X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=isl_convex_hull.c;h=40cca1b74ed4fa4c51bc3e6645a6bcc1099cdc04;hb=a41dca96db00c891c58a4535bb8920b5ed70e682;hp=41427f19ea70bc464922273120842257eec6bf6d;hpb=f649bf1c93c9e5ff5bfa996a9e5cf6c55bc8f283;p=platform%2Fupstream%2Fisl.git diff --git a/isl_convex_hull.c b/isl_convex_hull.c index 41427f1..40cca1b 100644 --- a/isl_convex_hull.c +++ b/isl_convex_hull.c @@ -7,12 +7,12 @@ * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ -#include "isl_lp.h" -#include "isl_map.h" +#include +#include #include "isl_map_private.h" -#include "isl_mat.h" -#include "isl_set.h" -#include "isl_seq.h" +#include +#include +#include #include "isl_equalities.h" #include "isl_tab.h" @@ -79,7 +79,7 @@ int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset, (struct isl_basic_map **)bset, c, opt_n, opt_d); } -/* Compute the convex hull of a basic map, by removing the redundant +/* Remove redundant * constraints. If the minimal value along the normal of a constraint * is the same if the constraint is removed, then the constraint is redundant. * @@ -87,7 +87,8 @@ int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset, * corresponding equality and the checked if the dimension was that * of a facet. */ -struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap) +__isl_give isl_basic_map *isl_basic_map_remove_redundancies( + __isl_take isl_basic_map *bmap) { struct isl_tab *tab; @@ -103,7 +104,8 @@ struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap) return bmap; tab = isl_tab_from_basic_map(bmap); - tab = isl_tab_detect_implicit_equalities(tab); + if (isl_tab_detect_implicit_equalities(tab) < 0) + goto error; if (isl_tab_detect_redundant(tab) < 0) goto error; bmap = isl_basic_map_update_from_tab(bmap, tab); @@ -117,10 +119,11 @@ error: return NULL; } -struct isl_basic_set *isl_basic_set_convex_hull(struct isl_basic_set *bset) +__isl_give isl_basic_set *isl_basic_set_remove_redundancies( + __isl_take isl_basic_set *bset) { return (struct isl_basic_set *) - isl_basic_map_convex_hull((struct isl_basic_map *)bset); + isl_basic_map_remove_redundancies((struct isl_basic_map *)bset); } /* Check if the set set is bound in the direction of the affine @@ -171,94 +174,6 @@ error: return -1; } -/* Check if "c" is a direction that is independent of the previously found "n" - * bounds in "dirs". - * If so, add it to the list, with the negative of the lower bound - * in the constant position, i.e., such that c corresponds to a bounding - * hyperplane (but not necessarily a facet). - * Assumes set "set" is bounded. - */ -static int is_independent_bound(struct isl_set *set, isl_int *c, - struct isl_mat *dirs, int n) -{ - int is_bound; - int i = 0; - - isl_seq_cpy(dirs->row[n]+1, c+1, dirs->n_col-1); - if (n != 0) { - int pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1); - if (pos < 0) - return 0; - for (i = 0; i < n; ++i) { - int pos_i; - pos_i = isl_seq_first_non_zero(dirs->row[i]+1, dirs->n_col-1); - if (pos_i < pos) - continue; - if (pos_i > pos) - break; - isl_seq_elim(dirs->row[n]+1, dirs->row[i]+1, pos, - dirs->n_col-1, NULL); - pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1); - if (pos < 0) - return 0; - } - } - - is_bound = uset_is_bound(set, dirs->row[n], dirs->n_col); - if (is_bound != 1) - return is_bound; - isl_seq_normalize(set->ctx, dirs->row[n], dirs->n_col); - if (i < n) { - int k; - isl_int *t = dirs->row[n]; - for (k = n; k > i; --k) - dirs->row[k] = dirs->row[k-1]; - dirs->row[i] = t; - } - return 1; -} - -/* Compute and return a maximal set of linearly independent bounds - * on the set "set", based on the constraints of the basic sets - * in "set". - */ -static struct isl_mat *independent_bounds(struct isl_set *set) -{ - int i, j, n; - struct isl_mat *dirs = NULL; - unsigned dim = isl_set_n_dim(set); - - dirs = isl_mat_alloc(set->ctx, dim, 1+dim); - if (!dirs) - goto error; - - n = 0; - for (i = 0; n < dim && i < set->n; ++i) { - int f; - struct isl_basic_set *bset = set->p[i]; - - for (j = 0; n < dim && j < bset->n_eq; ++j) { - f = is_independent_bound(set, bset->eq[j], dirs, n); - if (f < 0) - goto error; - if (f) - ++n; - } - for (j = 0; n < dim && j < bset->n_ineq; ++j) { - f = is_independent_bound(set, bset->ineq[j], dirs, n); - if (f < 0) - goto error; - if (f) - ++n; - } - } - dirs->n_row = n; - return dirs; -error: - isl_mat_free(dirs); - return NULL; -} - struct isl_basic_set *isl_basic_set_set_rational(struct isl_basic_set *bset) { if (!bset) @@ -300,6 +215,9 @@ static struct isl_basic_set *isl_basic_set_add_equality( int i; unsigned dim; + if (!bset) + return NULL; + if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY)) return bset; @@ -465,6 +383,7 @@ isl_int *isl_set_wrap_facet(__isl_keep isl_set *set, isl_int *facet, isl_int *ridge) { int i; + isl_ctx *ctx; struct isl_mat *T = NULL; struct isl_basic_set *lp = NULL; struct isl_vec *obj; @@ -472,10 +391,14 @@ isl_int *isl_set_wrap_facet(__isl_keep isl_set *set, isl_int num, den; unsigned dim; + if (!set) + return NULL; + ctx = set->ctx; set = isl_set_copy(set); + set = isl_set_set_rational(set); dim = 1 + isl_set_n_dim(set); - T = isl_mat_alloc(set->ctx, 3, dim); + T = isl_mat_alloc(ctx, 3, dim); if (!T) goto error; isl_int_set_si(T->row[0][0], 1); @@ -488,7 +411,7 @@ isl_int *isl_set_wrap_facet(__isl_keep isl_set *set, if (!set) goto error; lp = wrap_constraints(set); - obj = isl_vec_alloc(set->ctx, 1 + dim*set->n); + obj = isl_vec_alloc(ctx, 1 + dim*set->n); if (!obj) goto error; isl_int_set_si(obj->block.data[0], 0); @@ -500,17 +423,20 @@ isl_int *isl_set_wrap_facet(__isl_keep isl_set *set, isl_int_init(num); isl_int_init(den); res = isl_basic_set_solve_lp(lp, 0, - obj->block.data, set->ctx->one, &num, &den, NULL); + obj->block.data, ctx->one, &num, &den, NULL); if (res == isl_lp_ok) { isl_int_neg(num, num); isl_seq_combine(facet, num, facet, den, ridge, dim); + isl_seq_normalize(ctx, facet, dim); } isl_int_clear(num); isl_int_clear(den); isl_vec_free(obj); isl_basic_set_free(lp); isl_set_free(set); - isl_assert(set->ctx, res == isl_lp_ok || res == isl_lp_unbounded, + if (res == isl_lp_error) + return NULL; + isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded, return NULL); return facet; error: @@ -520,80 +446,43 @@ error: return NULL; } -/* Drop rows in "rows" that are redundant with respect to earlier rows, - * assuming that "rows" is of full column rank. - * - * We compute the column echelon form. The non-redundant rows are - * those that are the first to contain a non-zero entry in a column. - * All the other rows can be removed. +/* Compute the constraint of a facet of "set". + * + * We first compute the intersection with a bounding constraint + * that is orthogonal to one of the coordinate axes. + * If the affine hull of this intersection has only one equality, + * we have found a facet. + * Otherwise, we wrap the current bounding constraint around + * one of the equalities of the face (one that is not equal to + * the current bounding constraint). + * This process continues until we have found a facet. + * The dimension of the intersection increases by at least + * one on each iteration, so termination is guaranteed. */ -static __isl_give isl_mat *drop_redundant_rows(__isl_take isl_mat *rows) -{ - struct isl_mat *H = NULL; - int col; - int row; - int last_row; - - if (!rows) - return NULL; - - isl_assert(rows->ctx, rows->n_row >= rows->n_col, goto error); - - if (rows->n_row == rows->n_col) - return rows; - - H = isl_mat_left_hermite(isl_mat_copy(rows), 0, NULL, NULL); - if (!H) - goto error; - - last_row = rows->n_row; - for (col = rows->n_col - 1; col >= 0; --col) { - for (row = col; row < last_row; ++row) - if (!isl_int_is_zero(H->row[row][col])) - break; - isl_assert(rows->ctx, row < last_row, goto error); - if (row + 1 < last_row) { - rows = isl_mat_drop_rows(rows, row + 1, last_row - (row + 1)); - if (rows->n_row == rows->n_col) - break; - } - last_row = row; - } - - isl_mat_free(H); - - return rows; -error: - isl_mat_free(H); - isl_mat_free(rows); - return NULL; -} - -/* Given a set of d linearly independent bounding constraints of the - * convex hull of "set", compute the constraint of a facet of "set". - * - * We first compute the intersection with the first bounding hyperplane - * and remove the component corresponding to this hyperplane from - * other bounds (in homogeneous space). - * We then wrap around one of the remaining bounding constraints - * and continue the process until all bounding constraints have been - * taken into account. - * The resulting linear combination of the bounding constraints will - * correspond to a facet of the convex hull. - */ -static struct isl_mat *initial_facet_constraint(struct isl_set *set, - struct isl_mat *bounds) +static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set) { struct isl_set *slice = NULL; struct isl_basic_set *face = NULL; - struct isl_mat *m, *U, *Q; int i; unsigned dim = isl_set_n_dim(set); + int is_bound; + isl_mat *bounds; isl_assert(set->ctx, set->n > 0, goto error); - isl_assert(set->ctx, bounds->n_row == dim, goto error); + bounds = isl_mat_alloc(set->ctx, 1, 1 + dim); + if (!bounds) + return NULL; + + isl_seq_clr(bounds->row[0], dim); + isl_int_set_si(bounds->row[0][1 + dim - 1], 1); + is_bound = uset_is_bound(set, bounds->row[0], 1 + dim); + if (is_bound < 0) + goto error; + isl_assert(set->ctx, is_bound, goto error); + isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim); + bounds->n_row = 1; - while (bounds->n_row > 1) { + for (;;) { slice = isl_set_copy(set); slice = isl_set_add_basic_set_equality(slice, bounds->row[0]); face = isl_set_affine_hull(slice); @@ -603,29 +492,18 @@ static struct isl_mat *initial_facet_constraint(struct isl_set *set, isl_basic_set_free(face); break; } - m = isl_mat_alloc(set->ctx, 1 + face->n_eq, 1 + dim); - if (!m) - goto error; - isl_int_set_si(m->row[0][0], 1); - isl_seq_clr(m->row[0]+1, dim); for (i = 0; i < face->n_eq; ++i) - isl_seq_cpy(m->row[1 + i], face->eq[i], 1 + dim); - U = isl_mat_right_inverse(m); - Q = isl_mat_right_inverse(isl_mat_copy(U)); - U = isl_mat_drop_cols(U, 1 + face->n_eq, dim - face->n_eq); - Q = isl_mat_drop_rows(Q, 1 + face->n_eq, dim - face->n_eq); - U = isl_mat_drop_cols(U, 0, 1); - Q = isl_mat_drop_rows(Q, 0, 1); - bounds = isl_mat_product(bounds, U); - bounds = drop_redundant_rows(bounds); - bounds = isl_mat_product(bounds, Q); - isl_assert(set->ctx, bounds->n_row > 1, goto error); - if (!isl_set_wrap_facet(set, bounds->row[0], - bounds->row[bounds->n_row-1])) + if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) && + !isl_seq_is_neg(bounds->row[0], + face->eq[i], 1 + dim)) + break; + isl_assert(set->ctx, i < face->n_eq, goto error); + if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i])) goto error; + isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col); isl_basic_set_free(face); - bounds->n_row--; } + return bounds; error: isl_basic_set_free(face); @@ -695,7 +573,8 @@ static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c) set = isl_set_preimage(set, U); facet = uset_convex_hull_wrap_bounded(set); facet = isl_basic_set_preimage(facet, Q); - isl_assert(ctx, facet->n_eq == 0, goto error); + if (facet) + isl_assert(ctx, facet->n_eq == 0, goto error); return facet; error: isl_basic_set_free(facet); @@ -749,11 +628,13 @@ static struct isl_basic_set *extend(struct isl_basic_set *hull, hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]); hull_facet = isl_basic_set_gauss(hull_facet, NULL); hull_facet = isl_basic_set_normalize_constraints(hull_facet); - if (!facet) + if (!facet || !hull_facet) goto error; hull = isl_basic_set_cow(hull); hull = isl_basic_set_extend_dim(hull, isl_dim_copy(hull->dim), 0, 0, facet->n_ineq); + if (!hull) + goto error; for (j = 0; j < facet->n_ineq; ++j) { for (f = 0; f < hull_facet->n_ineq; ++f) if (isl_seq_eq(facet->ineq[j], @@ -909,7 +790,7 @@ error: static struct isl_set *set_project_out(struct isl_ctx *ctx, struct isl_set *set, unsigned n) { - return isl_set_remove_dims(set, isl_set_n_dim(set) - n, n); + return isl_set_remove_dims(set, isl_dim_set, isl_set_n_dim(set) - n, n); } static struct isl_basic_set *convex_hull_0d(struct isl_set *set) @@ -988,8 +869,8 @@ static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1, isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1); } hull = isl_basic_set_set_rational(hull); - hull = isl_basic_set_remove_dims(hull, dim, 2*(1+dim)); - hull = isl_basic_set_convex_hull(hull); + hull = isl_basic_set_remove_dims(hull, isl_dim_set, dim, 2*(1+dim)); + hull = isl_basic_set_remove_redundancies(hull); isl_basic_set_free(bset1); isl_basic_set_free(bset2); return hull; @@ -1000,21 +881,52 @@ error: return NULL; } -static int isl_basic_set_is_bounded(struct isl_basic_set *bset) +/* Is the set bounded for each value of the parameters? + */ +int isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset) { struct isl_tab *tab; int bounded; - tab = isl_tab_from_recession_cone(bset); + if (!bset) + return -1; + if (isl_basic_set_fast_is_empty(bset)) + return 1; + + tab = isl_tab_from_recession_cone(bset, 1); bounded = isl_tab_cone_is_bounded(tab); isl_tab_free(tab); return bounded; } -static int isl_set_is_bounded(struct isl_set *set) +/* Is the image bounded for each value of the parameters and + * the domain variables? + */ +int isl_basic_map_image_is_bounded(__isl_keep isl_basic_map *bmap) +{ + unsigned nparam = isl_basic_map_dim(bmap, isl_dim_param); + unsigned n_in = isl_basic_map_dim(bmap, isl_dim_in); + int bounded; + + bmap = isl_basic_map_copy(bmap); + bmap = isl_basic_map_cow(bmap); + bmap = isl_basic_map_move_dims(bmap, isl_dim_param, nparam, + isl_dim_in, 0, n_in); + bounded = isl_basic_set_is_bounded((isl_basic_set *)bmap); + isl_basic_map_free(bmap); + + return bounded; +} + +/* Is the set bounded for each value of the parameters? + */ +int isl_set_is_bounded(__isl_keep isl_set *set) { int i; + if (!set) + return -1; + for (i = 0; i < set->n; ++i) { int bounded = isl_basic_set_is_bounded(set->p[i]); if (!bounded || bounded < 0) @@ -1131,7 +1043,7 @@ static struct isl_basic_set *modulo_lineality(struct isl_set *set, Q = isl_mat_lin_to_aff(Q); set = isl_set_preimage(set, U); - set = isl_set_remove_dims(set, total - lin_dim, lin_dim); + set = isl_set_remove_dims(set, isl_dim_set, total - lin_dim, lin_dim); hull = uset_convex_hull(set); hull = isl_basic_set_preimage(hull, Q); @@ -1182,23 +1094,25 @@ static struct isl_basic_set *valid_direction_lp( if (k < 0) goto error; n = 0; - isl_int_set_si(lp->eq[k][n++], 0); + isl_int_set_si(lp->eq[k][n], 0); n++; /* positivity constraint 1 >= 0 */ - isl_int_set_si(lp->eq[k][n++], i == 0); + isl_int_set_si(lp->eq[k][n], i == 0); n++; for (j = 0; j < bset1->n_eq; ++j) { - isl_int_set(lp->eq[k][n++], bset1->eq[j][i]); - isl_int_neg(lp->eq[k][n++], bset1->eq[j][i]); + isl_int_set(lp->eq[k][n], bset1->eq[j][i]); n++; + isl_int_neg(lp->eq[k][n], bset1->eq[j][i]); n++; + } + for (j = 0; j < bset1->n_ineq; ++j) { + isl_int_set(lp->eq[k][n], bset1->ineq[j][i]); n++; } - for (j = 0; j < bset1->n_ineq; ++j) - isl_int_set(lp->eq[k][n++], bset1->ineq[j][i]); /* positivity constraint 1 >= 0 */ - isl_int_set_si(lp->eq[k][n++], -(i == 0)); + isl_int_set_si(lp->eq[k][n], -(i == 0)); n++; for (j = 0; j < bset2->n_eq; ++j) { - isl_int_neg(lp->eq[k][n++], bset2->eq[j][i]); - isl_int_set(lp->eq[k][n++], bset2->eq[j][i]); + isl_int_neg(lp->eq[k][n], bset2->eq[j][i]); n++; + isl_int_set(lp->eq[k][n], bset2->eq[j][i]); n++; + } + for (j = 0; j < bset2->n_ineq; ++j) { + isl_int_neg(lp->eq[k][n], bset2->ineq[j][i]); n++; } - for (j = 0; j < bset2->n_ineq; ++j) - isl_int_neg(lp->eq[k][n++], bset2->ineq[j][i]); } lp = isl_basic_set_gauss(lp, NULL); isl_basic_set_free(bset1); @@ -1222,7 +1136,7 @@ error: * (including the "positivity constraint" 1 >= 0) and \alpha_{ij} * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1. * We first set up an LP with as variables the \alpha{ij}. - * In this formulateion, for each polyhedron i, + * In this formulation, for each polyhedron i, * the first constraint is the positivity constraint, followed by pairs * of variables for the equalities, followed by variables for the inequalities. * We then simply pick a feasible solution and compute s using (*). @@ -1258,7 +1172,7 @@ static struct isl_vec *valid_direction( isl_seq_clr(dir->block.data + 1, dir->size - 1); n = 1; /* positivity constraint 1 >= 0 */ - isl_int_set(dir->block.data[0], sample->block.data[n++]); + isl_int_set(dir->block.data[0], sample->block.data[n]); n++; for (i = 0; i < bset1->n_eq; ++i) { isl_int_sub(sample->block.data[n], sample->block.data[n], sample->block.data[n+1]); @@ -1273,7 +1187,7 @@ static struct isl_vec *valid_direction( bset1->ctx->one, dir->block.data, sample->block.data[n++], bset1->ineq[i], 1 + d); isl_vec_free(sample); - isl_seq_normalize(bset1->ctx, dir->block.data + 1, dir->size - 1); + isl_seq_normalize(bset1->ctx, dir->el, dir->size); isl_basic_set_free(bset1); isl_basic_set_free(bset2); return dir; @@ -1415,18 +1329,47 @@ error: return NULL; } +static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set); +static struct isl_basic_set *modulo_affine_hull( + struct isl_set *set, struct isl_basic_set *affine_hull); + /* Compute the convex hull of a pair of basic sets without any parameters or * integer divisions. * + * This function is called from uset_convex_hull_unbounded, which + * means that the complete convex hull is unbounded. Some pairs + * of basic sets may still be bounded, though. + * They may even lie inside a lower dimensional space, in which + * case they need to be handled inside their affine hull since + * the main algorithm assumes that the result is full-dimensional. + * * If the convex hull of the two basic sets would have a non-trivial * lineality space, we first project out this lineality space. */ static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1, struct isl_basic_set *bset2) { - struct isl_basic_set *lin; + isl_basic_set *lin, *aff; + int bounded1, bounded2; + + aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1), + isl_basic_set_copy(bset2))); + if (!aff) + goto error; + if (aff->n_eq != 0) + return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff); + isl_basic_set_free(aff); + + bounded1 = isl_basic_set_is_bounded(bset1); + bounded2 = isl_basic_set_is_bounded(bset2); - if (isl_basic_set_is_bounded(bset1) || isl_basic_set_is_bounded(bset2)) + if (bounded1 < 0 || bounded2 < 0) + goto error; + + if (bounded1 && bounded2) + uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2)); + + if (bounded1 || bounded2) return convex_hull_pair_pointed(bset1, bset2); lin = induced_lineality_space(isl_basic_set_copy(bset1), @@ -1575,13 +1518,8 @@ error: } /* Compute an initial hull for wrapping containing a single initial - * facet by first computing bounds on the set and then using these - * bounds to construct an initial facet. - * This function is a remnant of an older implementation where the - * bounds were also used to check whether the set was bounded. - * Since this function will now only be called when we know the - * set to be bounded, the initial facet should probably be constructed - * by simply using the coordinate directions instead. + * facet. + * This function assumes that the given set is bounded. */ static struct isl_basic_set *initial_hull(struct isl_basic_set *hull, struct isl_set *set) @@ -1592,11 +1530,7 @@ static struct isl_basic_set *initial_hull(struct isl_basic_set *hull, if (!hull) goto error; - bounds = independent_bounds(set); - if (!bounds) - goto error; - isl_assert(set->ctx, bounds->n_row == isl_set_n_dim(set), goto error); - bounds = initial_facet_constraint(set, bounds); + bounds = initial_facet_constraint(set); if (!bounds) goto error; k = isl_basic_set_alloc_inequality(hull); @@ -1902,6 +1836,9 @@ static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set) { struct isl_basic_set *convex_hull = NULL; + if (!set) + goto error; + if (isl_set_n_dim(set) == 0) { convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim)); isl_set_free(set); @@ -1910,9 +1847,6 @@ static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set) } set = isl_set_set_rational(set); - - if (!set) - goto error; set = isl_set_coalesce(set); if (!set) goto error; @@ -1935,7 +1869,7 @@ error: * convex hull of the transformed set and then add the equalities back * (after performing the inverse transformation. */ -static struct isl_basic_set *modulo_affine_hull(struct isl_ctx *ctx, +static struct isl_basic_set *modulo_affine_hull( struct isl_set *set, struct isl_basic_set *affine_hull) { struct isl_mat *T; @@ -1985,6 +1919,8 @@ struct isl_basic_map *isl_map_convex_hull(struct isl_map *map) map = isl_map_detect_equalities(map); map = isl_map_align_divs(map); + if (!map) + goto error; model = isl_basic_map_copy(map->p[0]); set = isl_map_underlying_set(map); if (!set) @@ -1994,13 +1930,15 @@ struct isl_basic_map *isl_map_convex_hull(struct isl_map *map) if (!affine_hull) goto error; if (affine_hull->n_eq != 0) - bset = modulo_affine_hull(ctx, set, affine_hull); + bset = modulo_affine_hull(set, affine_hull); else { isl_basic_set_free(affine_hull); bset = uset_convex_hull(set); } convex_hull = isl_basic_map_overlying_set(bset, model); + if (!convex_hull) + return NULL; ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES); @@ -2018,6 +1956,19 @@ struct isl_basic_set *isl_set_convex_hull(struct isl_set *set) isl_map_convex_hull((struct isl_map *)set); } +__isl_give isl_basic_map *isl_map_polyhedral_hull(__isl_take isl_map *map) +{ + isl_basic_map *hull; + + hull = isl_map_convex_hull(map); + return isl_basic_map_remove_divs(hull); +} + +__isl_give isl_basic_set *isl_set_polyhedral_hull(__isl_take isl_set *set) +{ + return (isl_basic_set *)isl_map_polyhedral_hull((isl_map *)set); +} + struct sh_data_entry { struct isl_hash_table *table; struct isl_tab *tab; @@ -2166,7 +2117,7 @@ static int is_bound(struct sh_data *data, struct isl_set *set, int j, isl_int_clear(opt); - return res == isl_lp_ok ? 1 : + return (res == isl_lp_ok || res == isl_lp_empty) ? 1 : res == isl_lp_unbounded ? 0 : -1; } @@ -2287,11 +2238,11 @@ static struct isl_basic_set *add_bounds(struct isl_basic_set *bset, for (j = 0; j < set->p[i]->n_eq; ++j) { for (k = 0; k < 2; ++k) { isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim); - add_bound(bset, data, set, i, set->p[i]->eq[j]); + bset = add_bound(bset, data, set, i, set->p[i]->eq[j]); } } for (j = 0; j < set->p[i]->n_ineq; ++j) - add_bound(bset, data, set, i, set->p[i]->ineq[j]); + bset = add_bound(bset, data, set, i, set->p[i]->ineq[j]); return bset; } @@ -2373,7 +2324,7 @@ struct isl_basic_map *isl_map_simple_hull(struct isl_map *map) hull = isl_basic_map_overlying_set(bset, model); hull = isl_basic_map_intersect(hull, affine_hull); - hull = isl_basic_map_convex_hull(hull); + hull = isl_basic_map_remove_redundancies(hull); ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);