X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=isl_convex_hull.c;h=dc8ac917a517b4396107f48526965ea278f649f8;hb=de51a9bc4da5dd3f1f9f57c2362da6f9752c44e0;hp=664ea4dd2ae2c35b9bb449afcd4dea22c8516aed;hpb=64e09ae0d4ab16682b8a4bbbf6ae524d67cd521a;p=platform%2Fupstream%2Fisl.git diff --git a/isl_convex_hull.c b/isl_convex_hull.c index 664ea4d..dc8ac91 100644 --- a/isl_convex_hull.c +++ b/isl_convex_hull.c @@ -1,25 +1,25 @@ -#include "isl_lp.h" -#include "isl_map.h" -#include "isl_map_private.h" -#include "isl_mat.h" -#include "isl_set.h" -#include "isl_seq.h" +/* + * Copyright 2008-2009 Katholieke Universiteit Leuven + * + * Use of this software is governed by the MIT license + * + * Written by Sven Verdoolaege, K.U.Leuven, Departement + * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium + */ + +#include +#include +#include +#include +#include +#include +#include +#include #include "isl_equalities.h" #include "isl_tab.h" static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set); -static void swap_ineq(struct isl_basic_map *bmap, unsigned i, unsigned j) -{ - isl_int *t; - - if (i != j) { - t = bmap->ineq[i]; - bmap->ineq[i] = bmap->ineq[j]; - bmap->ineq[j] = t; - } -} - /* Return 1 if constraint c is redundant with respect to the constraints * in bmap. If c is a lower [upper] bound in some variable and bmap * does not have a lower [upper] bound in that variable, then c cannot @@ -50,7 +50,8 @@ int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap, if (i < total) return 0; - res = isl_solve_lp(*bmap, 0, c, (*bmap)->ctx->one, opt_n, opt_d); + res = isl_basic_map_solve_lp(*bmap, 0, c, (*bmap)->ctx->one, + opt_n, opt_d, NULL); if (res == isl_lp_unbounded) return 0; if (res == isl_lp_error) @@ -69,7 +70,7 @@ int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset, (struct isl_basic_map **)bset, c, opt_n, opt_d); } -/* Compute the convex hull of a basic map, by removing the redundant +/* Remove redundant * constraints. If the minimal value along the normal of a constraint * is the same if the constraint is removed, then the constraint is redundant. * @@ -77,7 +78,8 @@ int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset, * corresponding equality and the checked if the dimension was that * of a facet. */ -struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap) +__isl_give isl_basic_map *isl_basic_map_remove_redundancies( + __isl_take isl_basic_map *bmap) { struct isl_tab *tab; @@ -92,20 +94,40 @@ struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap) if (bmap->n_ineq <= 1) return bmap; - tab = isl_tab_from_basic_map(bmap); - tab = isl_tab_detect_equalities(tab); - tab = isl_tab_detect_redundant(tab); + tab = isl_tab_from_basic_map(bmap, 0); + if (isl_tab_detect_implicit_equalities(tab) < 0) + goto error; + if (isl_tab_detect_redundant(tab) < 0) + goto error; bmap = isl_basic_map_update_from_tab(bmap, tab); isl_tab_free(tab); ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT); return bmap; +error: + isl_tab_free(tab); + isl_basic_map_free(bmap); + return NULL; } -struct isl_basic_set *isl_basic_set_convex_hull(struct isl_basic_set *bset) +__isl_give isl_basic_set *isl_basic_set_remove_redundancies( + __isl_take isl_basic_set *bset) { return (struct isl_basic_set *) - isl_basic_map_convex_hull((struct isl_basic_map *)bset); + isl_basic_map_remove_redundancies((struct isl_basic_map *)bset); +} + +/* Remove redundant constraints in each of the basic maps. + */ +__isl_give isl_map *isl_map_remove_redundancies(__isl_take isl_map *map) +{ + return isl_map_inline_foreach_basic_map(map, + &isl_basic_map_remove_redundancies); +} + +__isl_give isl_set *isl_set_remove_redundancies(__isl_take isl_set *set) +{ + return isl_map_remove_redundancies(set); } /* Check if the set set is bound in the direction of the affine @@ -128,8 +150,8 @@ static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len) if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY)) continue; - res = isl_solve_lp((struct isl_basic_map*)set->p[j], - 0, c, set->ctx->one, &opt, &opt_denom); + res = isl_basic_set_solve_lp(set->p[j], + 0, c, set->ctx->one, &opt, &opt_denom, NULL); if (res == isl_lp_unbounded) break; if (res == isl_lp_error) @@ -140,10 +162,11 @@ static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len) goto error; continue; } - if (!isl_int_is_one(opt_denom)) - isl_seq_scale(c, c, opt_denom, len); - if (first || isl_int_is_neg(opt)) + if (first || isl_int_is_neg(opt)) { + if (!isl_int_is_one(opt_denom)) + isl_seq_scale(c, c, opt_denom, len); isl_int_sub(c[0], c[0], opt); + } first = 0; } isl_int_clear(opt); @@ -155,141 +178,67 @@ error: return -1; } -/* Check if "c" is a direction that is independent of the previously found "n" - * bounds in "dirs". - * If so, add it to the list, with the negative of the lower bound - * in the constant position, i.e., such that c corresponds to a bounding - * hyperplane (but not necessarily a facet). - * Assumes set "set" is bounded. - */ -static int is_independent_bound(struct isl_set *set, isl_int *c, - struct isl_mat *dirs, int n) +__isl_give isl_basic_map *isl_basic_map_set_rational( + __isl_take isl_basic_set *bmap) { - int is_bound; - int i = 0; - - isl_seq_cpy(dirs->row[n]+1, c+1, dirs->n_col-1); - if (n != 0) { - int pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1); - if (pos < 0) - return 0; - for (i = 0; i < n; ++i) { - int pos_i; - pos_i = isl_seq_first_non_zero(dirs->row[i]+1, dirs->n_col-1); - if (pos_i < pos) - continue; - if (pos_i > pos) - break; - isl_seq_elim(dirs->row[n]+1, dirs->row[i]+1, pos, - dirs->n_col-1, NULL); - pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1); - if (pos < 0) - return 0; - } - } - - is_bound = uset_is_bound(set, dirs->row[n], dirs->n_col); - if (is_bound != 1) - return is_bound; - if (i < n) { - int k; - isl_int *t = dirs->row[n]; - for (k = n; k > i; --k) - dirs->row[k] = dirs->row[k-1]; - dirs->row[i] = t; - } - return 1; -} + if (!bmap) + return NULL; -/* Compute and return a maximal set of linearly independent bounds - * on the set "set", based on the constraints of the basic sets - * in "set". - */ -static struct isl_mat *independent_bounds(struct isl_set *set) -{ - int i, j, n; - struct isl_mat *dirs = NULL; - unsigned dim = isl_set_n_dim(set); + if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) + return bmap; - dirs = isl_mat_alloc(set->ctx, dim, 1+dim); - if (!dirs) - goto error; + bmap = isl_basic_map_cow(bmap); + if (!bmap) + return NULL; - n = 0; - for (i = 0; n < dim && i < set->n; ++i) { - int f; - struct isl_basic_set *bset = set->p[i]; + ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL); - for (j = 0; n < dim && j < bset->n_eq; ++j) { - f = is_independent_bound(set, bset->eq[j], dirs, n); - if (f < 0) - goto error; - if (f) - ++n; - } - for (j = 0; n < dim && j < bset->n_ineq; ++j) { - f = is_independent_bound(set, bset->ineq[j], dirs, n); - if (f < 0) - goto error; - if (f) - ++n; - } - } - dirs->n_row = n; - return dirs; -error: - isl_mat_free(dirs); - return NULL; + return isl_basic_map_finalize(bmap); } -static struct isl_basic_set *isl_basic_set_set_rational( - struct isl_basic_set *bset) +__isl_give isl_basic_set *isl_basic_set_set_rational( + __isl_take isl_basic_set *bset) { - if (!bset) - return NULL; - - if (ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL)) - return bset; - - bset = isl_basic_set_cow(bset); - if (!bset) - return NULL; - - ISL_F_SET(bset, ISL_BASIC_MAP_RATIONAL); - - return isl_basic_set_finalize(bset); + return isl_basic_map_set_rational(bset); } -static struct isl_set *isl_set_set_rational(struct isl_set *set) +__isl_give isl_map *isl_map_set_rational(__isl_take isl_map *map) { int i; - set = isl_set_cow(set); - if (!set) + map = isl_map_cow(map); + if (!map) return NULL; - for (i = 0; i < set->n; ++i) { - set->p[i] = isl_basic_set_set_rational(set->p[i]); - if (!set->p[i]) + for (i = 0; i < map->n; ++i) { + map->p[i] = isl_basic_map_set_rational(map->p[i]); + if (!map->p[i]) goto error; } - return set; + return map; error: - isl_set_free(set); + isl_map_free(map); return NULL; } +__isl_give isl_set *isl_set_set_rational(__isl_take isl_set *set) +{ + return isl_map_set_rational(set); +} + static struct isl_basic_set *isl_basic_set_add_equality( struct isl_basic_set *bset, isl_int *c) { int i; - unsigned total; unsigned dim; + if (!bset) + return NULL; + if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY)) return bset; - isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error); - isl_assert(ctx, bset->n_div == 0, goto error); + isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error); + isl_assert(bset->ctx, bset->n_div == 0, goto error); dim = isl_basic_set_n_dim(bset); bset = isl_basic_set_cow(bset); bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0); @@ -303,7 +252,7 @@ error: return NULL; } -static struct isl_set *isl_set_add_equality(struct isl_set *set, isl_int *c) +static struct isl_set *isl_set_add_basic_set_equality(struct isl_set *set, isl_int *c) { int i; @@ -357,6 +306,7 @@ static struct isl_basic_set *wrap_constraints(struct isl_set *set) n_ineq += set->p[i]->n_ineq; } lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq); + lp = isl_basic_set_set_rational(lp); if (!lp) return NULL; lp_dim = isl_basic_set_n_dim(lp); @@ -442,12 +392,15 @@ static struct isl_basic_set *wrap_constraints(struct isl_set *set) * In the original space, we need to take the same combination of the * corresponding constraints "facet" and "ridge". * - * Note that a is always finite, since we only apply the wrapping - * technique to a union of polytopes. + * If a = -infty = "-1/0", then we just return the original facet constraint. + * This means that the facet is unbounded, but has a bounded intersection + * with the union of sets. */ -static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge) +isl_int *isl_set_wrap_facet(__isl_keep isl_set *set, + isl_int *facet, isl_int *ridge) { int i; + isl_ctx *ctx; struct isl_mat *T = NULL; struct isl_basic_set *lp = NULL; struct isl_vec *obj; @@ -455,10 +408,14 @@ static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge) isl_int num, den; unsigned dim; + if (!set) + return NULL; + ctx = set->ctx; set = isl_set_copy(set); + set = isl_set_set_rational(set); dim = 1 + isl_set_n_dim(set); - T = isl_mat_alloc(set->ctx, 3, dim); + T = isl_mat_alloc(ctx, 3, dim); if (!T) goto error; isl_int_set_si(T->row[0][0], 1); @@ -471,7 +428,7 @@ static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge) if (!set) goto error; lp = wrap_constraints(set); - obj = isl_vec_alloc(set->ctx, 1 + dim*set->n); + obj = isl_vec_alloc(ctx, 1 + dim*set->n); if (!obj) goto error; isl_int_set_si(obj->block.data[0], 0); @@ -482,18 +439,22 @@ static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge) } isl_int_init(num); isl_int_init(den); - res = isl_solve_lp((struct isl_basic_map *)lp, 0, - obj->block.data, set->ctx->one, &num, &den); + res = isl_basic_set_solve_lp(lp, 0, + obj->block.data, ctx->one, &num, &den, NULL); if (res == isl_lp_ok) { isl_int_neg(num, num); isl_seq_combine(facet, num, facet, den, ridge, dim); + isl_seq_normalize(ctx, facet, dim); } isl_int_clear(num); isl_int_clear(den); isl_vec_free(obj); isl_basic_set_free(lp); isl_set_free(set); - isl_assert(set->ctx, res == isl_lp_ok, return NULL); + if (res == isl_lp_error) + return NULL; + isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded, + return NULL); return facet; error: isl_basic_set_free(lp); @@ -502,33 +463,45 @@ error: return NULL; } -/* Given a set of d linearly independent bounding constraints of the - * convex hull of "set", compute the constraint of a facet of "set". - * - * We first compute the intersection with the first bounding hyperplane - * and remove the component corresponding to this hyperplane from - * other bounds (in homogeneous space). - * We then wrap around one of the remaining bounding constraints - * and continue the process until all bounding constraints have been - * taken into account. - * The resulting linear combination of the bounding constraints will - * correspond to a facet of the convex hull. +/* Compute the constraint of a facet of "set". + * + * We first compute the intersection with a bounding constraint + * that is orthogonal to one of the coordinate axes. + * If the affine hull of this intersection has only one equality, + * we have found a facet. + * Otherwise, we wrap the current bounding constraint around + * one of the equalities of the face (one that is not equal to + * the current bounding constraint). + * This process continues until we have found a facet. + * The dimension of the intersection increases by at least + * one on each iteration, so termination is guaranteed. */ -static struct isl_mat *initial_facet_constraint(struct isl_set *set, - struct isl_mat *bounds) +static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set) { struct isl_set *slice = NULL; struct isl_basic_set *face = NULL; - struct isl_mat *m, *U, *Q; int i; unsigned dim = isl_set_n_dim(set); + int is_bound; + isl_mat *bounds = NULL; + + isl_assert(set->ctx, set->n > 0, goto error); + bounds = isl_mat_alloc(set->ctx, 1, 1 + dim); + if (!bounds) + return NULL; - isl_assert(ctx, set->n > 0, goto error); - isl_assert(ctx, bounds->n_row == dim, goto error); + isl_seq_clr(bounds->row[0], dim); + isl_int_set_si(bounds->row[0][1 + dim - 1], 1); + is_bound = uset_is_bound(set, bounds->row[0], 1 + dim); + if (is_bound < 0) + goto error; + isl_assert(set->ctx, is_bound, goto error); + isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim); + bounds->n_row = 1; - while (bounds->n_row > 1) { + for (;;) { slice = isl_set_copy(set); - slice = isl_set_add_equality(slice, bounds->row[0]); + slice = isl_set_add_basic_set_equality(slice, bounds->row[0]); face = isl_set_affine_hull(slice); if (!face) goto error; @@ -536,32 +509,18 @@ static struct isl_mat *initial_facet_constraint(struct isl_set *set, isl_basic_set_free(face); break; } - m = isl_mat_alloc(set->ctx, 1 + face->n_eq, 1 + dim); - if (!m) - goto error; - isl_int_set_si(m->row[0][0], 1); - isl_seq_clr(m->row[0]+1, dim); for (i = 0; i < face->n_eq; ++i) - isl_seq_cpy(m->row[1 + i], face->eq[i], 1 + dim); - U = isl_mat_right_inverse(m); - Q = isl_mat_right_inverse(isl_mat_copy(U)); - U = isl_mat_drop_cols(U, 1 + face->n_eq, dim - face->n_eq); - Q = isl_mat_drop_rows(Q, 1 + face->n_eq, dim - face->n_eq); - U = isl_mat_drop_cols(U, 0, 1); - Q = isl_mat_drop_rows(Q, 0, 1); - bounds = isl_mat_product(bounds, U); - bounds = isl_mat_product(bounds, Q); - while (isl_seq_first_non_zero(bounds->row[bounds->n_row-1], - bounds->n_col) == -1) { - bounds->n_row--; - isl_assert(ctx, bounds->n_row > 1, goto error); - } - if (!wrap_facet(set, bounds->row[0], - bounds->row[bounds->n_row-1])) + if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) && + !isl_seq_is_neg(bounds->row[0], + face->eq[i], 1 + dim)) + break; + isl_assert(set->ctx, i < face->n_eq, goto error); + if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i])) goto error; + isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col); isl_basic_set_free(face); - bounds->n_row--; } + return bounds; error: isl_basic_set_free(face); @@ -631,7 +590,8 @@ static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c) set = isl_set_preimage(set, U); facet = uset_convex_hull_wrap_bounded(set); facet = isl_basic_set_preimage(facet, Q); - isl_assert(ctx, facet->n_eq == 0, goto error); + if (facet) + isl_assert(ctx, facet->n_eq == 0, goto error); return facet; error: isl_basic_set_free(facet); @@ -667,9 +627,11 @@ static struct isl_basic_set *extend(struct isl_basic_set *hull, int k; struct isl_basic_set *facet = NULL; struct isl_basic_set *hull_facet = NULL; - unsigned total; unsigned dim; + if (!hull) + return NULL; + isl_assert(set->ctx, set->n > 0, goto error); dim = isl_set_n_dim(set); @@ -683,11 +645,13 @@ static struct isl_basic_set *extend(struct isl_basic_set *hull, hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]); hull_facet = isl_basic_set_gauss(hull_facet, NULL); hull_facet = isl_basic_set_normalize_constraints(hull_facet); - if (!facet) + if (!facet || !hull_facet) goto error; hull = isl_basic_set_cow(hull); - hull = isl_basic_set_extend_dim(hull, - isl_dim_copy(hull->dim), 0, 0, facet->n_ineq); + hull = isl_basic_set_extend_space(hull, + isl_space_copy(hull->dim), 0, 0, facet->n_ineq); + if (!hull) + goto error; for (j = 0; j < facet->n_ineq; ++j) { for (f = 0; f < hull_facet->n_ineq; ++f) if (isl_seq_eq(facet->ineq[j], @@ -699,7 +663,7 @@ static struct isl_basic_set *extend(struct isl_basic_set *hull, if (k < 0) goto error; isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim); - if (!wrap_facet(set, hull->ineq[k], facet->ineq[j])) + if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j])) goto error; } isl_basic_set_free(hull_facet); @@ -839,13 +803,6 @@ error: return NULL; } -/* Project out final n dimensions using Fourier-Motzkin */ -static struct isl_set *set_project_out(struct isl_ctx *ctx, - struct isl_set *set, unsigned n) -{ - return isl_set_remove_dims(set, isl_set_n_dim(set) - n, n); -} - static struct isl_basic_set *convex_hull_0d(struct isl_set *set) { struct isl_basic_set *convex_hull; @@ -854,9 +811,9 @@ static struct isl_basic_set *convex_hull_0d(struct isl_set *set) return NULL; if (isl_set_is_empty(set)) - convex_hull = isl_basic_set_empty(isl_dim_copy(set->dim)); + convex_hull = isl_basic_set_empty(isl_space_copy(set->dim)); else - convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim)); + convex_hull = isl_basic_set_universe(isl_space_copy(set->dim)); isl_set_free(set); return convex_hull; } @@ -922,8 +879,8 @@ static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1, isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1); } hull = isl_basic_set_set_rational(hull); - hull = isl_basic_set_remove_dims(hull, dim, 2*(1+dim)); - hull = isl_basic_set_convex_hull(hull); + hull = isl_basic_set_remove_dims(hull, isl_dim_set, dim, 2*(1+dim)); + hull = isl_basic_set_remove_redundancies(hull); isl_basic_set_free(bset1); isl_basic_set_free(bset2); return hull; @@ -934,21 +891,52 @@ error: return NULL; } -static int isl_basic_set_is_bounded(struct isl_basic_set *bset) +/* Is the set bounded for each value of the parameters? + */ +int isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset) { struct isl_tab *tab; int bounded; - tab = isl_tab_from_recession_cone((struct isl_basic_map *)bset); + if (!bset) + return -1; + if (isl_basic_set_plain_is_empty(bset)) + return 1; + + tab = isl_tab_from_recession_cone(bset, 1); bounded = isl_tab_cone_is_bounded(tab); isl_tab_free(tab); return bounded; } -static int isl_set_is_bounded(struct isl_set *set) +/* Is the image bounded for each value of the parameters and + * the domain variables? + */ +int isl_basic_map_image_is_bounded(__isl_keep isl_basic_map *bmap) +{ + unsigned nparam = isl_basic_map_dim(bmap, isl_dim_param); + unsigned n_in = isl_basic_map_dim(bmap, isl_dim_in); + int bounded; + + bmap = isl_basic_map_copy(bmap); + bmap = isl_basic_map_cow(bmap); + bmap = isl_basic_map_move_dims(bmap, isl_dim_param, nparam, + isl_dim_in, 0, n_in); + bounded = isl_basic_set_is_bounded((isl_basic_set *)bmap); + isl_basic_map_free(bmap); + + return bounded; +} + +/* Is the set bounded for each value of the parameters? + */ +int isl_set_is_bounded(__isl_keep isl_set *set) { int i; + if (!set) + return -1; + for (i = 0; i < set->n; ++i) { int bounded = isl_basic_set_is_bounded(set->p[i]); if (!bounded || bounded < 0) @@ -974,7 +962,7 @@ static struct isl_basic_set *induced_lineality_space( goto error; dim = isl_basic_set_total_dim(bset1); - lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1), 0, + lin = isl_basic_set_alloc_space(isl_basic_set_get_space(bset1), 0, bset1->n_eq + bset2->n_eq, bset1->n_ineq + bset2->n_ineq); lin = isl_basic_set_set_rational(lin); @@ -1052,7 +1040,7 @@ static struct isl_basic_set *modulo_lineality(struct isl_set *set, if (!set || !lin) goto error; lin_dim = total - lin->n_eq; - M = isl_mat_sub_alloc(set->ctx, lin->eq, 0, lin->n_eq, 1, total); + M = isl_mat_sub_alloc6(set->ctx, lin->eq, 0, lin->n_eq, 1, total); M = isl_mat_left_hermite(M, 0, &U, &Q); if (!M) goto error; @@ -1065,7 +1053,7 @@ static struct isl_basic_set *modulo_lineality(struct isl_set *set, Q = isl_mat_lin_to_aff(Q); set = isl_set_preimage(set, U); - set = isl_set_remove_dims(set, total - lin_dim, lin_dim); + set = isl_set_remove_dims(set, isl_dim_set, total - lin_dim, lin_dim); hull = uset_convex_hull(set); hull = isl_basic_set_preimage(hull, Q); @@ -1088,7 +1076,7 @@ error: static struct isl_basic_set *valid_direction_lp( struct isl_basic_set *bset1, struct isl_basic_set *bset2) { - struct isl_dim *dim; + isl_space *dim; struct isl_basic_set *lp; unsigned d; int n; @@ -1099,8 +1087,8 @@ static struct isl_basic_set *valid_direction_lp( d = 1 + isl_basic_set_total_dim(bset1); n = 2 + 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq; - dim = isl_dim_set_alloc(bset1->ctx, 0, n); - lp = isl_basic_set_alloc_dim(dim, 0, d, n); + dim = isl_space_set_alloc(bset1->ctx, 0, n); + lp = isl_basic_set_alloc_space(dim, 0, d, n); if (!lp) goto error; for (i = 0; i < n; ++i) { @@ -1116,23 +1104,25 @@ static struct isl_basic_set *valid_direction_lp( if (k < 0) goto error; n = 0; - isl_int_set_si(lp->eq[k][n++], 0); + isl_int_set_si(lp->eq[k][n], 0); n++; /* positivity constraint 1 >= 0 */ - isl_int_set_si(lp->eq[k][n++], i == 0); + isl_int_set_si(lp->eq[k][n], i == 0); n++; for (j = 0; j < bset1->n_eq; ++j) { - isl_int_set(lp->eq[k][n++], bset1->eq[j][i]); - isl_int_neg(lp->eq[k][n++], bset1->eq[j][i]); + isl_int_set(lp->eq[k][n], bset1->eq[j][i]); n++; + isl_int_neg(lp->eq[k][n], bset1->eq[j][i]); n++; + } + for (j = 0; j < bset1->n_ineq; ++j) { + isl_int_set(lp->eq[k][n], bset1->ineq[j][i]); n++; } - for (j = 0; j < bset1->n_ineq; ++j) - isl_int_set(lp->eq[k][n++], bset1->ineq[j][i]); /* positivity constraint 1 >= 0 */ - isl_int_set_si(lp->eq[k][n++], -(i == 0)); + isl_int_set_si(lp->eq[k][n], -(i == 0)); n++; for (j = 0; j < bset2->n_eq; ++j) { - isl_int_neg(lp->eq[k][n++], bset2->eq[j][i]); - isl_int_set(lp->eq[k][n++], bset2->eq[j][i]); + isl_int_neg(lp->eq[k][n], bset2->eq[j][i]); n++; + isl_int_set(lp->eq[k][n], bset2->eq[j][i]); n++; + } + for (j = 0; j < bset2->n_ineq; ++j) { + isl_int_neg(lp->eq[k][n], bset2->ineq[j][i]); n++; } - for (j = 0; j < bset2->n_ineq; ++j) - isl_int_neg(lp->eq[k][n++], bset2->ineq[j][i]); } lp = isl_basic_set_gauss(lp, NULL); isl_basic_set_free(bset1); @@ -1156,7 +1146,7 @@ error: * (including the "positivity constraint" 1 >= 0) and \alpha_{ij} * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1. * We first set up an LP with as variables the \alpha{ij}. - * In this formulateion, for each polyhedron i, + * In this formulation, for each polyhedron i, * the first constraint is the positivity constraint, followed by pairs * of variables for the equalities, followed by variables for the inequalities. * We then simply pick a feasible solution and compute s using (*). @@ -1179,7 +1169,7 @@ static struct isl_vec *valid_direction( goto error; lp = valid_direction_lp(isl_basic_set_copy(bset1), isl_basic_set_copy(bset2)); - tab = isl_tab_from_basic_set(lp); + tab = isl_tab_from_basic_set(lp, 0); sample = isl_tab_get_sample_value(tab); isl_tab_free(tab); isl_basic_set_free(lp); @@ -1192,7 +1182,7 @@ static struct isl_vec *valid_direction( isl_seq_clr(dir->block.data + 1, dir->size - 1); n = 1; /* positivity constraint 1 >= 0 */ - isl_int_set(dir->block.data[0], sample->block.data[n++]); + isl_int_set(dir->block.data[0], sample->block.data[n]); n++; for (i = 0; i < bset1->n_eq; ++i) { isl_int_sub(sample->block.data[n], sample->block.data[n], sample->block.data[n+1]); @@ -1207,9 +1197,9 @@ static struct isl_vec *valid_direction( bset1->ctx->one, dir->block.data, sample->block.data[n++], bset1->ineq[i], 1 + d); isl_vec_free(sample); + isl_seq_normalize(bset1->ctx, dir->el, dir->size); isl_basic_set_free(bset1); isl_basic_set_free(bset2); - isl_seq_normalize(dir->block.data + 1, dir->size - 1); return dir; error: isl_vec_free(sample); @@ -1333,9 +1323,9 @@ static struct isl_basic_set *convex_hull_pair_pointed( bset1 = homogeneous_map(bset1, isl_mat_copy(T2)); bset2 = homogeneous_map(bset2, T2); - set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0); - set = isl_set_add(set, bset1); - set = isl_set_add(set, bset2); + set = isl_set_alloc_space(isl_basic_set_get_space(bset1), 2, 0); + set = isl_set_add_basic_set(set, bset1); + set = isl_set_add_basic_set(set, bset2); hull = uset_convex_hull(set); hull = isl_basic_set_preimage(hull, T); @@ -1349,18 +1339,50 @@ error: return NULL; } +static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set); +static struct isl_basic_set *modulo_affine_hull( + struct isl_set *set, struct isl_basic_set *affine_hull); + /* Compute the convex hull of a pair of basic sets without any parameters or * integer divisions. * + * This function is called from uset_convex_hull_unbounded, which + * means that the complete convex hull is unbounded. Some pairs + * of basic sets may still be bounded, though. + * They may even lie inside a lower dimensional space, in which + * case they need to be handled inside their affine hull since + * the main algorithm assumes that the result is full-dimensional. + * * If the convex hull of the two basic sets would have a non-trivial * lineality space, we first project out this lineality space. */ static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1, struct isl_basic_set *bset2) { - struct isl_basic_set *lin; + isl_basic_set *lin, *aff; + int bounded1, bounded2; + + if (bset1->ctx->opt->convex == ISL_CONVEX_HULL_FM) + return convex_hull_pair_elim(bset1, bset2); + + aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1), + isl_basic_set_copy(bset2))); + if (!aff) + goto error; + if (aff->n_eq != 0) + return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff); + isl_basic_set_free(aff); - if (isl_basic_set_is_bounded(bset1) || isl_basic_set_is_bounded(bset2)) + bounded1 = isl_basic_set_is_bounded(bset1); + bounded2 = isl_basic_set_is_bounded(bset2); + + if (bounded1 < 0 || bounded2 < 0) + goto error; + + if (bounded1 && bounded2) + uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2)); + + if (bounded1 || bounded2) return convex_hull_pair_pointed(bset1, bset2); lin = induced_lineality_space(isl_basic_set_copy(bset1), @@ -1374,9 +1396,9 @@ static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1, } if (lin->n_eq < isl_basic_set_total_dim(lin)) { struct isl_set *set; - set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0); - set = isl_set_add(set, bset1); - set = isl_set_add(set, bset2); + set = isl_set_alloc_space(isl_basic_set_get_space(bset1), 2, 0); + set = isl_set_add_basic_set(set, bset1); + set = isl_set_add_basic_set(set, bset2); return modulo_lineality(set, lin); } isl_basic_set_free(lin); @@ -1404,7 +1426,7 @@ struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset) isl_assert(bset->ctx, bset->n_div == 0, goto error); dim = isl_basic_set_total_dim(bset); - lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset), 0, dim, 0); + lin = isl_basic_set_alloc_space(isl_basic_set_get_space(bset), 0, dim, 0); if (!lin) goto error; for (i = 0; i < bset->n_eq; ++i) { @@ -1446,14 +1468,14 @@ static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set) if (!set) return NULL; if (set->n == 0) { - struct isl_dim *dim = isl_set_get_dim(set); + isl_space *dim = isl_set_get_space(set); isl_set_free(set); return isl_basic_set_empty(dim); } - lin = isl_set_alloc_dim(isl_set_get_dim(set), set->n, 0); + lin = isl_set_alloc_space(isl_set_get_space(set), set->n, 0); for (i = 0; i < set->n; ++i) - lin = isl_set_add(lin, + lin = isl_set_add_basic_set(lin, isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i]))); isl_set_free(set); return isl_set_affine_hull(lin); @@ -1495,7 +1517,7 @@ static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set) break; } if (t->n_eq < isl_basic_set_total_dim(t)) { - set = isl_set_add(set, convex_hull); + set = isl_set_add_basic_set(set, convex_hull); return modulo_lineality(set, t); } isl_basic_set_free(t); @@ -1509,13 +1531,8 @@ error: } /* Compute an initial hull for wrapping containing a single initial - * facet by first computing bounds on the set and then using these - * bounds to construct an initial facet. - * This function is a remnant of an older implementation where the - * bounds were also used to check whether the set was bounded. - * Since this function will now only be called when we know the - * set to be bounded, the initial facet should probably be constructed - * by simply using the coordinate directions instead. + * facet. + * This function assumes that the given set is bounded. */ static struct isl_basic_set *initial_hull(struct isl_basic_set *hull, struct isl_set *set) @@ -1526,11 +1543,7 @@ static struct isl_basic_set *initial_hull(struct isl_basic_set *hull, if (!hull) goto error; - bounds = independent_bounds(set); - if (!bounds) - goto error; - isl_assert(set->ctx, bounds->n_row == isl_set_n_dim(set), goto error); - bounds = initial_facet_constraint(set, bounds); + bounds = initial_facet_constraint(set); if (!bounds) goto error; k = isl_basic_set_alloc_inequality(hull); @@ -1569,7 +1582,7 @@ static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table, struct max_constraint *c; uint32_t c_hash; - c_hash = isl_seq_hash(con + 1, len, isl_hash_init()); + c_hash = isl_seq_get_hash(con + 1, len); entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal, con + 1, 0); if (!entry) @@ -1602,7 +1615,7 @@ static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table, struct max_constraint *c; uint32_t c_hash; - c_hash = isl_seq_hash(con + 1, len, isl_hash_init()); + c_hash = isl_seq_get_hash(con + 1, len); entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal, con + 1, 0); if (!entry) @@ -1658,9 +1671,9 @@ static struct isl_basic_set *common_constraints(struct isl_basic_set *hull, if (isl_hash_table_init(hull->ctx, table, min_constraints)) goto error; - total = isl_dim_total(set->dim); + total = isl_space_dim(set->dim, isl_dim_all); for (i = 0; i < set->p[best]->n_ineq; ++i) { - constraints[i].c = isl_mat_sub_alloc(hull->ctx, + constraints[i].c = isl_mat_sub_alloc6(hull->ctx, set->p[best]->ineq + i, 0, 1, 0, 1 + total); if (!constraints[i].c) goto error; @@ -1669,8 +1682,7 @@ static struct isl_basic_set *common_constraints(struct isl_basic_set *hull, for (i = 0; i < min_constraints; ++i) { struct isl_hash_table_entry *entry; uint32_t c_hash; - c_hash = isl_seq_hash(constraints[i].c->row[0] + 1, total, - isl_hash_init()); + c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total); entry = isl_hash_table_find(hull->ctx, table, c_hash, max_constraint_equal, constraints[i].c->row[0] + 1, 1); if (!entry) @@ -1756,7 +1768,7 @@ static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull) n_ineq += set->p[i]->n_eq; n_ineq += set->p[i]->n_ineq; } - hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq); + hull = isl_basic_set_alloc_space(isl_space_copy(set->dim), 0, 0, n_ineq); hull = isl_basic_set_set_rational(hull); if (!hull) return NULL; @@ -1787,7 +1799,6 @@ static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set) */ static struct isl_basic_set *uset_convex_hull(struct isl_set *set) { - int i; struct isl_basic_set *convex_hull = NULL; struct isl_basic_set *lin; @@ -1809,7 +1820,8 @@ static struct isl_basic_set *uset_convex_hull(struct isl_set *set) if (isl_set_n_dim(set) == 1) return convex_hull_1d(set); - if (isl_set_is_bounded(set)) + if (isl_set_is_bounded(set) && + set->ctx->opt->convex == ISL_CONVEX_HULL_WRAP) return uset_convex_hull_wrap(set); lin = uset_combined_lineality_space(isl_set_copy(set)); @@ -1836,26 +1848,26 @@ error: */ static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set) { - int i; struct isl_basic_set *convex_hull = NULL; + if (!set) + goto error; + if (isl_set_n_dim(set) == 0) { - convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim)); + convex_hull = isl_basic_set_universe(isl_space_copy(set->dim)); isl_set_free(set); convex_hull = isl_basic_set_set_rational(convex_hull); return convex_hull; } set = isl_set_set_rational(set); - - if (!set) - goto error; - set = isl_set_normalize(set); + set = isl_set_coalesce(set); if (!set) goto error; if (set->n == 1) { convex_hull = isl_basic_set_copy(set->p[0]); isl_set_free(set); + convex_hull = isl_basic_map_remove_redundancies(convex_hull); return convex_hull; } if (isl_set_n_dim(set) == 1) @@ -1872,7 +1884,7 @@ error: * convex hull of the transformed set and then add the equalities back * (after performing the inverse transformation. */ -static struct isl_basic_set *modulo_affine_hull(struct isl_ctx *ctx, +static struct isl_basic_set *modulo_affine_hull( struct isl_set *set, struct isl_basic_set *affine_hull) { struct isl_mat *T; @@ -1922,6 +1934,8 @@ struct isl_basic_map *isl_map_convex_hull(struct isl_map *map) map = isl_map_detect_equalities(map); map = isl_map_align_divs(map); + if (!map) + goto error; model = isl_basic_map_copy(map->p[0]); set = isl_map_underlying_set(map); if (!set) @@ -1931,13 +1945,15 @@ struct isl_basic_map *isl_map_convex_hull(struct isl_map *map) if (!affine_hull) goto error; if (affine_hull->n_eq != 0) - bset = modulo_affine_hull(ctx, set, affine_hull); + bset = modulo_affine_hull(set, affine_hull); else { isl_basic_set_free(affine_hull); bset = uset_convex_hull(set); } convex_hull = isl_basic_map_overlying_set(bset, model); + if (!convex_hull) + return NULL; ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES); @@ -1955,6 +1971,19 @@ struct isl_basic_set *isl_set_convex_hull(struct isl_set *set) isl_map_convex_hull((struct isl_map *)set); } +__isl_give isl_basic_map *isl_map_polyhedral_hull(__isl_take isl_map *map) +{ + isl_basic_map *hull; + + hull = isl_map_convex_hull(map); + return isl_basic_map_remove_divs(hull); +} + +__isl_give isl_basic_set *isl_set_polyhedral_hull(__isl_take isl_set *set) +{ + return (isl_basic_set *)isl_map_polyhedral_hull((isl_map *)set); +} + struct sh_data_entry { struct isl_hash_table *table; struct isl_tab *tab; @@ -1973,7 +2002,7 @@ struct sh_data { struct isl_ctx *ctx; unsigned n; struct isl_hash_table *hull_table; - struct sh_data_entry p[0]; + struct sh_data_entry p[1]; }; static void sh_data_free(struct sh_data *data) @@ -2013,7 +2042,7 @@ static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table, v.len = len; v.p = ineq; - c_hash = isl_seq_hash(ineq + 1, len, isl_hash_init()); + c_hash = isl_seq_get_hash(ineq + 1, len); entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1); if (!entry) return - 1; @@ -2051,7 +2080,8 @@ static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq) int i; data = isl_calloc(set->ctx, struct sh_data, - sizeof(struct sh_data) + set->n * sizeof(struct sh_data_entry)); + sizeof(struct sh_data) + + (set->n - 1) * sizeof(struct sh_data_entry)); if (!data) return NULL; data->ctx = set->ctx; @@ -2077,18 +2107,20 @@ error: * it can be relaxed (by increasing the constant term) to become * a bound for that basic set. In the latter case, the constant * term is updated. + * Relaxation of the constant term is only allowed if "shift" is set. + * * Return 1 if "ineq" is a bound * 0 if "ineq" may attain arbitrarily small values on basic set "j" * -1 if some error occurred */ static int is_bound(struct sh_data *data, struct isl_set *set, int j, - isl_int *ineq) + isl_int *ineq, int shift) { enum isl_lp_result res; isl_int opt; if (!data->p[j].tab) { - data->p[j].tab = isl_tab_from_basic_set(set->p[j]); + data->p[j].tab = isl_tab_from_basic_set(set->p[j], 0); if (!data->p[j].tab) return -1; } @@ -2097,18 +2129,22 @@ static int is_bound(struct sh_data *data, struct isl_set *set, int j, res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one, &opt, NULL, 0); - if (res == isl_lp_ok && isl_int_is_neg(opt)) - isl_int_sub(ineq[0], ineq[0], opt); + if (res == isl_lp_ok && isl_int_is_neg(opt)) { + if (shift) + isl_int_sub(ineq[0], ineq[0], opt); + else + res = isl_lp_unbounded; + } isl_int_clear(opt); - return res == isl_lp_ok ? 1 : + return (res == isl_lp_ok || res == isl_lp_empty) ? 1 : res == isl_lp_unbounded ? 0 : -1; } -/* Check if inequality "ineq" from basic set "i" can be relaxed to +/* Check if inequality "ineq" from basic set "i" is or can be relaxed to * become a bound on the whole set. If so, add the (relaxed) inequality - * to "hull". + * to "hull". Relaxation is only allowed if "shift" is set. * * We first check if "hull" already contains a translate of the inequality. * If so, we are done. @@ -2124,7 +2160,8 @@ static int is_bound(struct sh_data *data, struct isl_set *set, int j, * the inequality accordingly. */ static struct isl_basic_set *add_bound(struct isl_basic_set *hull, - struct sh_data *data, struct isl_set *set, int i, isl_int *ineq) + struct sh_data *data, struct isl_set *set, int i, isl_int *ineq, + int shift) { uint32_t c_hash; struct ineq_cmp_data v; @@ -2136,7 +2173,7 @@ static struct isl_basic_set *add_bound(struct isl_basic_set *hull, v.len = isl_basic_set_total_dim(hull); v.p = ineq; - c_hash = isl_seq_hash(ineq + 1, v.len, isl_hash_init()); + c_hash = isl_seq_get_hash(ineq + 1, v.len); entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash, has_ineq, &v, 0); @@ -2159,7 +2196,7 @@ static struct isl_basic_set *add_bound(struct isl_basic_set *hull, for (j = 0; j < i; ++j) { int bound; - bound = is_bound(data, set, j, hull->ineq[k]); + bound = is_bound(data, set, j, hull->ineq[k], shift); if (bound < 0) goto error; if (!bound) @@ -2187,7 +2224,7 @@ static struct isl_basic_set *add_bound(struct isl_basic_set *hull, isl_int_neg(ineq_j[0], ineq_j[0]); continue; } - bound = is_bound(data, set, j, hull->ineq[k]); + bound = is_bound(data, set, j, hull->ineq[k], shift); if (bound < 0) goto error; if (!bound) @@ -2210,12 +2247,12 @@ error: return NULL; } -/* Check if any inequality from basic set "i" can be relaxed to +/* Check if any inequality from basic set "i" is or can be relaxed to * become a bound on the whole set. If so, add the (relaxed) inequality - * to "hull". + * to "hull". Relaxation is only allowed if "shift" is set. */ static struct isl_basic_set *add_bounds(struct isl_basic_set *bset, - struct sh_data *data, struct isl_set *set, int i) + struct sh_data *data, struct isl_set *set, int i, int shift) { int j, k; unsigned dim = isl_basic_set_total_dim(bset); @@ -2223,23 +2260,26 @@ static struct isl_basic_set *add_bounds(struct isl_basic_set *bset, for (j = 0; j < set->p[i]->n_eq; ++j) { for (k = 0; k < 2; ++k) { isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim); - add_bound(bset, data, set, i, set->p[i]->eq[j]); + bset = add_bound(bset, data, set, i, set->p[i]->eq[j], + shift); } } for (j = 0; j < set->p[i]->n_ineq; ++j) - add_bound(bset, data, set, i, set->p[i]->ineq[j]); + bset = add_bound(bset, data, set, i, set->p[i]->ineq[j], shift); return bset; } /* Compute a superset of the convex hull of set that is described - * by only translates of the constraints in the constituents of set. + * by only (translates of) the constraints in the constituents of set. + * Translation is only allowed if "shift" is set. */ -static struct isl_basic_set *uset_simple_hull(struct isl_set *set) +static __isl_give isl_basic_set *uset_simple_hull(__isl_take isl_set *set, + int shift) { struct sh_data *data = NULL; struct isl_basic_set *hull = NULL; unsigned n_ineq; - int i, j; + int i; if (!set) return NULL; @@ -2251,7 +2291,7 @@ static struct isl_basic_set *uset_simple_hull(struct isl_set *set) n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq; } - hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq); + hull = isl_basic_set_alloc_space(isl_space_copy(set->dim), 0, 0, n_ineq); if (!hull) goto error; @@ -2260,7 +2300,7 @@ static struct isl_basic_set *uset_simple_hull(struct isl_set *set) goto error; for (i = 0; i < set->n; ++i) - hull = add_bounds(hull, data, set, i); + hull = add_bounds(hull, data, set, i, shift); sh_data_free(data); isl_set_free(set); @@ -2274,9 +2314,11 @@ error: } /* Compute a superset of the convex hull of map that is described - * by only translates of the constraints in the constituents of map. + * by only (translates of) the constraints in the constituents of map. + * Translation is only allowed if "shift" is set. */ -struct isl_basic_map *isl_map_simple_hull(struct isl_map *map) +static __isl_give isl_basic_map *map_simple_hull(__isl_take isl_map *map, + int shift) { struct isl_set *set = NULL; struct isl_basic_map *model = NULL; @@ -2300,28 +2342,54 @@ struct isl_basic_map *isl_map_simple_hull(struct isl_map *map) map = isl_map_detect_equalities(map); affine_hull = isl_map_affine_hull(isl_map_copy(map)); map = isl_map_align_divs(map); - model = isl_basic_map_copy(map->p[0]); + model = map ? isl_basic_map_copy(map->p[0]) : NULL; set = isl_map_underlying_set(map); - bset = uset_simple_hull(set); + bset = uset_simple_hull(set, shift); hull = isl_basic_map_overlying_set(bset, model); hull = isl_basic_map_intersect(hull, affine_hull); - hull = isl_basic_map_convex_hull(hull); + hull = isl_basic_map_remove_redundancies(hull); + + if (!hull) + return NULL; ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES); return hull; } +/* Compute a superset of the convex hull of map that is described + * by only translates of the constraints in the constituents of map. + */ +__isl_give isl_basic_map *isl_map_simple_hull(__isl_take isl_map *map) +{ + return map_simple_hull(map, 1); +} + struct isl_basic_set *isl_set_simple_hull(struct isl_set *set) { return (struct isl_basic_set *) isl_map_simple_hull((struct isl_map *)set); } +/* Compute a superset of the convex hull of map that is described + * by only the constraints in the constituents of map. + */ +__isl_give isl_basic_map *isl_map_unshifted_simple_hull( + __isl_take isl_map *map) +{ + return map_simple_hull(map, 0); +} + +__isl_give isl_basic_set *isl_set_unshifted_simple_hull( + __isl_take isl_set *set) +{ + return isl_map_unshifted_simple_hull(set); +} + /* Given a set "set", return parametric bounds on the dimension "dim". */ static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)