X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=isl_convex_hull.c;h=d3d5ff232c38e26d5c1db748071025b3f43d4029;hb=ae24e1036a2724fb889c5d2afcc6669f92369f10;hp=caa1c0b24e315d39c3d2de1f2013c4a18cf0e51a;hpb=f67c8d827f8f5d394962bb9cc8f4b6bbb992e1e1;p=platform%2Fupstream%2Fisl.git diff --git a/isl_convex_hull.c b/isl_convex_hull.c index caa1c0b..d3d5ff2 100644 --- a/isl_convex_hull.c +++ b/isl_convex_hull.c @@ -1,3 +1,12 @@ +/* + * Copyright 2008-2009 Katholieke Universiteit Leuven + * + * Use of this software is governed by the GNU LGPLv2.1 license + * + * Written by Sven Verdoolaege, K.U.Leuven, Departement + * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium + */ + #include "isl_lp.h" #include "isl_map.h" #include "isl_map_private.h" @@ -50,7 +59,8 @@ int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap, if (i < total) return 0; - res = isl_solve_lp(*bmap, 0, c, (*bmap)->ctx->one, opt_n, opt_d); + res = isl_basic_map_solve_lp(*bmap, 0, c, (*bmap)->ctx->one, + opt_n, opt_d, NULL); if (res == isl_lp_unbounded) return 0; if (res == isl_lp_error) @@ -69,7 +79,7 @@ int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset, (struct isl_basic_map **)bset, c, opt_n, opt_d); } -/* Compute the convex hull of a basic map, by removing the redundant +/* Remove redundant * constraints. If the minimal value along the normal of a constraint * is the same if the constraint is removed, then the constraint is redundant. * @@ -77,7 +87,8 @@ int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset, * corresponding equality and the checked if the dimension was that * of a facet. */ -struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap) +__isl_give isl_basic_map *isl_basic_map_remove_redundancies( + __isl_take isl_basic_map *bmap) { struct isl_tab *tab; @@ -93,27 +104,33 @@ struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap) return bmap; tab = isl_tab_from_basic_map(bmap); - tab = isl_tab_detect_equalities(bmap->ctx, tab); - tab = isl_tab_detect_redundant(bmap->ctx, tab); + if (isl_tab_detect_implicit_equalities(tab) < 0) + goto error; + if (isl_tab_detect_redundant(tab) < 0) + goto error; bmap = isl_basic_map_update_from_tab(bmap, tab); - isl_tab_free(bmap->ctx, tab); + isl_tab_free(tab); ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT); return bmap; +error: + isl_tab_free(tab); + isl_basic_map_free(bmap); + return NULL; } -struct isl_basic_set *isl_basic_set_convex_hull(struct isl_basic_set *bset) +__isl_give isl_basic_set *isl_basic_set_remove_redundancies( + __isl_take isl_basic_set *bset) { return (struct isl_basic_set *) - isl_basic_map_convex_hull((struct isl_basic_map *)bset); + isl_basic_map_remove_redundancies((struct isl_basic_map *)bset); } /* Check if the set set is bound in the direction of the affine * constraint c and if so, set the constant term such that the * resulting constraint is a bounding constraint for the set. */ -static int uset_is_bound(struct isl_ctx *ctx, struct isl_set *set, - isl_int *c, unsigned len) +static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len) { int first; int j; @@ -129,8 +146,8 @@ static int uset_is_bound(struct isl_ctx *ctx, struct isl_set *set, if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY)) continue; - res = isl_solve_lp((struct isl_basic_map*)set->p[j], - 0, c, ctx->one, &opt, &opt_denom); + res = isl_basic_set_solve_lp(set->p[j], + 0, c, set->ctx->one, &opt, &opt_denom, NULL); if (res == isl_lp_unbounded) break; if (res == isl_lp_error) @@ -141,10 +158,11 @@ static int uset_is_bound(struct isl_ctx *ctx, struct isl_set *set, goto error; continue; } - if (!isl_int_is_one(opt_denom)) - isl_seq_scale(c, c, opt_denom, len); - if (first || isl_int_is_neg(opt)) + if (first || isl_int_is_neg(opt)) { + if (!isl_int_is_one(opt_denom)) + isl_seq_scale(c, c, opt_denom, len); isl_int_sub(c[0], c[0], opt); + } first = 0; } isl_int_clear(opt); @@ -156,99 +174,7 @@ error: return -1; } -/* Check if "c" is a direction that is independent of the previously found "n" - * bounds in "dirs". - * If so, add it to the list, with the negative of the lower bound - * in the constant position, i.e., such that c corresponds to a bounding - * hyperplane (but not necessarily a facet). - * Assumes set "set" is bounded. - */ -static int is_independent_bound(struct isl_ctx *ctx, - struct isl_set *set, isl_int *c, - struct isl_mat *dirs, int n) -{ - int is_bound; - int i = 0; - - isl_seq_cpy(dirs->row[n]+1, c+1, dirs->n_col-1); - if (n != 0) { - int pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1); - if (pos < 0) - return 0; - for (i = 0; i < n; ++i) { - int pos_i; - pos_i = isl_seq_first_non_zero(dirs->row[i]+1, dirs->n_col-1); - if (pos_i < pos) - continue; - if (pos_i > pos) - break; - isl_seq_elim(dirs->row[n]+1, dirs->row[i]+1, pos, - dirs->n_col-1, NULL); - pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1); - if (pos < 0) - return 0; - } - } - - is_bound = uset_is_bound(ctx, set, dirs->row[n], dirs->n_col); - if (is_bound != 1) - return is_bound; - if (i < n) { - int k; - isl_int *t = dirs->row[n]; - for (k = n; k > i; --k) - dirs->row[k] = dirs->row[k-1]; - dirs->row[i] = t; - } - return 1; -} - -/* Compute and return a maximal set of linearly independent bounds - * on the set "set", based on the constraints of the basic sets - * in "set". - */ -static struct isl_mat *independent_bounds(struct isl_ctx *ctx, - struct isl_set *set) -{ - int i, j, n; - struct isl_mat *dirs = NULL; - unsigned dim = isl_set_n_dim(set); - - dirs = isl_mat_alloc(ctx, dim, 1+dim); - if (!dirs) - goto error; - - n = 0; - for (i = 0; n < dim && i < set->n; ++i) { - int f; - struct isl_basic_set *bset = set->p[i]; - - for (j = 0; n < dim && j < bset->n_eq; ++j) { - f = is_independent_bound(ctx, set, bset->eq[j], - dirs, n); - if (f < 0) - goto error; - if (f) - ++n; - } - for (j = 0; n < dim && j < bset->n_ineq; ++j) { - f = is_independent_bound(ctx, set, bset->ineq[j], - dirs, n); - if (f < 0) - goto error; - if (f) - ++n; - } - } - dirs->n_row = n; - return dirs; -error: - isl_mat_free(ctx, dirs); - return NULL; -} - -static struct isl_basic_set *isl_basic_set_set_rational( - struct isl_basic_set *bset) +struct isl_basic_set *isl_basic_set_set_rational(struct isl_basic_set *bset) { if (!bset) return NULL; @@ -283,18 +209,20 @@ error: return NULL; } -static struct isl_basic_set *isl_basic_set_add_equality(struct isl_ctx *ctx, +static struct isl_basic_set *isl_basic_set_add_equality( struct isl_basic_set *bset, isl_int *c) { int i; - unsigned total; unsigned dim; + if (!bset) + return NULL; + if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY)) return bset; - isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error); - isl_assert(ctx, bset->n_div == 0, goto error); + isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error); + isl_assert(bset->ctx, bset->n_div == 0, goto error); dim = isl_basic_set_n_dim(bset); bset = isl_basic_set_cow(bset); bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0); @@ -308,8 +236,7 @@ error: return NULL; } -static struct isl_set *isl_set_add_equality(struct isl_ctx *ctx, - struct isl_set *set, isl_int *c) +static struct isl_set *isl_set_add_basic_set_equality(struct isl_set *set, isl_int *c) { int i; @@ -317,7 +244,7 @@ static struct isl_set *isl_set_add_equality(struct isl_ctx *ctx, if (!set) return NULL; for (i = 0; i < set->n; ++i) { - set->p[i] = isl_basic_set_add_equality(ctx, set->p[i], c); + set->p[i] = isl_basic_set_add_equality(set->p[i], c); if (!set->p[i]) goto error; } @@ -448,12 +375,15 @@ static struct isl_basic_set *wrap_constraints(struct isl_set *set) * In the original space, we need to take the same combination of the * corresponding constraints "facet" and "ridge". * - * Note that a is always finite, since we only apply the wrapping - * technique to a union of polytopes. + * If a = -infty = "-1/0", then we just return the original facet constraint. + * This means that the facet is unbounded, but has a bounded intersection + * with the union of sets. */ -static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge) +isl_int *isl_set_wrap_facet(__isl_keep isl_set *set, + isl_int *facet, isl_int *ridge) { int i; + isl_ctx *ctx; struct isl_mat *T = NULL; struct isl_basic_set *lp = NULL; struct isl_vec *obj; @@ -461,23 +391,27 @@ static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge) isl_int num, den; unsigned dim; + if (!set) + return NULL; + ctx = set->ctx; set = isl_set_copy(set); + set = isl_set_set_rational(set); dim = 1 + isl_set_n_dim(set); - T = isl_mat_alloc(set->ctx, 3, dim); + T = isl_mat_alloc(ctx, 3, dim); if (!T) goto error; isl_int_set_si(T->row[0][0], 1); isl_seq_clr(T->row[0]+1, dim - 1); isl_seq_cpy(T->row[1], facet, dim); isl_seq_cpy(T->row[2], ridge, dim); - T = isl_mat_right_inverse(set->ctx, T); + T = isl_mat_right_inverse(T); set = isl_set_preimage(set, T); T = NULL; if (!set) goto error; lp = wrap_constraints(set); - obj = isl_vec_alloc(set->ctx, 1 + dim*set->n); + obj = isl_vec_alloc(ctx, 1 + dim*set->n); if (!obj) goto error; isl_int_set_si(obj->block.data[0], 0); @@ -488,8 +422,8 @@ static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge) } isl_int_init(num); isl_int_init(den); - res = isl_solve_lp((struct isl_basic_map *)lp, 0, - obj->block.data, set->ctx->one, &num, &den); + res = isl_basic_set_solve_lp(lp, 0, + obj->block.data, ctx->one, &num, &den, NULL); if (res == isl_lp_ok) { isl_int_neg(num, num); isl_seq_combine(facet, num, facet, den, ridge, dim); @@ -499,42 +433,55 @@ static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge) isl_vec_free(obj); isl_basic_set_free(lp); isl_set_free(set); - isl_assert(set->ctx, res == isl_lp_ok, return NULL); + if (res == isl_lp_error) + return NULL; + isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded, + return NULL); return facet; error: isl_basic_set_free(lp); - isl_mat_free(set->ctx, T); + isl_mat_free(T); isl_set_free(set); return NULL; } -/* Given a set of d linearly independent bounding constraints of the - * convex hull of "set", compute the constraint of a facet of "set". - * - * We first compute the intersection with the first bounding hyperplane - * and remove the component corresponding to this hyperplane from - * other bounds (in homogeneous space). - * We then wrap around one of the remaining bounding constraints - * and continue the process until all bounding constraints have been - * taken into account. - * The resulting linear combination of the bounding constraints will - * correspond to a facet of the convex hull. +/* Compute the constraint of a facet of "set". + * + * We first compute the intersection with a bounding constraint + * that is orthogonal to one of the coordinate axes. + * If the affine hull of this intersection has only one equality, + * we have found a facet. + * Otherwise, we wrap the current bounding constraint around + * one of the equalities of the face (one that is not equal to + * the current bounding constraint). + * This process continues until we have found a facet. + * The dimension of the intersection increases by at least + * one on each iteration, so termination is guaranteed. */ -static struct isl_mat *initial_facet_constraint(struct isl_ctx *ctx, - struct isl_set *set, struct isl_mat *bounds) +static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set) { struct isl_set *slice = NULL; struct isl_basic_set *face = NULL; - struct isl_mat *m, *U, *Q; int i; unsigned dim = isl_set_n_dim(set); + int is_bound; + isl_mat *bounds; - isl_assert(ctx, set->n > 0, goto error); - isl_assert(ctx, bounds->n_row == dim, goto error); + isl_assert(set->ctx, set->n > 0, goto error); + bounds = isl_mat_alloc(set->ctx, 1, 1 + dim); + if (!bounds) + return NULL; + + isl_seq_clr(bounds->row[0], dim); + isl_int_set_si(bounds->row[0][1 + dim - 1], 1); + is_bound = uset_is_bound(set, bounds->row[0], 1 + dim); + isl_assert(set->ctx, is_bound == 1, goto error); + isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim); + bounds->n_row = 1; - while (bounds->n_row > 1) { + for (;;) { slice = isl_set_copy(set); - slice = isl_set_add_equality(ctx, slice, bounds->row[0]); + slice = isl_set_add_basic_set_equality(slice, bounds->row[0]); face = isl_set_affine_hull(slice); if (!face) goto error; @@ -542,38 +489,22 @@ static struct isl_mat *initial_facet_constraint(struct isl_ctx *ctx, isl_basic_set_free(face); break; } - m = isl_mat_alloc(ctx, 1 + face->n_eq, 1 + dim); - if (!m) - goto error; - isl_int_set_si(m->row[0][0], 1); - isl_seq_clr(m->row[0]+1, dim); for (i = 0; i < face->n_eq; ++i) - isl_seq_cpy(m->row[1 + i], face->eq[i], 1 + dim); - U = isl_mat_right_inverse(ctx, m); - Q = isl_mat_right_inverse(ctx, isl_mat_copy(ctx, U)); - U = isl_mat_drop_cols(ctx, U, 1 + face->n_eq, - dim - face->n_eq); - Q = isl_mat_drop_rows(ctx, Q, 1 + face->n_eq, - dim - face->n_eq); - U = isl_mat_drop_cols(ctx, U, 0, 1); - Q = isl_mat_drop_rows(ctx, Q, 0, 1); - bounds = isl_mat_product(ctx, bounds, U); - bounds = isl_mat_product(ctx, bounds, Q); - while (isl_seq_first_non_zero(bounds->row[bounds->n_row-1], - bounds->n_col) == -1) { - bounds->n_row--; - isl_assert(ctx, bounds->n_row > 1, goto error); - } - if (!wrap_facet(set, bounds->row[0], - bounds->row[bounds->n_row-1])) + if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) && + !isl_seq_is_neg(bounds->row[0], + face->eq[i], 1 + dim)) + break; + isl_assert(set->ctx, i < face->n_eq, goto error); + if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i])) goto error; + isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col); isl_basic_set_free(face); - bounds->n_row--; } + return bounds; error: isl_basic_set_free(face); - isl_mat_free(ctx, bounds); + isl_mat_free(bounds); return NULL; } @@ -632,14 +563,15 @@ static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c) isl_int_set_si(m->row[0][0], 1); isl_seq_clr(m->row[0]+1, dim); isl_seq_cpy(m->row[1], c, 1+dim); - U = isl_mat_right_inverse(set->ctx, m); - Q = isl_mat_right_inverse(set->ctx, isl_mat_copy(set->ctx, U)); - U = isl_mat_drop_cols(set->ctx, U, 1, 1); - Q = isl_mat_drop_rows(set->ctx, Q, 1, 1); + U = isl_mat_right_inverse(m); + Q = isl_mat_right_inverse(isl_mat_copy(U)); + U = isl_mat_drop_cols(U, 1, 1); + Q = isl_mat_drop_rows(Q, 1, 1); set = isl_set_preimage(set, U); facet = uset_convex_hull_wrap_bounded(set); facet = isl_basic_set_preimage(facet, Q); - isl_assert(ctx, facet->n_eq == 0, goto error); + if (facet) + isl_assert(ctx, facet->n_eq == 0, goto error); return facet; error: isl_basic_set_free(facet); @@ -675,27 +607,31 @@ static struct isl_basic_set *extend(struct isl_basic_set *hull, int k; struct isl_basic_set *facet = NULL; struct isl_basic_set *hull_facet = NULL; - unsigned total; unsigned dim; + if (!hull) + return NULL; + isl_assert(set->ctx, set->n > 0, goto error); dim = isl_set_n_dim(set); for (i = 0; i < hull->n_ineq; ++i) { facet = compute_facet(set, hull->ineq[i]); - facet = isl_basic_set_add_equality(facet->ctx, facet, hull->ineq[i]); + facet = isl_basic_set_add_equality(facet, hull->ineq[i]); facet = isl_basic_set_gauss(facet, NULL); facet = isl_basic_set_normalize_constraints(facet); hull_facet = isl_basic_set_copy(hull); - hull_facet = isl_basic_set_add_equality(hull_facet->ctx, hull_facet, hull->ineq[i]); + hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]); hull_facet = isl_basic_set_gauss(hull_facet, NULL); hull_facet = isl_basic_set_normalize_constraints(hull_facet); - if (!facet) + if (!facet || !hull_facet) goto error; hull = isl_basic_set_cow(hull); hull = isl_basic_set_extend_dim(hull, isl_dim_copy(hull->dim), 0, 0, facet->n_ineq); + if (!hull) + goto error; for (j = 0; j < facet->n_ineq; ++j) { for (f = 0; f < hull_facet->n_ineq; ++f) if (isl_seq_eq(facet->ineq[j], @@ -707,7 +643,7 @@ static struct isl_basic_set *extend(struct isl_basic_set *hull, if (k < 0) goto error; isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim); - if (!wrap_facet(set, hull->ineq[k], facet->ineq[j])) + if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j])) goto error; } isl_basic_set_free(hull_facet); @@ -727,8 +663,7 @@ error: * We simply collect the lower and upper bounds of each basic set * and the biggest of those. */ -static struct isl_basic_set *convex_hull_1d(struct isl_ctx *ctx, - struct isl_set *set) +static struct isl_basic_set *convex_hull_1d(struct isl_set *set) { struct isl_mat *c = NULL; isl_int *lower = NULL; @@ -745,13 +680,13 @@ static struct isl_basic_set *convex_hull_1d(struct isl_ctx *ctx, set = isl_set_remove_empty_parts(set); if (!set) goto error; - isl_assert(ctx, set->n > 0, goto error); - c = isl_mat_alloc(ctx, 2, 2); + isl_assert(set->ctx, set->n > 0, goto error); + c = isl_mat_alloc(set->ctx, 2, 2); if (!c) goto error; if (set->p[0]->n_eq > 0) { - isl_assert(ctx, set->p[0]->n_eq == 1, goto error); + isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error); lower = c->row[0]; upper = c->row[1]; if (isl_int_is_pos(set->p[0]->eq[0][1])) { @@ -826,7 +761,7 @@ static struct isl_basic_set *convex_hull_1d(struct isl_ctx *ctx, isl_int_clear(a); isl_int_clear(b); - hull = isl_basic_set_alloc(ctx, 0, 1, 0, 0, 2); + hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2); hull = isl_basic_set_set_rational(hull); if (!hull) goto error; @@ -840,11 +775,11 @@ static struct isl_basic_set *convex_hull_1d(struct isl_ctx *ctx, } hull = isl_basic_set_finalize(hull); isl_set_free(set); - isl_mat_free(ctx, c); + isl_mat_free(c); return hull; error: isl_set_free(set); - isl_mat_free(ctx, c); + isl_mat_free(c); return NULL; } @@ -932,7 +867,7 @@ static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1, } hull = isl_basic_set_set_rational(hull); hull = isl_basic_set_remove_dims(hull, dim, 2*(1+dim)); - hull = isl_basic_set_convex_hull(hull); + hull = isl_basic_set_remove_redundancies(hull); isl_basic_set_free(bset1); isl_basic_set_free(bset2); return hull; @@ -943,21 +878,33 @@ error: return NULL; } -static int isl_basic_set_is_bounded(struct isl_basic_set *bset) +/* Is the set bounded for each value of the parameters? + */ +int isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset) { struct isl_tab *tab; int bounded; - tab = isl_tab_from_recession_cone((struct isl_basic_map *)bset); - bounded = isl_tab_cone_is_bounded(bset->ctx, tab); - isl_tab_free(bset->ctx, tab); + if (!bset) + return -1; + if (isl_basic_set_fast_is_empty(bset)) + return 1; + + tab = isl_tab_from_recession_cone(bset, 1); + bounded = isl_tab_cone_is_bounded(tab); + isl_tab_free(tab); return bounded; } -static int isl_set_is_bounded(struct isl_set *set) +/* Is the set bounded for each value of the parameters? + */ +int isl_set_is_bounded(__isl_keep isl_set *set) { int i; + if (!set) + return -1; + for (i = 0; i < set->n; ++i) { int bounded = isl_basic_set_is_bounded(set->p[i]); if (!bounded || bounded < 0) @@ -1062,16 +1009,16 @@ static struct isl_basic_set *modulo_lineality(struct isl_set *set, goto error; lin_dim = total - lin->n_eq; M = isl_mat_sub_alloc(set->ctx, lin->eq, 0, lin->n_eq, 1, total); - M = isl_mat_left_hermite(set->ctx, M, 0, &U, &Q); + M = isl_mat_left_hermite(M, 0, &U, &Q); if (!M) goto error; - isl_mat_free(set->ctx, M); + isl_mat_free(M); isl_basic_set_free(lin); - Q = isl_mat_drop_rows(set->ctx, Q, Q->n_row - lin_dim, lin_dim); + Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim); - U = isl_mat_lin_to_aff(set->ctx, U); - Q = isl_mat_lin_to_aff(set->ctx, Q); + U = isl_mat_lin_to_aff(U); + Q = isl_mat_lin_to_aff(Q); set = isl_set_preimage(set, U); set = isl_set_remove_dims(set, total - lin_dim, lin_dim); @@ -1165,7 +1112,7 @@ error: * (including the "positivity constraint" 1 >= 0) and \alpha_{ij} * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1. * We first set up an LP with as variables the \alpha{ij}. - * In this formulateion, for each polyhedron i, + * In this formulation, for each polyhedron i, * the first constraint is the positivity constraint, followed by pairs * of variables for the equalities, followed by variables for the inequalities. * We then simply pick a feasible solution and compute s using (*). @@ -1176,7 +1123,6 @@ error: static struct isl_vec *valid_direction( struct isl_basic_set *bset1, struct isl_basic_set *bset2) { - struct isl_ctx *ctx = NULL; struct isl_basic_set *lp; struct isl_tab *tab; struct isl_vec *sample = NULL; @@ -1187,17 +1133,16 @@ static struct isl_vec *valid_direction( if (!bset1 || !bset2) goto error; - ctx = bset1->ctx; lp = valid_direction_lp(isl_basic_set_copy(bset1), isl_basic_set_copy(bset2)); tab = isl_tab_from_basic_set(lp); - sample = isl_tab_get_sample_value(ctx, tab); - isl_tab_free(ctx, tab); + sample = isl_tab_get_sample_value(tab); + isl_tab_free(tab); isl_basic_set_free(lp); if (!sample) goto error; d = isl_basic_set_total_dim(bset1); - dir = isl_vec_alloc(ctx, 1 + d); + dir = isl_vec_alloc(bset1->ctx, 1 + d); if (!dir) goto error; isl_seq_clr(dir->block.data + 1, dir->size - 1); @@ -1218,9 +1163,9 @@ static struct isl_vec *valid_direction( bset1->ctx->one, dir->block.data, sample->block.data[n++], bset1->ineq[i], 1 + d); isl_vec_free(sample); + isl_seq_normalize(bset1->ctx, dir->el, dir->size); isl_basic_set_free(bset1); isl_basic_set_free(bset2); - isl_seq_normalize(dir->block.data + 1, dir->size - 1); return dir; error: isl_vec_free(sample); @@ -1241,12 +1186,10 @@ error: static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset, struct isl_mat *T) { - struct isl_ctx *ctx = NULL; int k; if (!bset) goto error; - ctx = bset->ctx; bset = isl_basic_set_extend_constraints(bset, 0, 1); k = isl_basic_set_alloc_inequality(bset); if (k < 0) @@ -1256,7 +1199,7 @@ static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset, bset = isl_basic_set_preimage(bset, T); return bset; error: - isl_mat_free(ctx, T); + isl_mat_free(T); isl_basic_set_free(bset); return NULL; } @@ -1341,14 +1284,14 @@ static struct isl_basic_set *convex_hull_pair_pointed( if (!T) goto error; isl_seq_cpy(T->row[0], dir->block.data, dir->size); - T = isl_mat_unimodular_complete(ctx, T, 1); - T2 = isl_mat_right_inverse(ctx, isl_mat_copy(ctx, T)); + T = isl_mat_unimodular_complete(T, 1); + T2 = isl_mat_right_inverse(isl_mat_copy(T)); - bset1 = homogeneous_map(bset1, isl_mat_copy(ctx, T2)); + bset1 = homogeneous_map(bset1, isl_mat_copy(T2)); bset2 = homogeneous_map(bset2, T2); set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0); - set = isl_set_add(set, bset1); - set = isl_set_add(set, bset2); + set = isl_set_add_basic_set(set, bset1); + set = isl_set_add_basic_set(set, bset2); hull = uset_convex_hull(set); hull = isl_basic_set_preimage(hull, T); @@ -1362,18 +1305,47 @@ error: return NULL; } +static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set); +static struct isl_basic_set *modulo_affine_hull( + struct isl_set *set, struct isl_basic_set *affine_hull); + /* Compute the convex hull of a pair of basic sets without any parameters or * integer divisions. * + * This function is called from uset_convex_hull_unbounded, which + * means that the complete convex hull is unbounded. Some pairs + * of basic sets may still be bounded, though. + * They may even lie inside a lower dimensional space, in which + * case they need to be handled inside their affine hull since + * the main algorithm assumes that the result is full-dimensional. + * * If the convex hull of the two basic sets would have a non-trivial * lineality space, we first project out this lineality space. */ static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1, struct isl_basic_set *bset2) { - struct isl_basic_set *lin; + isl_basic_set *lin, *aff; + int bounded1, bounded2; + + aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1), + isl_basic_set_copy(bset2))); + if (!aff) + goto error; + if (aff->n_eq != 0) + return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff); + isl_basic_set_free(aff); + + bounded1 = isl_basic_set_is_bounded(bset1); + bounded2 = isl_basic_set_is_bounded(bset2); - if (isl_basic_set_is_bounded(bset1) || isl_basic_set_is_bounded(bset2)) + if (bounded1 < 0 || bounded2 < 0) + goto error; + + if (bounded1 && bounded2) + uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2)); + + if (bounded1 || bounded2) return convex_hull_pair_pointed(bset1, bset2); lin = induced_lineality_space(isl_basic_set_copy(bset1), @@ -1388,8 +1360,8 @@ static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1, if (lin->n_eq < isl_basic_set_total_dim(lin)) { struct isl_set *set; set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0); - set = isl_set_add(set, bset1); - set = isl_set_add(set, bset2); + set = isl_set_add_basic_set(set, bset1); + set = isl_set_add_basic_set(set, bset2); return modulo_lineality(set, lin); } isl_basic_set_free(lin); @@ -1466,7 +1438,7 @@ static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set) lin = isl_set_alloc_dim(isl_set_get_dim(set), set->n, 0); for (i = 0; i < set->n; ++i) - lin = isl_set_add(lin, + lin = isl_set_add_basic_set(lin, isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i]))); isl_set_free(set); return isl_set_affine_hull(lin); @@ -1508,7 +1480,7 @@ static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set) break; } if (t->n_eq < isl_basic_set_total_dim(t)) { - set = isl_set_add(set, convex_hull); + set = isl_set_add_basic_set(set, convex_hull); return modulo_lineality(set, t); } isl_basic_set_free(t); @@ -1522,13 +1494,8 @@ error: } /* Compute an initial hull for wrapping containing a single initial - * facet by first computing bounds on the set and then using these - * bounds to construct an initial facet. - * This function is a remnant of an older implementation where the - * bounds were also used to check whether the set was bounded. - * Since this function will now only be called when we know the - * set to be bounded, the initial facet should probably be constructed - * by simply using the coordinate directions instead. + * facet. + * This function assumes that the given set is bounded. */ static struct isl_basic_set *initial_hull(struct isl_basic_set *hull, struct isl_set *set) @@ -1539,11 +1506,7 @@ static struct isl_basic_set *initial_hull(struct isl_basic_set *hull, if (!hull) goto error; - bounds = independent_bounds(set->ctx, set); - if (!bounds) - goto error; - isl_assert(set->ctx, bounds->n_row == isl_set_n_dim(set), goto error); - bounds = initial_facet_constraint(set->ctx, set, bounds); + bounds = initial_facet_constraint(set); if (!bounds) goto error; k = isl_basic_set_alloc_inequality(hull); @@ -1552,12 +1515,12 @@ static struct isl_basic_set *initial_hull(struct isl_basic_set *hull, dim = isl_set_n_dim(set); isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error); isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col); - isl_mat_free(set->ctx, bounds); + isl_mat_free(bounds); return hull; error: isl_basic_set_free(hull); - isl_mat_free(set->ctx, bounds); + isl_mat_free(bounds); return NULL; } @@ -1582,7 +1545,7 @@ static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table, struct max_constraint *c; uint32_t c_hash; - c_hash = isl_seq_hash(con + 1, len, isl_hash_init()); + c_hash = isl_seq_get_hash(con + 1, len); entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal, con + 1, 0); if (!entry) @@ -1600,7 +1563,7 @@ static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table, c->ineq = ineq; return; } - c->c = isl_mat_cow(ctx, c->c); + c->c = isl_mat_cow(c->c); isl_int_set(c->c->row[0][0], con[0]); c->ineq = ineq; } @@ -1615,7 +1578,7 @@ static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table, struct max_constraint *c; uint32_t c_hash; - c_hash = isl_seq_hash(con + 1, len, isl_hash_init()); + c_hash = isl_seq_get_hash(con + 1, len); entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal, con + 1, 0); if (!entry) @@ -1682,8 +1645,7 @@ static struct isl_basic_set *common_constraints(struct isl_basic_set *hull, for (i = 0; i < min_constraints; ++i) { struct isl_hash_table_entry *entry; uint32_t c_hash; - c_hash = isl_seq_hash(constraints[i].c->row[0] + 1, total, - isl_hash_init()); + c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total); entry = isl_hash_table_find(hull->ctx, table, c_hash, max_constraint_equal, constraints[i].c->row[0] + 1, 1); if (!entry) @@ -1740,7 +1702,7 @@ static struct isl_basic_set *common_constraints(struct isl_basic_set *hull, isl_hash_table_clear(table); for (i = 0; i < min_constraints; ++i) - isl_mat_free(hull->ctx, constraints[i].c); + isl_mat_free(constraints[i].c); free(constraints); free(table); return hull; @@ -1749,7 +1711,7 @@ error: free(table); if (constraints) for (i = 0; i < min_constraints; ++i) - isl_mat_free(hull->ctx, constraints[i].c); + isl_mat_free(constraints[i].c); free(constraints); return hull; } @@ -1800,7 +1762,6 @@ static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set) */ static struct isl_basic_set *uset_convex_hull(struct isl_set *set) { - int i; struct isl_basic_set *convex_hull = NULL; struct isl_basic_set *lin; @@ -1820,7 +1781,7 @@ static struct isl_basic_set *uset_convex_hull(struct isl_set *set) return convex_hull; } if (isl_set_n_dim(set) == 1) - return convex_hull_1d(set->ctx, set); + return convex_hull_1d(set); if (isl_set_is_bounded(set)) return uset_convex_hull_wrap(set); @@ -1849,9 +1810,11 @@ error: */ static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set) { - int i; struct isl_basic_set *convex_hull = NULL; + if (!set) + goto error; + if (isl_set_n_dim(set) == 0) { convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim)); isl_set_free(set); @@ -1860,10 +1823,7 @@ static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set) } set = isl_set_set_rational(set); - - if (!set) - goto error; - set = isl_set_normalize(set); + set = isl_set_coalesce(set); if (!set) goto error; if (set->n == 1) { @@ -1872,7 +1832,7 @@ static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set) return convex_hull; } if (isl_set_n_dim(set) == 1) - return convex_hull_1d(set->ctx, set); + return convex_hull_1d(set); return uset_convex_hull_wrap(set); error: @@ -1885,7 +1845,7 @@ error: * convex hull of the transformed set and then add the equalities back * (after performing the inverse transformation. */ -static struct isl_basic_set *modulo_affine_hull(struct isl_ctx *ctx, +static struct isl_basic_set *modulo_affine_hull( struct isl_set *set, struct isl_basic_set *affine_hull) { struct isl_mat *T; @@ -1935,6 +1895,8 @@ struct isl_basic_map *isl_map_convex_hull(struct isl_map *map) map = isl_map_detect_equalities(map); map = isl_map_align_divs(map); + if (!map) + goto error; model = isl_basic_map_copy(map->p[0]); set = isl_map_underlying_set(map); if (!set) @@ -1944,13 +1906,15 @@ struct isl_basic_map *isl_map_convex_hull(struct isl_map *map) if (!affine_hull) goto error; if (affine_hull->n_eq != 0) - bset = modulo_affine_hull(ctx, set, affine_hull); + bset = modulo_affine_hull(set, affine_hull); else { isl_basic_set_free(affine_hull); bset = uset_convex_hull(set); } convex_hull = isl_basic_map_overlying_set(bset, model); + if (!convex_hull) + return NULL; ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES); @@ -1986,7 +1950,7 @@ struct sh_data { struct isl_ctx *ctx; unsigned n; struct isl_hash_table *hull_table; - struct sh_data_entry p[0]; + struct sh_data_entry p[1]; }; static void sh_data_free(struct sh_data *data) @@ -1998,7 +1962,7 @@ static void sh_data_free(struct sh_data *data) isl_hash_table_free(data->ctx, data->hull_table); for (i = 0; i < data->n; ++i) { isl_hash_table_free(data->ctx, data->p[i].table); - isl_tab_free(data->ctx, data->p[i].tab); + isl_tab_free(data->p[i].tab); } free(data); } @@ -2026,7 +1990,7 @@ static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table, v.len = len; v.p = ineq; - c_hash = isl_seq_hash(ineq + 1, len, isl_hash_init()); + c_hash = isl_seq_get_hash(ineq + 1, len); entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1); if (!entry) return - 1; @@ -2064,7 +2028,8 @@ static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq) int i; data = isl_calloc(set->ctx, struct sh_data, - sizeof(struct sh_data) + set->n * sizeof(struct sh_data_entry)); + sizeof(struct sh_data) + + (set->n - 1) * sizeof(struct sh_data_entry)); if (!data) return NULL; data->ctx = set->ctx; @@ -2108,14 +2073,14 @@ static int is_bound(struct sh_data *data, struct isl_set *set, int j, isl_int_init(opt); - res = isl_tab_min(data->ctx, data->p[j].tab, ineq, data->ctx->one, + res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one, &opt, NULL, 0); if (res == isl_lp_ok && isl_int_is_neg(opt)) isl_int_sub(ineq[0], ineq[0], opt); isl_int_clear(opt); - return res == isl_lp_ok ? 1 : + return (res == isl_lp_ok || res == isl_lp_empty) ? 1 : res == isl_lp_unbounded ? 0 : -1; } @@ -2149,7 +2114,7 @@ static struct isl_basic_set *add_bound(struct isl_basic_set *hull, v.len = isl_basic_set_total_dim(hull); v.p = ineq; - c_hash = isl_seq_hash(ineq + 1, v.len, isl_hash_init()); + c_hash = isl_seq_get_hash(ineq + 1, v.len); entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash, has_ineq, &v, 0); @@ -2236,11 +2201,11 @@ static struct isl_basic_set *add_bounds(struct isl_basic_set *bset, for (j = 0; j < set->p[i]->n_eq; ++j) { for (k = 0; k < 2; ++k) { isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim); - add_bound(bset, data, set, i, set->p[i]->eq[j]); + bset = add_bound(bset, data, set, i, set->p[i]->eq[j]); } } for (j = 0; j < set->p[i]->n_ineq; ++j) - add_bound(bset, data, set, i, set->p[i]->ineq[j]); + bset = add_bound(bset, data, set, i, set->p[i]->ineq[j]); return bset; } @@ -2252,7 +2217,7 @@ static struct isl_basic_set *uset_simple_hull(struct isl_set *set) struct sh_data *data = NULL; struct isl_basic_set *hull = NULL; unsigned n_ineq; - int i, j; + int i; if (!set) return NULL; @@ -2322,7 +2287,7 @@ struct isl_basic_map *isl_map_simple_hull(struct isl_map *map) hull = isl_basic_map_overlying_set(bset, model); hull = isl_basic_map_intersect(hull, affine_hull); - hull = isl_basic_map_convex_hull(hull); + hull = isl_basic_map_remove_redundancies(hull); ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);