X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=isl_equalities.c;h=4447d9b15c83baecdc8e2fbd4d7a26f2081bef75;hb=de51a9bc4da5dd3f1f9f57c2362da6f9752c44e0;hp=0632ddd8a9ef41126522dc52435b8c5758962b57;hpb=b3acbdec6ee87a2c00278f47556b7de0653a7687;p=platform%2Fupstream%2Fisl.git diff --git a/isl_equalities.c b/isl_equalities.c index 0632ddd..4447d9b 100644 --- a/isl_equalities.c +++ b/isl_equalities.c @@ -1,5 +1,14 @@ -#include "isl_mat.h" -#include "isl_seq.h" +/* + * Copyright 2008-2009 Katholieke Universiteit Leuven + * + * Use of this software is governed by the MIT license + * + * Written by Sven Verdoolaege, K.U.Leuven, Departement + * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium + */ + +#include +#include #include "isl_map_private.h" #include "isl_equalities.h" @@ -49,8 +58,7 @@ * then the constraints admit no integer solution and * a zero-column matrix is returned. */ -static struct isl_mat *particular_solution(struct isl_ctx *ctx, - struct isl_mat *B, struct isl_vec *d) +static struct isl_mat *particular_solution(struct isl_mat *B, struct isl_vec *d) { int i, j; struct isl_mat *M = NULL; @@ -60,8 +68,8 @@ static struct isl_mat *particular_solution(struct isl_ctx *ctx, struct isl_mat *cst = NULL; struct isl_mat *T = NULL; - M = isl_mat_alloc(ctx, B->n_row, B->n_row + B->n_col - 1); - C = isl_mat_alloc(ctx, 1 + B->n_row, 1); + M = isl_mat_alloc(B->ctx, B->n_row, B->n_row + B->n_col - 1); + C = isl_mat_alloc(B->ctx, 1 + B->n_row, 1); if (!M || !C) goto error; isl_int_set_si(C->row[0][0], 1); @@ -74,12 +82,12 @@ static struct isl_mat *particular_solution(struct isl_ctx *ctx, isl_int_fdiv_r(M->row[i][B->n_row + j], B->row[i][1 + j], M->row[i][i]); } - M = isl_mat_left_hermite(ctx, M, 0, &U, NULL); + M = isl_mat_left_hermite(M, 0, &U, NULL); if (!M || !U) goto error; - H = isl_mat_sub_alloc(ctx, M->row, 0, B->n_row, 0, B->n_row); - H = isl_mat_lin_to_aff(ctx, H); - C = isl_mat_inverse_product(ctx, H, C); + H = isl_mat_sub_alloc(M, 0, B->n_row, 0, B->n_row); + H = isl_mat_lin_to_aff(H); + C = isl_mat_inverse_product(H, C); if (!C) goto error; for (i = 0; i < B->n_row; ++i) { @@ -88,19 +96,19 @@ static struct isl_mat *particular_solution(struct isl_ctx *ctx, isl_int_divexact(C->row[1+i][0], C->row[1+i][0], C->row[0][0]); } if (i < B->n_row) - cst = isl_mat_alloc(ctx, B->n_row, 0); + cst = isl_mat_alloc(B->ctx, B->n_row, 0); else - cst = isl_mat_sub_alloc(ctx, C->row, 1, B->n_row, 0, 1); - T = isl_mat_sub_alloc(ctx, U->row, B->n_row, B->n_col - 1, 0, B->n_row); - cst = isl_mat_product(ctx, T, cst); - isl_mat_free(ctx, M); - isl_mat_free(ctx, C); - isl_mat_free(ctx, U); + cst = isl_mat_sub_alloc(C, 1, B->n_row, 0, 1); + T = isl_mat_sub_alloc(U, B->n_row, B->n_col - 1, 0, B->n_row); + cst = isl_mat_product(T, cst); + isl_mat_free(M); + isl_mat_free(C); + isl_mat_free(U); return cst; error: - isl_mat_free(ctx, M); - isl_mat_free(ctx, C); - isl_mat_free(ctx, U); + isl_mat_free(M); + isl_mat_free(C); + isl_mat_free(U); return NULL; } @@ -112,25 +120,22 @@ error: * The columns of this matrix generate the lattice that satisfies * the single (linear) modulo constraint. */ -static struct isl_mat *parameter_compression_1(struct isl_ctx *ctx, +static struct isl_mat *parameter_compression_1( struct isl_mat *B, struct isl_vec *d) { struct isl_mat *U; - U = isl_mat_alloc(ctx, B->n_col - 1, B->n_col - 1); + U = isl_mat_alloc(B->ctx, B->n_col - 1, B->n_col - 1); if (!U) return NULL; isl_seq_cpy(U->row[0], B->row[0] + 1, B->n_col - 1); - U = isl_mat_unimodular_complete(ctx, U, 1); - U = isl_mat_right_inverse(ctx, U); + U = isl_mat_unimodular_complete(U, 1); + U = isl_mat_right_inverse(U); if (!U) return NULL; isl_mat_col_mul(U, 0, d->block.data[0], 0); - U = isl_mat_lin_to_aff(ctx, U); + U = isl_mat_lin_to_aff(U); return U; -error: - isl_mat_free(ctx, U); - return NULL; } /* Compute a common lattice of solutions to the linear modulo @@ -146,11 +151,10 @@ error: * Putting this on the common denominator, we have * D * L_i^{-T} = U_i^T diag(D/d_i, D, ..., D). */ -static struct isl_mat *parameter_compression_multi(struct isl_ctx *ctx, +static struct isl_mat *parameter_compression_multi( struct isl_mat *B, struct isl_vec *d) { int i, j, k; - int ok; isl_int D; struct isl_mat *A = NULL, *U = NULL; struct isl_mat *T; @@ -158,16 +162,16 @@ static struct isl_mat *parameter_compression_multi(struct isl_ctx *ctx, isl_int_init(D); - isl_vec_lcm(ctx, d, &D); + isl_vec_lcm(d, &D); size = B->n_col - 1; - A = isl_mat_alloc(ctx, size, B->n_row * size); - U = isl_mat_alloc(ctx, size, size); + A = isl_mat_alloc(B->ctx, size, B->n_row * size); + U = isl_mat_alloc(B->ctx, size, size); if (!U || !A) goto error; for (i = 0; i < B->n_row; ++i) { isl_seq_cpy(U->row[0], B->row[i] + 1, size); - U = isl_mat_unimodular_complete(ctx, U, 1); + U = isl_mat_unimodular_complete(U, 1); if (!U) goto error; isl_int_divexact(D, D, d->block.data[i]); @@ -179,21 +183,25 @@ static struct isl_mat *parameter_compression_multi(struct isl_ctx *ctx, isl_int_mul(A->row[k][i*size+j], D, U->row[j][k]); } - A = isl_mat_left_hermite(ctx, A, 0, NULL, NULL); - T = isl_mat_sub_alloc(ctx, A->row, 0, A->n_row, 0, A->n_row); - T = isl_mat_lin_to_aff(ctx, T); + A = isl_mat_left_hermite(A, 0, NULL, NULL); + T = isl_mat_sub_alloc(A, 0, A->n_row, 0, A->n_row); + T = isl_mat_lin_to_aff(T); + if (!T) + goto error; isl_int_set(T->row[0][0], D); - T = isl_mat_right_inverse(ctx, T); - isl_assert(ctx, isl_int_is_one(T->row[0][0]), goto error); - T = isl_mat_transpose(ctx, T); - isl_mat_free(ctx, A); - isl_mat_free(ctx, U); + T = isl_mat_right_inverse(T); + if (!T) + goto error; + isl_assert(T->ctx, isl_int_is_one(T->row[0][0]), goto error); + T = isl_mat_transpose(T); + isl_mat_free(A); + isl_mat_free(U); isl_int_clear(D); return T; error: - isl_mat_free(ctx, A); - isl_mat_free(ctx, U); + isl_mat_free(A); + isl_mat_free(U); isl_int_clear(D); return NULL; } @@ -245,7 +253,7 @@ error: * then we divide this row of A by the common factor, unless gcd(A_i) = 0. * In the later case, we simply drop the row (in both A and d). * - * If there are no rows left in A, the G is the identity matrix. Otherwise, + * If there are no rows left in A, then G is the identity matrix. Otherwise, * for each row i, we now determine the lattice of integer vectors * that satisfies this row. Let U_i be the unimodular extension of the * row A_i. This unimodular extension exists because gcd(A_i) = 1. @@ -292,7 +300,7 @@ error: * as any y = y_0 + G y' with y' integer is a solution to the original * modulo constraints. */ -struct isl_mat *isl_mat_parameter_compression(struct isl_ctx *ctx, +struct isl_mat *isl_mat_parameter_compression( struct isl_mat *B, struct isl_vec *d) { int i; @@ -302,15 +310,15 @@ struct isl_mat *isl_mat_parameter_compression(struct isl_ctx *ctx, if (!B || !d) goto error; - isl_assert(ctx, B->n_row == d->size, goto error); - cst = particular_solution(ctx, B, d); + isl_assert(B->ctx, B->n_row == d->size, goto error); + cst = particular_solution(B, d); if (!cst) goto error; if (cst->n_col == 0) { - T = isl_mat_alloc(ctx, B->n_col, 0); - isl_mat_free(ctx, cst); - isl_mat_free(ctx, B); - isl_vec_free(ctx, d); + T = isl_mat_alloc(B->ctx, B->n_col, 0); + isl_mat_free(cst); + isl_mat_free(B); + isl_vec_free(d); return T; } isl_int_init(D); @@ -320,8 +328,8 @@ struct isl_mat *isl_mat_parameter_compression(struct isl_ctx *ctx, if (isl_int_is_one(D)) continue; if (isl_int_is_zero(D)) { - B = isl_mat_drop_rows(ctx, B, i, 1); - d = isl_vec_cow(ctx, d); + B = isl_mat_drop_rows(B, i, 1); + d = isl_vec_cow(d); if (!B || !d) goto error2; isl_seq_cpy(d->block.data+i, d->block.data+i+1, @@ -330,37 +338,37 @@ struct isl_mat *isl_mat_parameter_compression(struct isl_ctx *ctx, i--; continue; } - B = isl_mat_cow(ctx, B); + B = isl_mat_cow(B); if (!B) goto error2; isl_seq_scale_down(B->row[i] + 1, B->row[i] + 1, D, B->n_col-1); isl_int_gcd(D, D, d->block.data[i]); - d = isl_vec_cow(ctx, d); + d = isl_vec_cow(d); if (!d) goto error2; isl_int_divexact(d->block.data[i], d->block.data[i], D); } isl_int_clear(D); if (B->n_row == 0) - T = isl_mat_identity(ctx, B->n_col); + T = isl_mat_identity(B->ctx, B->n_col); else if (B->n_row == 1) - T = parameter_compression_1(ctx, B, d); + T = parameter_compression_1(B, d); else - T = parameter_compression_multi(ctx, B, d); - T = isl_mat_left_hermite(ctx, T, 0, NULL, NULL); + T = parameter_compression_multi(B, d); + T = isl_mat_left_hermite(T, 0, NULL, NULL); if (!T) goto error; - isl_mat_sub_copy(ctx, T->row + 1, cst->row, cst->n_row, 0, 0, 1); - isl_mat_free(ctx, cst); - isl_mat_free(ctx, B); - isl_vec_free(ctx, d); + isl_mat_sub_copy(T->ctx, T->row + 1, cst->row, cst->n_row, 0, 0, 1); + isl_mat_free(cst); + isl_mat_free(B); + isl_vec_free(d); return T; error2: isl_int_clear(D); error: - isl_mat_free(ctx, cst); - isl_mat_free(ctx, B); - isl_vec_free(ctx, d); + isl_mat_free(cst); + isl_mat_free(B); + isl_vec_free(d); return NULL; } @@ -368,12 +376,12 @@ error: * * M x - c = 0 * - * this function computes unimodular transformation from a lower-dimensional + * this function computes a unimodular transformation from a lower-dimensional * space to the original space that bijectively maps the integer points x' * in the lower-dimensional space to the integer points x in the original * space that satisfy the equalities. * - * The input is given as a matrix B = [ -c M ] and the out is a + * The input is given as a matrix B = [ -c M ] and the output is a * matrix that maps [1 x'] to [1 x]. * If T2 is not NULL, then *T2 is set to a matrix mapping [1 x] to [1 x']. * @@ -396,7 +404,7 @@ error: * * If any of the c' is non-integer, then the original set has no * integer solutions (since the x' are a unimodular transformation - * of the x). + * of the x) and a zero-column matrix is returned. * Otherwise, the transformation is given by * * x = U1 H1^{-1} c + U2 x2' @@ -405,8 +413,8 @@ error: * * x2' = Q2 x */ -struct isl_mat *isl_mat_variable_compression(struct isl_ctx *ctx, - struct isl_mat *B, struct isl_mat **T2) +struct isl_mat *isl_mat_variable_compression(struct isl_mat *B, + struct isl_mat **T2) { int i; struct isl_mat *H = NULL, *C = NULL, *H1, *U = NULL, *U1, *U2, *TC; @@ -418,35 +426,36 @@ struct isl_mat *isl_mat_variable_compression(struct isl_ctx *ctx, goto error; dim = B->n_col - 1; - H = isl_mat_sub_alloc(ctx, B->row, 0, B->n_row, 1, dim); - H = isl_mat_left_hermite(ctx, H, 0, &U, T2); + H = isl_mat_sub_alloc(B, 0, B->n_row, 1, dim); + H = isl_mat_left_hermite(H, 0, &U, T2); if (!H || !U || (T2 && !*T2)) goto error; if (T2) { - *T2 = isl_mat_drop_rows(ctx, *T2, 0, B->n_row); - *T2 = isl_mat_lin_to_aff(ctx, *T2); + *T2 = isl_mat_drop_rows(*T2, 0, B->n_row); + *T2 = isl_mat_lin_to_aff(*T2); if (!*T2) goto error; } - C = isl_mat_alloc(ctx, 1+B->n_row, 1); + C = isl_mat_alloc(B->ctx, 1+B->n_row, 1); if (!C) goto error; isl_int_set_si(C->row[0][0], 1); - isl_mat_sub_neg(ctx, C->row+1, B->row, B->n_row, 0, 0, 1); - H1 = isl_mat_sub_alloc(ctx, H->row, 0, H->n_row, 0, H->n_row); - H1 = isl_mat_lin_to_aff(ctx, H1); - TC = isl_mat_inverse_product(ctx, H1, C); + isl_mat_sub_neg(C->ctx, C->row+1, B->row, B->n_row, 0, 0, 1); + H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row); + H1 = isl_mat_lin_to_aff(H1); + TC = isl_mat_inverse_product(H1, C); if (!TC) goto error; - isl_mat_free(ctx, H); + isl_mat_free(H); if (!isl_int_is_one(TC->row[0][0])) { for (i = 0; i < B->n_row; ++i) { if (!isl_int_is_divisible_by(TC->row[1+i][0], TC->row[0][0])) { - isl_mat_free(ctx, B); - isl_mat_free(ctx, TC); - isl_mat_free(ctx, U); + struct isl_ctx *ctx = B->ctx; + isl_mat_free(B); + isl_mat_free(TC); + isl_mat_free(U); if (T2) { - isl_mat_free(ctx, *T2); + isl_mat_free(*T2); *T2 = NULL; } return isl_mat_alloc(ctx, 1 + dim, 0); @@ -455,24 +464,23 @@ struct isl_mat *isl_mat_variable_compression(struct isl_ctx *ctx, } isl_int_set_si(TC->row[0][0], 1); } - U1 = isl_mat_sub_alloc(ctx, U->row, 0, U->n_row, 0, B->n_row); - U1 = isl_mat_lin_to_aff(ctx, U1); - U2 = isl_mat_sub_alloc(ctx, U->row, 0, U->n_row, - B->n_row, U->n_row - B->n_row); - U2 = isl_mat_lin_to_aff(ctx, U2); - isl_mat_free(ctx, U); - TC = isl_mat_product(ctx, U1, TC); - TC = isl_mat_aff_direct_sum(ctx, TC, U2); + U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, B->n_row); + U1 = isl_mat_lin_to_aff(U1); + U2 = isl_mat_sub_alloc(U, 0, U->n_row, B->n_row, U->n_row - B->n_row); + U2 = isl_mat_lin_to_aff(U2); + isl_mat_free(U); + TC = isl_mat_product(U1, TC); + TC = isl_mat_aff_direct_sum(TC, U2); - isl_mat_free(ctx, B); + isl_mat_free(B); return TC; error: - isl_mat_free(ctx, B); - isl_mat_free(ctx, H); - isl_mat_free(ctx, U); + isl_mat_free(B); + isl_mat_free(H); + isl_mat_free(U); if (T2) { - isl_mat_free(ctx, *T2); + isl_mat_free(*T2); *T2 = NULL; } return NULL; @@ -485,7 +493,7 @@ error: * the new variables x2' back to the original variables x, while T2 * maps the original variables to the new variables. */ -static struct isl_basic_set *compress_variables(struct isl_ctx *ctx, +static struct isl_basic_set *compress_variables( struct isl_basic_set *bset, struct isl_mat **T, struct isl_mat **T2) { struct isl_mat *B, *TC; @@ -497,27 +505,27 @@ static struct isl_basic_set *compress_variables(struct isl_ctx *ctx, *T2 = NULL; if (!bset) goto error; - isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error); - isl_assert(ctx, bset->n_div == 0, goto error); + isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error); + isl_assert(bset->ctx, bset->n_div == 0, goto error); dim = isl_basic_set_n_dim(bset); - isl_assert(ctx, bset->n_eq <= dim, goto error); + isl_assert(bset->ctx, bset->n_eq <= dim, goto error); if (bset->n_eq == 0) return bset; - B = isl_mat_sub_alloc(ctx, bset->eq, 0, bset->n_eq, 0, 1 + dim); - TC = isl_mat_variable_compression(ctx, B, T2); + B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + dim); + TC = isl_mat_variable_compression(B, T2); if (!TC) goto error; if (TC->n_col == 0) { - isl_mat_free(ctx, TC); + isl_mat_free(TC); if (T2) { - isl_mat_free(ctx, *T2); + isl_mat_free(*T2); *T2 = NULL; } return isl_basic_set_set_to_empty(bset); } - bset = isl_basic_set_preimage(bset, T ? isl_mat_copy(ctx, TC) : TC); + bset = isl_basic_set_preimage(bset, T ? isl_mat_copy(TC) : TC); if (T) *T = TC; return bset; @@ -539,7 +547,7 @@ struct isl_basic_set *isl_basic_set_remove_equalities( bset = isl_basic_set_gauss(bset, NULL); if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY)) return bset; - bset = compress_variables(bset->ctx, bset, T, T2); + bset = compress_variables(bset, T, T2); return bset; error: isl_basic_set_free(bset); @@ -550,6 +558,11 @@ error: /* Check if dimension dim belongs to a residue class * i_dim \equiv r mod m * with m != 1 and if so return m in *modulo and r in *residue. + * As a special case, when i_dim has a fixed value v, then + * *modulo is set to 0 and *residue to v. + * + * If i_dim does not belong to such a residue class, then *modulo + * is set to 1 and *residue is set to 0. */ int isl_basic_set_dim_residue_class(struct isl_basic_set *bset, int pos, isl_int *modulo, isl_int *residue) @@ -562,52 +575,118 @@ int isl_basic_set_dim_residue_class(struct isl_basic_set *bset, if (!bset || !modulo || !residue) return -1; + if (isl_basic_set_plain_dim_is_fixed(bset, pos, residue)) { + isl_int_set_si(*modulo, 0); + return 0; + } + ctx = bset->ctx; total = isl_basic_set_total_dim(bset); nparam = isl_basic_set_n_param(bset); - H = isl_mat_sub_alloc(ctx, bset->eq, 0, bset->n_eq, 1, total); - H = isl_mat_left_hermite(ctx, H, 0, &U, NULL); + H = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 1, total); + H = isl_mat_left_hermite(H, 0, &U, NULL); if (!H) return -1; isl_seq_gcd(U->row[nparam + pos]+bset->n_eq, total-bset->n_eq, modulo); - if (isl_int_is_zero(*modulo) || isl_int_is_one(*modulo)) { + if (isl_int_is_zero(*modulo)) + isl_int_set_si(*modulo, 1); + if (isl_int_is_one(*modulo)) { isl_int_set_si(*residue, 0); - isl_mat_free(ctx, H); - isl_mat_free(ctx, U); + isl_mat_free(H); + isl_mat_free(U); return 0; } - C = isl_mat_alloc(ctx, 1+bset->n_eq, 1); + C = isl_mat_alloc(bset->ctx, 1+bset->n_eq, 1); if (!C) goto error; isl_int_set_si(C->row[0][0], 1); - isl_mat_sub_neg(ctx, C->row+1, bset->eq, bset->n_eq, 0, 0, 1); - H1 = isl_mat_sub_alloc(ctx, H->row, 0, H->n_row, 0, H->n_row); - H1 = isl_mat_lin_to_aff(ctx, H1); - C = isl_mat_inverse_product(ctx, H1, C); - isl_mat_free(ctx, H); - U1 = isl_mat_sub_alloc(ctx, U->row, nparam+pos, 1, 0, bset->n_eq); - U1 = isl_mat_lin_to_aff(ctx, U1); - isl_mat_free(ctx, U); - C = isl_mat_product(ctx, U1, C); + isl_mat_sub_neg(C->ctx, C->row+1, bset->eq, bset->n_eq, 0, 0, 1); + H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row); + H1 = isl_mat_lin_to_aff(H1); + C = isl_mat_inverse_product(H1, C); + isl_mat_free(H); + U1 = isl_mat_sub_alloc(U, nparam+pos, 1, 0, bset->n_eq); + U1 = isl_mat_lin_to_aff(U1); + isl_mat_free(U); + C = isl_mat_product(U1, C); if (!C) goto error; if (!isl_int_is_divisible_by(C->row[1][0], C->row[0][0])) { bset = isl_basic_set_copy(bset); bset = isl_basic_set_set_to_empty(bset); isl_basic_set_free(bset); - isl_int_set_si(*modulo, 0); + isl_int_set_si(*modulo, 1); isl_int_set_si(*residue, 0); return 0; } isl_int_divexact(*residue, C->row[1][0], C->row[0][0]); isl_int_fdiv_r(*residue, *residue, *modulo); - isl_mat_free(ctx, C); + isl_mat_free(C); + return 0; +error: + isl_mat_free(H); + isl_mat_free(U); + return -1; +} + +/* Check if dimension dim belongs to a residue class + * i_dim \equiv r mod m + * with m != 1 and if so return m in *modulo and r in *residue. + * As a special case, when i_dim has a fixed value v, then + * *modulo is set to 0 and *residue to v. + * + * If i_dim does not belong to such a residue class, then *modulo + * is set to 1 and *residue is set to 0. + */ +int isl_set_dim_residue_class(struct isl_set *set, + int pos, isl_int *modulo, isl_int *residue) +{ + isl_int m; + isl_int r; + int i; + + if (!set || !modulo || !residue) + return -1; + + if (set->n == 0) { + isl_int_set_si(*modulo, 0); + isl_int_set_si(*residue, 0); + return 0; + } + + if (isl_basic_set_dim_residue_class(set->p[0], pos, modulo, residue)<0) + return -1; + + if (set->n == 1) + return 0; + + if (isl_int_is_one(*modulo)) + return 0; + + isl_int_init(m); + isl_int_init(r); + + for (i = 1; i < set->n; ++i) { + if (isl_basic_set_dim_residue_class(set->p[i], pos, &m, &r) < 0) + goto error; + isl_int_gcd(*modulo, *modulo, m); + isl_int_sub(m, *residue, r); + isl_int_gcd(*modulo, *modulo, m); + if (!isl_int_is_zero(*modulo)) + isl_int_fdiv_r(*residue, *residue, *modulo); + if (isl_int_is_one(*modulo)) + break; + } + + isl_int_clear(m); + isl_int_clear(r); + return 0; error: - isl_mat_free(ctx, H); - isl_mat_free(ctx, U); + isl_int_clear(m); + isl_int_clear(r); return -1; }