + * Use of this software is governed by the MIT license + * + * Written by Sven Verdoolaege, K.U.Leuven, Departement + * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium + */ + +#include +#include #include "isl_map_private.h" #include "isl_equalities.h" @@ -76,7 +85,7 @@ static struct isl_mat *particular_solution(struct isl_mat *B, struct isl_vec *d) M = isl_mat_left_hermite(M, 0, &U, NULL); if (!M || !U) goto error; - H = isl_mat_sub_alloc(B->ctx, M->row, 0, B->n_row, 0, B->n_row); + H = isl_mat_sub_alloc(M, 0, B->n_row, 0, B->n_row); H = isl_mat_lin_to_aff(H); C = isl_mat_inverse_product(H, C); if (!C) @@ -89,8 +98,8 @@ static struct isl_mat *particular_solution(struct isl_mat *B, struct isl_vec *d) if (i < B->n_row) cst = isl_mat_alloc(B->ctx, B->n_row, 0); else - cst = isl_mat_sub_alloc(C->ctx, C->row, 1, B->n_row, 0, 1); - T = isl_mat_sub_alloc(U->ctx, U->row, B->n_row, B->n_col - 1, 0, B->n_row); + cst = isl_mat_sub_alloc(C, 1, B->n_row, 0, 1); + T = isl_mat_sub_alloc(U, B->n_row, B->n_col - 1, 0, B->n_row); cst = isl_mat_product(T, cst); isl_mat_free(M); isl_mat_free(C); @@ -175,10 +184,14 @@ static struct isl_mat *parameter_compression_multi( D, U->row[j][k]); } A = isl_mat_left_hermite(A, 0, NULL, NULL); - T = isl_mat_sub_alloc(A->ctx, A->row, 0, A->n_row, 0, A->n_row); + T = isl_mat_sub_alloc(A, 0, A->n_row, 0, A->n_row); T = isl_mat_lin_to_aff(T); + if (!T) + goto error; isl_int_set(T->row[0][0], D); T = isl_mat_right_inverse(T); + if (!T) + goto error; isl_assert(T->ctx, isl_int_is_one(T->row[0][0]), goto error); T = isl_mat_transpose(T); isl_mat_free(A); @@ -240,7 +253,7 @@ error: * then we divide this row of A by the common factor, unless gcd(A_i) = 0. * In the later case, we simply drop the row (in both A and d). * - * If there are no rows left in A, the G is the identity matrix. Otherwise, + * If there are no rows left in A, then G is the identity matrix. Otherwise, * for each row i, we now determine the lattice of integer vectors * that satisfies this row. Let U_i be the unimodular extension of the * row A_i. This unimodular extension exists because gcd(A_i) = 1. @@ -363,12 +376,12 @@ error: * * M x - c = 0 * - * this function computes unimodular transformation from a lower-dimensional + * this function computes a unimodular transformation from a lower-dimensional * space to the original space that bijectively maps the integer points x' * in the lower-dimensional space to the integer points x in the original * space that satisfy the equalities. * - * The input is given as a matrix B = [ -c M ] and the out is a + * The input is given as a matrix B = [ -c M ] and the output is a * matrix that maps [1 x'] to [1 x]. * If T2 is not NULL, then *T2 is set to a matrix mapping [1 x] to [1 x']. * @@ -391,7 +404,7 @@ error: * * If any of the c' is non-integer, then the original set has no * integer solutions (since the x' are a unimodular transformation - * of the x). + * of the x) and a zero-column matrix is returned. * Otherwise, the transformation is given by * * x = U1 H1^{-1} c + U2 x2' @@ -413,7 +426,7 @@ struct isl_mat *isl_mat_variable_compression(struct isl_mat *B, goto error; dim = B->n_col - 1; - H = isl_mat_sub_alloc(B->ctx, B->row, 0, B->n_row, 1, dim); + H = isl_mat_sub_alloc(B, 0, B->n_row, 1, dim); H = isl_mat_left_hermite(H, 0, &U, T2); if (!H || !U || (T2 && !*T2)) goto error; @@ -428,7 +441,7 @@ struct isl_mat *isl_mat_variable_compression(struct isl_mat *B, goto error; isl_int_set_si(C->row[0][0], 1); isl_mat_sub_neg(C->ctx, C->row+1, B->row, B->n_row, 0, 0, 1); - H1 = isl_mat_sub_alloc(H->ctx, H->row, 0, H->n_row, 0, H->n_row); + H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row); H1 = isl_mat_lin_to_aff(H1); TC = isl_mat_inverse_product(H1, C); if (!TC) @@ -451,10 +464,9 @@ struct isl_mat *isl_mat_variable_compression(struct isl_mat *B, } isl_int_set_si(TC->row[0][0], 1); } - U1 = isl_mat_sub_alloc(U->ctx, U->row, 0, U->n_row, 0, B->n_row); + U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, B->n_row); U1 = isl_mat_lin_to_aff(U1); - U2 = isl_mat_sub_alloc(U->ctx, U->row, 0, U->n_row, - B->n_row, U->n_row - B->n_row); + U2 = isl_mat_sub_alloc(U, 0, U->n_row, B->n_row, U->n_row - B->n_row); U2 = isl_mat_lin_to_aff(U2); isl_mat_free(U); TC = isl_mat_product(U1, TC); @@ -500,7 +512,7 @@ static struct isl_basic_set *compress_variables( if (bset->n_eq == 0) return bset; - B = isl_mat_sub_alloc(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + dim); + B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + dim); TC = isl_mat_variable_compression(B, T2); if (!TC) goto error; @@ -563,7 +575,7 @@ int isl_basic_set_dim_residue_class(struct isl_basic_set *bset, if (!bset || !modulo || !residue) return -1; - if (isl_basic_set_fast_dim_is_fixed(bset, pos, residue)) { + if (isl_basic_set_plain_dim_is_fixed(bset, pos, residue)) { isl_int_set_si(*modulo, 0); return 0; } @@ -571,7 +583,7 @@ int isl_basic_set_dim_residue_class(struct isl_basic_set *bset, ctx = bset->ctx; total = isl_basic_set_total_dim(bset); nparam = isl_basic_set_n_param(bset); - H = isl_mat_sub_alloc(bset->ctx, bset->eq, 0, bset->n_eq, 1, total); + H = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 1, total); H = isl_mat_left_hermite(H, 0, &U, NULL); if (!H) return -1; @@ -592,11 +604,11 @@ int isl_basic_set_dim_residue_class(struct isl_basic_set *bset, goto error; isl_int_set_si(C->row[0][0], 1); isl_mat_sub_neg(C->ctx, C->row+1, bset->eq, bset->n_eq, 0, 0, 1); - H1 = isl_mat_sub_alloc(H->ctx, H->row, 0, H->n_row, 0, H->n_row); + H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row); H1 = isl_mat_lin_to_aff(H1); C = isl_mat_inverse_product(H1, C); isl_mat_free(H); - U1 = isl_mat_sub_alloc(U->ctx, U->row, nparam+pos, 1, 0, bset->n_eq); + U1 = isl_mat_sub_alloc(U, nparam+pos, 1, 0, bset->n_eq); U1 = isl_mat_lin_to_aff(U1); isl_mat_free(U); C = isl_mat_product(U1, C); @@ -658,20 +670,15 @@ int isl_set_dim_residue_class(struct isl_set *set, isl_int_init(r); for (i = 1; i < set->n; ++i) { - if (isl_basic_set_dim_residue_class(set->p[0], pos, &m, &r) < 0) + if (isl_basic_set_dim_residue_class(set->p[i], pos, &m, &r) < 0) goto error; isl_int_gcd(*modulo, *modulo, m); + isl_int_sub(m, *residue, r); + isl_int_gcd(*modulo, *modulo, m); if (!isl_int_is_zero(*modulo)) isl_int_fdiv_r(*residue, *residue, *modulo); if (isl_int_is_one(*modulo)) break; - if (!isl_int_is_zero(*modulo)) - isl_int_fdiv_r(r, r, *modulo); - if (isl_int_ne(*residue, r)) { - isl_int_set_si(*modulo, 1); - isl_int_set_si(*residue, 0); - break; - } } isl_int_clear(m);