X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=isl_convex_hull.c;h=1980cca99838309fe52034c6a03027f75c515eb0;hb=7b55974acad42b968f06fe5b1b55ad3bebea7e3d;hp=477ec3ced42ced17b49d1e068c0c29cb81b6f699;hpb=95e960e70d9b7099739ce5c550e537b7a6371e9e;p=platform%2Fupstream%2Fisl.git diff --git a/isl_convex_hull.c b/isl_convex_hull.c index 477ec3c..1980cca 100644 --- a/isl_convex_hull.c +++ b/isl_convex_hull.c @@ -7,7 +7,7 @@ #include "isl_equalities.h" #include "isl_tab.h" -static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set); +static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set); static void swap_ineq(struct isl_basic_map *bmap, unsigned i, unsigned j) { @@ -50,7 +50,7 @@ int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap, if (i < total) return 0; - res = isl_solve_lp(*bmap, 0, c+1, (*bmap)->ctx->one, opt_n, opt_d); + res = isl_solve_lp(*bmap, 0, c, (*bmap)->ctx->one, opt_n, opt_d); if (res == isl_lp_unbounded) return 0; if (res == isl_lp_error) @@ -59,10 +59,6 @@ int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap, *bmap = isl_basic_map_set_to_empty(*bmap); return 0; } - if (opt_d) - isl_int_addmul(*opt_n, *opt_d, c[0]); - else - isl_int_add(*opt_n, *opt_n, c[0]); return !isl_int_is_neg(*opt_n); } @@ -97,10 +93,10 @@ struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap) return bmap; tab = isl_tab_from_basic_map(bmap); - tab = isl_tab_detect_equalities(bmap->ctx, tab); - tab = isl_tab_detect_redundant(bmap->ctx, tab); + tab = isl_tab_detect_equalities(tab); + tab = isl_tab_detect_redundant(tab); bmap = isl_basic_map_update_from_tab(bmap, tab); - isl_tab_free(bmap->ctx, tab); + isl_tab_free(tab); ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT); return bmap; @@ -116,8 +112,7 @@ struct isl_basic_set *isl_basic_set_convex_hull(struct isl_basic_set *bset) * constraint c and if so, set the constant term such that the * resulting constraint is a bounding constraint for the set. */ -static int uset_is_bound(struct isl_ctx *ctx, struct isl_set *set, - isl_int *c, unsigned len) +static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len) { int first; int j; @@ -134,7 +129,7 @@ static int uset_is_bound(struct isl_ctx *ctx, struct isl_set *set, continue; res = isl_solve_lp((struct isl_basic_map*)set->p[j], - 0, c+1, ctx->one, &opt, &opt_denom); + 0, c, set->ctx->one, &opt, &opt_denom); if (res == isl_lp_unbounded) break; if (res == isl_lp_error) @@ -147,13 +142,12 @@ static int uset_is_bound(struct isl_ctx *ctx, struct isl_set *set, } if (!isl_int_is_one(opt_denom)) isl_seq_scale(c, c, opt_denom, len); - if (first || isl_int_lt(opt, c[0])) - isl_int_set(c[0], opt); + if (first || isl_int_is_neg(opt)) + isl_int_sub(c[0], c[0], opt); first = 0; } isl_int_clear(opt); isl_int_clear(opt_denom); - isl_int_neg(c[0], c[0]); return j >= set->n; error: isl_int_clear(opt); @@ -161,15 +155,14 @@ error: return -1; } -/* Check if "c" is a direction with both a lower bound and an upper - * bound in "set" that is independent of the previously found "n" +/* Check if "c" is a direction that is independent of the previously found "n" * bounds in "dirs". * If so, add it to the list, with the negative of the lower bound * in the constant position, i.e., such that c corresponds to a bounding * hyperplane (but not necessarily a facet). + * Assumes set "set" is bounded. */ -static int is_independent_bound(struct isl_ctx *ctx, - struct isl_set *set, isl_int *c, +static int is_independent_bound(struct isl_set *set, isl_int *c, struct isl_mat *dirs, int n) { int is_bound; @@ -195,12 +188,7 @@ static int is_independent_bound(struct isl_ctx *ctx, } } - isl_seq_neg(dirs->row[n] + 1, dirs->row[n] + 1, dirs->n_col - 1); - is_bound = uset_is_bound(ctx, set, dirs->row[n], dirs->n_col); - isl_seq_neg(dirs->row[n] + 1, dirs->row[n] + 1, dirs->n_col - 1); - if (is_bound != 1) - return is_bound; - is_bound = uset_is_bound(ctx, set, dirs->row[n], dirs->n_col); + is_bound = uset_is_bound(set, dirs->row[n], dirs->n_col); if (is_bound != 1) return is_bound; if (i < n) { @@ -217,14 +205,13 @@ static int is_independent_bound(struct isl_ctx *ctx, * on the set "set", based on the constraints of the basic sets * in "set". */ -static struct isl_mat *independent_bounds(struct isl_ctx *ctx, - struct isl_set *set) +static struct isl_mat *independent_bounds(struct isl_set *set) { int i, j, n; struct isl_mat *dirs = NULL; unsigned dim = isl_set_n_dim(set); - dirs = isl_mat_alloc(ctx, dim, 1+dim); + dirs = isl_mat_alloc(set->ctx, dim, 1+dim); if (!dirs) goto error; @@ -234,16 +221,14 @@ static struct isl_mat *independent_bounds(struct isl_ctx *ctx, struct isl_basic_set *bset = set->p[i]; for (j = 0; n < dim && j < bset->n_eq; ++j) { - f = is_independent_bound(ctx, set, bset->eq[j], - dirs, n); + f = is_independent_bound(set, bset->eq[j], dirs, n); if (f < 0) goto error; if (f) ++n; } for (j = 0; n < dim && j < bset->n_ineq; ++j) { - f = is_independent_bound(ctx, set, bset->ineq[j], - dirs, n); + f = is_independent_bound(set, bset->ineq[j], dirs, n); if (f < 0) goto error; if (f) @@ -253,12 +238,11 @@ static struct isl_mat *independent_bounds(struct isl_ctx *ctx, dirs->n_row = n; return dirs; error: - isl_mat_free(ctx, dirs); + isl_mat_free(dirs); return NULL; } -static struct isl_basic_set *isl_basic_set_set_rational( - struct isl_basic_set *bset) +struct isl_basic_set *isl_basic_set_set_rational(struct isl_basic_set *bset) { if (!bset) return NULL; @@ -293,7 +277,7 @@ error: return NULL; } -static struct isl_basic_set *isl_basic_set_add_equality(struct isl_ctx *ctx, +static struct isl_basic_set *isl_basic_set_add_equality( struct isl_basic_set *bset, isl_int *c) { int i; @@ -306,6 +290,7 @@ static struct isl_basic_set *isl_basic_set_add_equality(struct isl_ctx *ctx, isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error); isl_assert(ctx, bset->n_div == 0, goto error); dim = isl_basic_set_n_dim(bset); + bset = isl_basic_set_cow(bset); bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0); i = isl_basic_set_alloc_equality(bset); if (i < 0) @@ -317,8 +302,7 @@ error: return NULL; } -static struct isl_set *isl_set_add_equality(struct isl_ctx *ctx, - struct isl_set *set, isl_int *c) +static struct isl_set *isl_set_add_equality(struct isl_set *set, isl_int *c) { int i; @@ -326,7 +310,7 @@ static struct isl_set *isl_set_add_equality(struct isl_ctx *ctx, if (!set) return NULL; for (i = 0; i < set->n; ++i) { - set->p[i] = isl_basic_set_add_equality(ctx, set->p[i], c); + set->p[i] = isl_basic_set_add_equality(set->p[i], c); if (!set->p[i]) goto error; } @@ -344,7 +328,7 @@ error: * [ 1 ] * A_i [ x ] >= 0 * - * then the resulting set is of dimension n*(1+d) and has as contraints + * then the resulting set is of dimension n*(1+d) and has as constraints * * [ a_i ] * A_i [ x_i ] >= 0 @@ -353,8 +337,7 @@ error: * * \sum_i x_{i,1} = 1 */ -static struct isl_basic_set *wrap_constraints(struct isl_ctx *ctx, - struct isl_set *set) +static struct isl_basic_set *wrap_constraints(struct isl_set *set) { struct isl_basic_set *lp; unsigned n_eq; @@ -372,7 +355,7 @@ static struct isl_basic_set *wrap_constraints(struct isl_ctx *ctx, n_eq += set->p[i]->n_eq; n_ineq += set->p[i]->n_ineq; } - lp = isl_basic_set_alloc(ctx, 0, dim * set->n, 0, n_eq, n_ineq); + lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq); if (!lp) return NULL; lp_dim = isl_basic_set_n_dim(lp); @@ -458,12 +441,10 @@ static struct isl_basic_set *wrap_constraints(struct isl_ctx *ctx, * In the original space, we need to take the same combination of the * corresponding constraints "facet" and "ridge". * - * If a = -infty = "-1/0", then we just return the original facet constraint. - * This means that the facet is unbounded, but has a bounded intersection - * with the union of sets. + * Note that a is always finite, since we only apply the wrapping + * technique to a union of polytopes. */ -static isl_int *wrap_facet(struct isl_ctx *ctx, struct isl_set *set, - isl_int *facet, isl_int *ridge) +static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge) { int i; struct isl_mat *T = NULL; @@ -476,46 +457,46 @@ static isl_int *wrap_facet(struct isl_ctx *ctx, struct isl_set *set, set = isl_set_copy(set); dim = 1 + isl_set_n_dim(set); - T = isl_mat_alloc(ctx, 3, dim); + T = isl_mat_alloc(set->ctx, 3, dim); if (!T) goto error; isl_int_set_si(T->row[0][0], 1); isl_seq_clr(T->row[0]+1, dim - 1); isl_seq_cpy(T->row[1], facet, dim); isl_seq_cpy(T->row[2], ridge, dim); - T = isl_mat_right_inverse(ctx, T); + T = isl_mat_right_inverse(T); set = isl_set_preimage(set, T); T = NULL; if (!set) goto error; - lp = wrap_constraints(ctx, set); - obj = isl_vec_alloc(ctx, dim*set->n); + lp = wrap_constraints(set); + obj = isl_vec_alloc(set->ctx, 1 + dim*set->n); if (!obj) goto error; + isl_int_set_si(obj->block.data[0], 0); for (i = 0; i < set->n; ++i) { - isl_seq_clr(obj->block.data+dim*i, 2); - isl_int_set_si(obj->block.data[dim*i+2], 1); - isl_seq_clr(obj->block.data+dim*i+3, dim-3); + isl_seq_clr(obj->block.data + 1 + dim*i, 2); + isl_int_set_si(obj->block.data[1 + dim*i+2], 1); + isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3); } isl_int_init(num); isl_int_init(den); res = isl_solve_lp((struct isl_basic_map *)lp, 0, - obj->block.data, ctx->one, &num, &den); + obj->block.data, set->ctx->one, &num, &den); if (res == isl_lp_ok) { isl_int_neg(num, num); isl_seq_combine(facet, num, facet, den, ridge, dim); } isl_int_clear(num); isl_int_clear(den); - isl_vec_free(ctx, obj); + isl_vec_free(obj); isl_basic_set_free(lp); isl_set_free(set); - isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded, - return NULL); + isl_assert(set->ctx, res == isl_lp_ok, return NULL); return facet; error: isl_basic_set_free(lp); - isl_mat_free(ctx, T); + isl_mat_free(T); isl_set_free(set); return NULL; } @@ -532,8 +513,8 @@ error: * The resulting linear combination of the bounding constraints will * correspond to a facet of the convex hull. */ -static struct isl_mat *initial_facet_constraint(struct isl_ctx *ctx, - struct isl_set *set, struct isl_mat *bounds) +static struct isl_mat *initial_facet_constraint(struct isl_set *set, + struct isl_mat *bounds) { struct isl_set *slice = NULL; struct isl_basic_set *face = NULL; @@ -546,7 +527,7 @@ static struct isl_mat *initial_facet_constraint(struct isl_ctx *ctx, while (bounds->n_row > 1) { slice = isl_set_copy(set); - slice = isl_set_add_equality(ctx, slice, bounds->row[0]); + slice = isl_set_add_equality(slice, bounds->row[0]); face = isl_set_affine_hull(slice); if (!face) goto error; @@ -554,29 +535,27 @@ static struct isl_mat *initial_facet_constraint(struct isl_ctx *ctx, isl_basic_set_free(face); break; } - m = isl_mat_alloc(ctx, 1 + face->n_eq, 1 + dim); + m = isl_mat_alloc(set->ctx, 1 + face->n_eq, 1 + dim); if (!m) goto error; isl_int_set_si(m->row[0][0], 1); isl_seq_clr(m->row[0]+1, dim); for (i = 0; i < face->n_eq; ++i) isl_seq_cpy(m->row[1 + i], face->eq[i], 1 + dim); - U = isl_mat_right_inverse(ctx, m); - Q = isl_mat_right_inverse(ctx, isl_mat_copy(ctx, U)); - U = isl_mat_drop_cols(ctx, U, 1 + face->n_eq, - dim - face->n_eq); - Q = isl_mat_drop_rows(ctx, Q, 1 + face->n_eq, - dim - face->n_eq); - U = isl_mat_drop_cols(ctx, U, 0, 1); - Q = isl_mat_drop_rows(ctx, Q, 0, 1); - bounds = isl_mat_product(ctx, bounds, U); - bounds = isl_mat_product(ctx, bounds, Q); + U = isl_mat_right_inverse(m); + Q = isl_mat_right_inverse(isl_mat_copy(U)); + U = isl_mat_drop_cols(U, 1 + face->n_eq, dim - face->n_eq); + Q = isl_mat_drop_rows(Q, 1 + face->n_eq, dim - face->n_eq); + U = isl_mat_drop_cols(U, 0, 1); + Q = isl_mat_drop_rows(Q, 0, 1); + bounds = isl_mat_product(bounds, U); + bounds = isl_mat_product(bounds, Q); while (isl_seq_first_non_zero(bounds->row[bounds->n_row-1], bounds->n_col) == -1) { bounds->n_row--; isl_assert(ctx, bounds->n_row > 1, goto error); } - if (!wrap_facet(ctx, set, bounds->row[0], + if (!wrap_facet(set, bounds->row[0], bounds->row[bounds->n_row-1])) goto error; isl_basic_set_free(face); @@ -585,7 +564,7 @@ static struct isl_mat *initial_facet_constraint(struct isl_ctx *ctx, return bounds; error: isl_basic_set_free(face); - isl_mat_free(ctx, bounds); + isl_mat_free(bounds); return NULL; } @@ -628,30 +607,33 @@ error: * After computing the facets of the facet in the z' space, * we convert them back to the x space through Q. */ -static struct isl_basic_set *compute_facet(struct isl_ctx *ctx, - struct isl_set *set, isl_int *c) +static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c) { struct isl_mat *m, *U, *Q; - struct isl_basic_set *facet; + struct isl_basic_set *facet = NULL; + struct isl_ctx *ctx; unsigned dim; + ctx = set->ctx; set = isl_set_copy(set); dim = isl_set_n_dim(set); - m = isl_mat_alloc(ctx, 2, 1 + dim); + m = isl_mat_alloc(set->ctx, 2, 1 + dim); if (!m) goto error; isl_int_set_si(m->row[0][0], 1); isl_seq_clr(m->row[0]+1, dim); isl_seq_cpy(m->row[1], c, 1+dim); - U = isl_mat_right_inverse(ctx, m); - Q = isl_mat_right_inverse(ctx, isl_mat_copy(ctx, U)); - U = isl_mat_drop_cols(ctx, U, 1, 1); - Q = isl_mat_drop_rows(ctx, Q, 1, 1); + U = isl_mat_right_inverse(m); + Q = isl_mat_right_inverse(isl_mat_copy(U)); + U = isl_mat_drop_cols(U, 1, 1); + Q = isl_mat_drop_rows(Q, 1, 1); set = isl_set_preimage(set, U); - facet = uset_convex_hull_wrap(set); + facet = uset_convex_hull_wrap_bounded(set); facet = isl_basic_set_preimage(facet, Q); + isl_assert(ctx, facet->n_eq == 0, goto error); return facet; error: + isl_basic_set_free(facet); isl_set_free(set); return NULL; } @@ -661,6 +643,14 @@ error: * the adjacent facets through wrapping, adding those facets that we * hadn't already found before. * + * For each facet we have found so far, we first compute its facets + * in the resulting convex hull. That is, we compute the ridges + * of the resulting convex hull contained in the facet. + * We also compute the corresponding facet in the current approximation + * of the convex hull. There is no need to wrap around the ridges + * in this facet since that would result in a facet that is already + * present in the current approximation. + * * This function can still be significantly optimized by checking which of * the facets of the basic sets are also facets of the convex hull and * using all the facets so far to help in constructing the facets of the @@ -669,63 +659,56 @@ error: * using the technique in section "3.1 Ridge Generation" of * "Extended Convex Hull" by Fukuda et al. */ -static struct isl_basic_set *extend(struct isl_ctx *ctx, struct isl_set *set, - struct isl_mat *initial) +static struct isl_basic_set *extend(struct isl_basic_set *hull, + struct isl_set *set) { int i, j, f; int k; - struct isl_basic_set *hull = NULL; struct isl_basic_set *facet = NULL; - unsigned n_ineq; + struct isl_basic_set *hull_facet = NULL; unsigned total; unsigned dim; - isl_assert(ctx, set->n > 0, goto error); + isl_assert(set->ctx, set->n > 0, goto error); - n_ineq = 1; - for (i = 0; i < set->n; ++i) { - n_ineq += set->p[i]->n_eq; - n_ineq += set->p[i]->n_ineq; - } dim = isl_set_n_dim(set); - isl_assert(ctx, 1 + dim == initial->n_col, goto error); - hull = isl_basic_set_alloc(ctx, 0, dim, 0, 0, n_ineq); - hull = isl_basic_set_set_rational(hull); - if (!hull) - goto error; - k = isl_basic_set_alloc_inequality(hull); - if (k < 0) - goto error; - isl_seq_cpy(hull->ineq[k], initial->row[0], initial->n_col); + for (i = 0; i < hull->n_ineq; ++i) { - facet = compute_facet(ctx, set, hull->ineq[i]); + facet = compute_facet(set, hull->ineq[i]); + facet = isl_basic_set_add_equality(facet, hull->ineq[i]); + facet = isl_basic_set_gauss(facet, NULL); + facet = isl_basic_set_normalize_constraints(facet); + hull_facet = isl_basic_set_copy(hull); + hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]); + hull_facet = isl_basic_set_gauss(hull_facet, NULL); + hull_facet = isl_basic_set_normalize_constraints(hull_facet); if (!facet) goto error; - if (facet->n_ineq + hull->n_ineq > n_ineq) { - hull = isl_basic_set_extend(hull, - 0, dim, 0, 0, facet->n_ineq); - n_ineq = hull->n_ineq + facet->n_ineq; - } + hull = isl_basic_set_cow(hull); + hull = isl_basic_set_extend_dim(hull, + isl_dim_copy(hull->dim), 0, 0, facet->n_ineq); for (j = 0; j < facet->n_ineq; ++j) { + for (f = 0; f < hull_facet->n_ineq; ++f) + if (isl_seq_eq(facet->ineq[j], + hull_facet->ineq[f], 1 + dim)) + break; + if (f < hull_facet->n_ineq) + continue; k = isl_basic_set_alloc_inequality(hull); if (k < 0) goto error; isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim); - if (!wrap_facet(ctx, set, hull->ineq[k], facet->ineq[j])) + if (!wrap_facet(set, hull->ineq[k], facet->ineq[j])) goto error; - for (f = 0; f < k; ++f) - if (isl_seq_eq(hull->ineq[f], hull->ineq[k], - 1+dim)) - break; - if (f < k) - isl_basic_set_free_inequality(hull, 1); } + isl_basic_set_free(hull_facet); isl_basic_set_free(facet); } hull = isl_basic_set_simplify(hull); hull = isl_basic_set_finalize(hull); return hull; error: + isl_basic_set_free(hull_facet); isl_basic_set_free(facet); isl_basic_set_free(hull); return NULL; @@ -735,8 +718,7 @@ error: * We simply collect the lower and upper bounds of each basic set * and the biggest of those. */ -static struct isl_basic_set *convex_hull_1d(struct isl_ctx *ctx, - struct isl_set *set) +static struct isl_basic_set *convex_hull_1d(struct isl_set *set) { struct isl_mat *c = NULL; isl_int *lower = NULL; @@ -753,13 +735,13 @@ static struct isl_basic_set *convex_hull_1d(struct isl_ctx *ctx, set = isl_set_remove_empty_parts(set); if (!set) goto error; - isl_assert(ctx, set->n > 0, goto error); - c = isl_mat_alloc(ctx, 2, 2); + isl_assert(set->ctx, set->n > 0, goto error); + c = isl_mat_alloc(set->ctx, 2, 2); if (!c) goto error; if (set->p[0]->n_eq > 0) { - isl_assert(ctx, set->p[0]->n_eq == 1, goto error); + isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error); lower = c->row[0]; upper = c->row[1]; if (isl_int_is_pos(set->p[0]->eq[0][1])) { @@ -834,7 +816,7 @@ static struct isl_basic_set *convex_hull_1d(struct isl_ctx *ctx, isl_int_clear(a); isl_int_clear(b); - hull = isl_basic_set_alloc(ctx, 0, 1, 0, 0, 2); + hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2); hull = isl_basic_set_set_rational(hull); if (!hull) goto error; @@ -848,11 +830,11 @@ static struct isl_basic_set *convex_hull_1d(struct isl_ctx *ctx, } hull = isl_basic_set_finalize(hull); isl_set_free(set); - isl_mat_free(ctx, c); + isl_mat_free(c); return hull; error: isl_set_free(set); - isl_mat_free(ctx, c); + isl_mat_free(c); return NULL; } @@ -887,7 +869,7 @@ static struct isl_basic_set *convex_hull_0d(struct isl_set *set) * to the two original basic sets, retaining only those corresponding * to the convex hull. */ -static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1, +static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1, struct isl_basic_set *bset2) { int i, j, k; @@ -951,200 +933,999 @@ error: return NULL; } -/* Compute the convex hull of a set without any parameters or - * integer divisions using Fourier-Motzkin elimination. - * In each step, we combined two basic sets until only one - * basic set is left. +static int isl_basic_set_is_bounded(struct isl_basic_set *bset) +{ + struct isl_tab *tab; + int bounded; + + tab = isl_tab_from_recession_cone((struct isl_basic_map *)bset); + bounded = isl_tab_cone_is_bounded(tab); + isl_tab_free(tab); + return bounded; +} + +static int isl_set_is_bounded(struct isl_set *set) +{ + int i; + + for (i = 0; i < set->n; ++i) { + int bounded = isl_basic_set_is_bounded(set->p[i]); + if (!bounded || bounded < 0) + return bounded; + } + return 1; +} + +/* Compute the lineality space of the convex hull of bset1 and bset2. + * + * We first compute the intersection of the recession cone of bset1 + * with the negative of the recession cone of bset2 and then compute + * the linear hull of the resulting cone. */ -static struct isl_basic_set *uset_convex_hull_elim(struct isl_set *set) +static struct isl_basic_set *induced_lineality_space( + struct isl_basic_set *bset1, struct isl_basic_set *bset2) { - struct isl_basic_set *convex_hull = NULL; + int i, k; + struct isl_basic_set *lin = NULL; + unsigned dim; - convex_hull = isl_set_copy_basic_set(set); - set = isl_set_drop_basic_set(set, convex_hull); - if (!set) + if (!bset1 || !bset2) goto error; - while (set->n > 0) { - struct isl_basic_set *t; - t = isl_set_copy_basic_set(set); - if (!t) + + dim = isl_basic_set_total_dim(bset1); + lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1), 0, + bset1->n_eq + bset2->n_eq, + bset1->n_ineq + bset2->n_ineq); + lin = isl_basic_set_set_rational(lin); + if (!lin) + goto error; + for (i = 0; i < bset1->n_eq; ++i) { + k = isl_basic_set_alloc_equality(lin); + if (k < 0) goto error; - set = isl_set_drop_basic_set(set, t); - if (!set) + isl_int_set_si(lin->eq[k][0], 0); + isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim); + } + for (i = 0; i < bset1->n_ineq; ++i) { + k = isl_basic_set_alloc_inequality(lin); + if (k < 0) goto error; - convex_hull = convex_hull_pair(convex_hull, t); + isl_int_set_si(lin->ineq[k][0], 0); + isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim); } - isl_set_free(set); - return convex_hull; + for (i = 0; i < bset2->n_eq; ++i) { + k = isl_basic_set_alloc_equality(lin); + if (k < 0) + goto error; + isl_int_set_si(lin->eq[k][0], 0); + isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim); + } + for (i = 0; i < bset2->n_ineq; ++i) { + k = isl_basic_set_alloc_inequality(lin); + if (k < 0) + goto error; + isl_int_set_si(lin->ineq[k][0], 0); + isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim); + } + + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); + return isl_basic_set_affine_hull(lin); error: - isl_set_free(set); - isl_basic_set_free(convex_hull); + isl_basic_set_free(lin); + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); return NULL; } -static struct isl_basic_set *uset_convex_hull_wrap_with_bounds( - struct isl_set *set, struct isl_mat *bounds) +static struct isl_basic_set *uset_convex_hull(struct isl_set *set); + +/* Given a set and a linear space "lin" of dimension n > 0, + * project the linear space from the set, compute the convex hull + * and then map the set back to the original space. + * + * Let + * + * M x = 0 + * + * describe the linear space. We first compute the Hermite normal + * form H = M U of M = H Q, to obtain + * + * H Q x = 0 + * + * The last n rows of H will be zero, so the last n variables of x' = Q x + * are the one we want to project out. We do this by transforming each + * basic set A x >= b to A U x' >= b and then removing the last n dimensions. + * After computing the convex hull in x'_1, i.e., A' x'_1 >= b', + * we transform the hull back to the original space as A' Q_1 x >= b', + * with Q_1 all but the last n rows of Q. + */ +static struct isl_basic_set *modulo_lineality(struct isl_set *set, + struct isl_basic_set *lin) { - struct isl_basic_set *convex_hull = NULL; + unsigned total = isl_basic_set_total_dim(lin); + unsigned lin_dim; + struct isl_basic_set *hull; + struct isl_mat *M, *U, *Q; - isl_assert(set->ctx, bounds->n_row == isl_set_n_dim(set), goto error); - bounds = initial_facet_constraint(set->ctx, set, bounds); - if (!bounds) + if (!set || !lin) goto error; - convex_hull = extend(set->ctx, set, bounds); - isl_mat_free(set->ctx, bounds); - isl_set_free(set); + lin_dim = total - lin->n_eq; + M = isl_mat_sub_alloc(set->ctx, lin->eq, 0, lin->n_eq, 1, total); + M = isl_mat_left_hermite(M, 0, &U, &Q); + if (!M) + goto error; + isl_mat_free(M); + isl_basic_set_free(lin); - return convex_hull; + Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim); + + U = isl_mat_lin_to_aff(U); + Q = isl_mat_lin_to_aff(Q); + + set = isl_set_preimage(set, U); + set = isl_set_remove_dims(set, total - lin_dim, lin_dim); + hull = uset_convex_hull(set); + hull = isl_basic_set_preimage(hull, Q); + + return hull; error: + isl_basic_set_free(lin); isl_set_free(set); return NULL; } -/* Compute the convex hull of a set without any parameters or - * integer divisions. Depending on whether the set is bounded, - * we pass control to the wrapping based convex hull or - * the Fourier-Motzkin elimination based convex hull. - * We also handle a few special cases before checking the boundedness. +/* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space, + * set up an LP for solving + * + * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j} + * + * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0 + * The next \alpha{ij} correspond to the equalities and come in pairs. + * The final \alpha{ij} correspond to the inequalities. */ -static struct isl_basic_set *uset_convex_hull(struct isl_set *set) +static struct isl_basic_set *valid_direction_lp( + struct isl_basic_set *bset1, struct isl_basic_set *bset2) { - int i; - struct isl_basic_set *convex_hull = NULL; - struct isl_mat *bounds; - - if (isl_set_n_dim(set) == 0) - return convex_hull_0d(set); - - set = isl_set_set_rational(set); + struct isl_dim *dim; + struct isl_basic_set *lp; + unsigned d; + int n; + int i, j, k; - if (!set) + if (!bset1 || !bset2) goto error; - set = isl_set_normalize(set); - if (!set) - return NULL; - if (set->n == 1) { - convex_hull = isl_basic_set_copy(set->p[0]); - isl_set_free(set); - return convex_hull; - } - if (isl_set_n_dim(set) == 1) - return convex_hull_1d(set->ctx, set); - - bounds = independent_bounds(set->ctx, set); - if (!bounds) + d = 1 + isl_basic_set_total_dim(bset1); + n = 2 + + 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq; + dim = isl_dim_set_alloc(bset1->ctx, 0, n); + lp = isl_basic_set_alloc_dim(dim, 0, d, n); + if (!lp) goto error; - if (bounds->n_row == isl_set_n_dim(set)) - return uset_convex_hull_wrap_with_bounds(set, bounds); - isl_mat_free(set->ctx, bounds); - - return uset_convex_hull_elim(set); + for (i = 0; i < n; ++i) { + k = isl_basic_set_alloc_inequality(lp); + if (k < 0) + goto error; + isl_seq_clr(lp->ineq[k] + 1, n); + isl_int_set_si(lp->ineq[k][0], -1); + isl_int_set_si(lp->ineq[k][1 + i], 1); + } + for (i = 0; i < d; ++i) { + k = isl_basic_set_alloc_equality(lp); + if (k < 0) + goto error; + n = 0; + isl_int_set_si(lp->eq[k][n++], 0); + /* positivity constraint 1 >= 0 */ + isl_int_set_si(lp->eq[k][n++], i == 0); + for (j = 0; j < bset1->n_eq; ++j) { + isl_int_set(lp->eq[k][n++], bset1->eq[j][i]); + isl_int_neg(lp->eq[k][n++], bset1->eq[j][i]); + } + for (j = 0; j < bset1->n_ineq; ++j) + isl_int_set(lp->eq[k][n++], bset1->ineq[j][i]); + /* positivity constraint 1 >= 0 */ + isl_int_set_si(lp->eq[k][n++], -(i == 0)); + for (j = 0; j < bset2->n_eq; ++j) { + isl_int_neg(lp->eq[k][n++], bset2->eq[j][i]); + isl_int_set(lp->eq[k][n++], bset2->eq[j][i]); + } + for (j = 0; j < bset2->n_ineq; ++j) + isl_int_neg(lp->eq[k][n++], bset2->ineq[j][i]); + } + lp = isl_basic_set_gauss(lp, NULL); + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); + return lp; error: - isl_set_free(set); - isl_basic_set_free(convex_hull); + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); return NULL; } -/* This is the core procedure, where "set" is a "pure" set, i.e., - * without parameters or divs and where the convex hull of set is - * known to be full-dimensional. +/* Compute a vector s in the homogeneous space such that > 0 + * for all rays in the homogeneous space of the two cones that correspond + * to the input polyhedra bset1 and bset2. + * + * We compute s as a vector that satisfies + * + * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*) + * + * with h_{ij} the normals of the facets of polyhedron i + * (including the "positivity constraint" 1 >= 0) and \alpha_{ij} + * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1. + * We first set up an LP with as variables the \alpha{ij}. + * In this formulateion, for each polyhedron i, + * the first constraint is the positivity constraint, followed by pairs + * of variables for the equalities, followed by variables for the inequalities. + * We then simply pick a feasible solution and compute s using (*). + * + * Note that we simply pick any valid direction and make no attempt + * to pick a "good" or even the "best" valid direction. */ -static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set) +static struct isl_vec *valid_direction( + struct isl_basic_set *bset1, struct isl_basic_set *bset2) { + struct isl_basic_set *lp; + struct isl_tab *tab; + struct isl_vec *sample = NULL; + struct isl_vec *dir; + unsigned d; int i; - struct isl_basic_set *convex_hull = NULL; - struct isl_mat *bounds; + int n; - if (isl_set_n_dim(set) == 0) { - convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim)); - isl_set_free(set); - convex_hull = isl_basic_set_set_rational(convex_hull); - return convex_hull; - } - - set = isl_set_set_rational(set); - - if (!set) + if (!bset1 || !bset2) goto error; - set = isl_set_normalize(set); - if (!set) + lp = valid_direction_lp(isl_basic_set_copy(bset1), + isl_basic_set_copy(bset2)); + tab = isl_tab_from_basic_set(lp); + sample = isl_tab_get_sample_value(tab); + isl_tab_free(tab); + isl_basic_set_free(lp); + if (!sample) goto error; - if (set->n == 1) { - convex_hull = isl_basic_set_copy(set->p[0]); - isl_set_free(set); - return convex_hull; - } - if (isl_set_n_dim(set) == 1) - return convex_hull_1d(set->ctx, set); - - bounds = independent_bounds(set->ctx, set); - if (!bounds) + d = isl_basic_set_total_dim(bset1); + dir = isl_vec_alloc(bset1->ctx, 1 + d); + if (!dir) goto error; - return uset_convex_hull_wrap_with_bounds(set, bounds); + isl_seq_clr(dir->block.data + 1, dir->size - 1); + n = 1; + /* positivity constraint 1 >= 0 */ + isl_int_set(dir->block.data[0], sample->block.data[n++]); + for (i = 0; i < bset1->n_eq; ++i) { + isl_int_sub(sample->block.data[n], + sample->block.data[n], sample->block.data[n+1]); + isl_seq_combine(dir->block.data, + bset1->ctx->one, dir->block.data, + sample->block.data[n], bset1->eq[i], 1 + d); + + n += 2; + } + for (i = 0; i < bset1->n_ineq; ++i) + isl_seq_combine(dir->block.data, + bset1->ctx->one, dir->block.data, + sample->block.data[n++], bset1->ineq[i], 1 + d); + isl_vec_free(sample); + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); + isl_seq_normalize(dir->block.data + 1, dir->size - 1); + return dir; error: - isl_set_free(set); + isl_vec_free(sample); + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); return NULL; } -/* Compute the convex hull of set "set" with affine hull "affine_hull", - * We first remove the equalities (transforming the set), compute the - * convex hull of the transformed set and then add the equalities back - * (after performing the inverse transformation. +/* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1}, + * compute b_i' + A_i' x' >= 0, with + * + * [ b_i A_i ] [ y' ] [ y' ] + * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0 + * + * In particular, add the "positivity constraint" and then perform + * the mapping. */ -static struct isl_basic_set *modulo_affine_hull(struct isl_ctx *ctx, - struct isl_set *set, struct isl_basic_set *affine_hull) +static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset, + struct isl_mat *T) { - struct isl_mat *T; - struct isl_mat *T2; - struct isl_basic_set *dummy; - struct isl_basic_set *convex_hull; + int k; - dummy = isl_basic_set_remove_equalities( - isl_basic_set_copy(affine_hull), &T, &T2); - if (!dummy) + if (!bset) goto error; - isl_basic_set_free(dummy); - set = isl_set_preimage(set, T); - convex_hull = uset_convex_hull(set); - convex_hull = isl_basic_set_preimage(convex_hull, T2); - convex_hull = isl_basic_set_intersect(convex_hull, affine_hull); - return convex_hull; + bset = isl_basic_set_extend_constraints(bset, 0, 1); + k = isl_basic_set_alloc_inequality(bset); + if (k < 0) + goto error; + isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset)); + isl_int_set_si(bset->ineq[k][0], 1); + bset = isl_basic_set_preimage(bset, T); + return bset; error: - isl_basic_set_free(affine_hull); - isl_set_free(set); + isl_mat_free(T); + isl_basic_set_free(bset); return NULL; } -/* Compute the convex hull of a map. +/* Compute the convex hull of a pair of basic sets without any parameters or + * integer divisions, where the convex hull is known to be pointed, + * but the basic sets may be unbounded. * - * The implementation was inspired by "Extended Convex Hull" by Fukuda et al., - * specifically, the wrapping of facets to obtain new facets. + * We turn this problem into the computation of a convex hull of a pair + * _bounded_ polyhedra by "changing the direction of the homogeneous + * dimension". This idea is due to Matthias Koeppe. + * + * Consider the cones in homogeneous space that correspond to the + * input polyhedra. The rays of these cones are also rays of the + * polyhedra if the coordinate that corresponds to the homogeneous + * dimension is zero. That is, if the inner product of the rays + * with the homogeneous direction is zero. + * The cones in the homogeneous space can also be considered to + * correspond to other pairs of polyhedra by chosing a different + * homogeneous direction. To ensure that both of these polyhedra + * are bounded, we need to make sure that all rays of the cones + * correspond to vertices and not to rays. + * Let s be a direction such that > 0 for all rays r of both cones. + * Then using s as a homogeneous direction, we obtain a pair of polytopes. + * The vector s is computed in valid_direction. + * + * Note that we need to consider _all_ rays of the cones and not just + * the rays that correspond to rays in the polyhedra. If we were to + * only consider those rays and turn them into vertices, then we + * may inadvertently turn some vertices into rays. + * + * The standard homogeneous direction is the unit vector in the 0th coordinate. + * We therefore transform the two polyhedra such that the selected + * direction is mapped onto this standard direction and then proceed + * with the normal computation. + * Let S be a non-singular square matrix with s as its first row, + * then we want to map the polyhedra to the space + * + * [ y' ] [ y ] [ y ] [ y' ] + * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ] + * + * We take S to be the unimodular completion of s to limit the growth + * of the coefficients in the following computations. + * + * Let b_i + A_i x >= 0 be the constraints of polyhedron i. + * We first move to the homogeneous dimension + * + * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ] + * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ] + * + * Then we change directoin + * + * [ b_i A_i ] [ y' ] [ y' ] + * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0 + * + * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0 + * resulting in b' + A' x' >= 0, which we then convert back + * + * [ y ] [ y ] + * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0 + * + * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra. */ -struct isl_basic_map *isl_map_convex_hull(struct isl_map *map) +static struct isl_basic_set *convex_hull_pair_pointed( + struct isl_basic_set *bset1, struct isl_basic_set *bset2) { - struct isl_basic_set *bset; - struct isl_basic_map *model = NULL; - struct isl_basic_set *affine_hull = NULL; - struct isl_basic_map *convex_hull = NULL; - struct isl_set *set = NULL; - struct isl_ctx *ctx; + struct isl_ctx *ctx = NULL; + struct isl_vec *dir = NULL; + struct isl_mat *T = NULL; + struct isl_mat *T2 = NULL; + struct isl_basic_set *hull; + struct isl_set *set; - if (!map) + if (!bset1 || !bset2) goto error; - - ctx = map->ctx; - if (map->n == 0) { - convex_hull = isl_basic_map_empty_like_map(map); - isl_map_free(map); - return convex_hull; - } - - map = isl_map_align_divs(map); - model = isl_basic_map_copy(map->p[0]); - set = isl_map_underlying_set(map); - if (!set) + ctx = bset1->ctx; + dir = valid_direction(isl_basic_set_copy(bset1), + isl_basic_set_copy(bset2)); + if (!dir) goto error; - + T = isl_mat_alloc(bset1->ctx, dir->size, dir->size); + if (!T) + goto error; + isl_seq_cpy(T->row[0], dir->block.data, dir->size); + T = isl_mat_unimodular_complete(T, 1); + T2 = isl_mat_right_inverse(isl_mat_copy(T)); + + bset1 = homogeneous_map(bset1, isl_mat_copy(T2)); + bset2 = homogeneous_map(bset2, T2); + set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0); + set = isl_set_add(set, bset1); + set = isl_set_add(set, bset2); + hull = uset_convex_hull(set); + hull = isl_basic_set_preimage(hull, T); + + isl_vec_free(dir); + + return hull; +error: + isl_vec_free(dir); + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); + return NULL; +} + +/* Compute the convex hull of a pair of basic sets without any parameters or + * integer divisions. + * + * If the convex hull of the two basic sets would have a non-trivial + * lineality space, we first project out this lineality space. + */ +static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1, + struct isl_basic_set *bset2) +{ + struct isl_basic_set *lin; + + if (isl_basic_set_is_bounded(bset1) || isl_basic_set_is_bounded(bset2)) + return convex_hull_pair_pointed(bset1, bset2); + + lin = induced_lineality_space(isl_basic_set_copy(bset1), + isl_basic_set_copy(bset2)); + if (!lin) + goto error; + if (isl_basic_set_is_universe(lin)) { + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); + return lin; + } + if (lin->n_eq < isl_basic_set_total_dim(lin)) { + struct isl_set *set; + set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0); + set = isl_set_add(set, bset1); + set = isl_set_add(set, bset2); + return modulo_lineality(set, lin); + } + isl_basic_set_free(lin); + + return convex_hull_pair_pointed(bset1, bset2); +error: + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); + return NULL; +} + +/* Compute the lineality space of a basic set. + * We currently do not allow the basic set to have any divs. + * We basically just drop the constants and turn every inequality + * into an equality. + */ +struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset) +{ + int i, k; + struct isl_basic_set *lin = NULL; + unsigned dim; + + if (!bset) + goto error; + isl_assert(bset->ctx, bset->n_div == 0, goto error); + dim = isl_basic_set_total_dim(bset); + + lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset), 0, dim, 0); + if (!lin) + goto error; + for (i = 0; i < bset->n_eq; ++i) { + k = isl_basic_set_alloc_equality(lin); + if (k < 0) + goto error; + isl_int_set_si(lin->eq[k][0], 0); + isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim); + } + lin = isl_basic_set_gauss(lin, NULL); + if (!lin) + goto error; + for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) { + k = isl_basic_set_alloc_equality(lin); + if (k < 0) + goto error; + isl_int_set_si(lin->eq[k][0], 0); + isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim); + lin = isl_basic_set_gauss(lin, NULL); + if (!lin) + goto error; + } + isl_basic_set_free(bset); + return lin; +error: + isl_basic_set_free(lin); + isl_basic_set_free(bset); + return NULL; +} + +/* Compute the (linear) hull of the lineality spaces of the basic sets in the + * "underlying" set "set". + */ +static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set) +{ + int i; + struct isl_set *lin = NULL; + + if (!set) + return NULL; + if (set->n == 0) { + struct isl_dim *dim = isl_set_get_dim(set); + isl_set_free(set); + return isl_basic_set_empty(dim); + } + + lin = isl_set_alloc_dim(isl_set_get_dim(set), set->n, 0); + for (i = 0; i < set->n; ++i) + lin = isl_set_add(lin, + isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i]))); + isl_set_free(set); + return isl_set_affine_hull(lin); +} + +/* Compute the convex hull of a set without any parameters or + * integer divisions. + * In each step, we combined two basic sets until only one + * basic set is left. + * The input basic sets are assumed not to have a non-trivial + * lineality space. If any of the intermediate results has + * a non-trivial lineality space, it is projected out. + */ +static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set) +{ + struct isl_basic_set *convex_hull = NULL; + + convex_hull = isl_set_copy_basic_set(set); + set = isl_set_drop_basic_set(set, convex_hull); + if (!set) + goto error; + while (set->n > 0) { + struct isl_basic_set *t; + t = isl_set_copy_basic_set(set); + if (!t) + goto error; + set = isl_set_drop_basic_set(set, t); + if (!set) + goto error; + convex_hull = convex_hull_pair(convex_hull, t); + if (set->n == 0) + break; + t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull)); + if (!t) + goto error; + if (isl_basic_set_is_universe(t)) { + isl_basic_set_free(convex_hull); + convex_hull = t; + break; + } + if (t->n_eq < isl_basic_set_total_dim(t)) { + set = isl_set_add(set, convex_hull); + return modulo_lineality(set, t); + } + isl_basic_set_free(t); + } + isl_set_free(set); + return convex_hull; +error: + isl_set_free(set); + isl_basic_set_free(convex_hull); + return NULL; +} + +/* Compute an initial hull for wrapping containing a single initial + * facet by first computing bounds on the set and then using these + * bounds to construct an initial facet. + * This function is a remnant of an older implementation where the + * bounds were also used to check whether the set was bounded. + * Since this function will now only be called when we know the + * set to be bounded, the initial facet should probably be constructed + * by simply using the coordinate directions instead. + */ +static struct isl_basic_set *initial_hull(struct isl_basic_set *hull, + struct isl_set *set) +{ + struct isl_mat *bounds = NULL; + unsigned dim; + int k; + + if (!hull) + goto error; + bounds = independent_bounds(set); + if (!bounds) + goto error; + isl_assert(set->ctx, bounds->n_row == isl_set_n_dim(set), goto error); + bounds = initial_facet_constraint(set, bounds); + if (!bounds) + goto error; + k = isl_basic_set_alloc_inequality(hull); + if (k < 0) + goto error; + dim = isl_set_n_dim(set); + isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error); + isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col); + isl_mat_free(bounds); + + return hull; +error: + isl_basic_set_free(hull); + isl_mat_free(bounds); + return NULL; +} + +struct max_constraint { + struct isl_mat *c; + int count; + int ineq; +}; + +static int max_constraint_equal(const void *entry, const void *val) +{ + struct max_constraint *a = (struct max_constraint *)entry; + isl_int *b = (isl_int *)val; + + return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1); +} + +static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table, + isl_int *con, unsigned len, int n, int ineq) +{ + struct isl_hash_table_entry *entry; + struct max_constraint *c; + uint32_t c_hash; + + c_hash = isl_seq_hash(con + 1, len, isl_hash_init()); + entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal, + con + 1, 0); + if (!entry) + return; + c = entry->data; + if (c->count < n) { + isl_hash_table_remove(ctx, table, entry); + return; + } + c->count++; + if (isl_int_gt(c->c->row[0][0], con[0])) + return; + if (isl_int_eq(c->c->row[0][0], con[0])) { + if (ineq) + c->ineq = ineq; + return; + } + c->c = isl_mat_cow(c->c); + isl_int_set(c->c->row[0][0], con[0]); + c->ineq = ineq; +} + +/* Check whether the constraint hash table "table" constains the constraint + * "con". + */ +static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table, + isl_int *con, unsigned len, int n) +{ + struct isl_hash_table_entry *entry; + struct max_constraint *c; + uint32_t c_hash; + + c_hash = isl_seq_hash(con + 1, len, isl_hash_init()); + entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal, + con + 1, 0); + if (!entry) + return 0; + c = entry->data; + if (c->count < n) + return 0; + return isl_int_eq(c->c->row[0][0], con[0]); +} + +/* Check for inequality constraints of a basic set without equalities + * such that the same or more stringent copies of the constraint appear + * in all of the basic sets. Such constraints are necessarily facet + * constraints of the convex hull. + * + * If the resulting basic set is by chance identical to one of + * the basic sets in "set", then we know that this basic set contains + * all other basic sets and is therefore the convex hull of set. + * In this case we set *is_hull to 1. + */ +static struct isl_basic_set *common_constraints(struct isl_basic_set *hull, + struct isl_set *set, int *is_hull) +{ + int i, j, s, n; + int min_constraints; + int best; + struct max_constraint *constraints = NULL; + struct isl_hash_table *table = NULL; + unsigned total; + + *is_hull = 0; + + for (i = 0; i < set->n; ++i) + if (set->p[i]->n_eq == 0) + break; + if (i >= set->n) + return hull; + min_constraints = set->p[i]->n_ineq; + best = i; + for (i = best + 1; i < set->n; ++i) { + if (set->p[i]->n_eq != 0) + continue; + if (set->p[i]->n_ineq >= min_constraints) + continue; + min_constraints = set->p[i]->n_ineq; + best = i; + } + constraints = isl_calloc_array(hull->ctx, struct max_constraint, + min_constraints); + if (!constraints) + return hull; + table = isl_alloc_type(hull->ctx, struct isl_hash_table); + if (isl_hash_table_init(hull->ctx, table, min_constraints)) + goto error; + + total = isl_dim_total(set->dim); + for (i = 0; i < set->p[best]->n_ineq; ++i) { + constraints[i].c = isl_mat_sub_alloc(hull->ctx, + set->p[best]->ineq + i, 0, 1, 0, 1 + total); + if (!constraints[i].c) + goto error; + constraints[i].ineq = 1; + } + for (i = 0; i < min_constraints; ++i) { + struct isl_hash_table_entry *entry; + uint32_t c_hash; + c_hash = isl_seq_hash(constraints[i].c->row[0] + 1, total, + isl_hash_init()); + entry = isl_hash_table_find(hull->ctx, table, c_hash, + max_constraint_equal, constraints[i].c->row[0] + 1, 1); + if (!entry) + goto error; + isl_assert(hull->ctx, !entry->data, goto error); + entry->data = &constraints[i]; + } + + n = 0; + for (s = 0; s < set->n; ++s) { + if (s == best) + continue; + + for (i = 0; i < set->p[s]->n_eq; ++i) { + isl_int *eq = set->p[s]->eq[i]; + for (j = 0; j < 2; ++j) { + isl_seq_neg(eq, eq, 1 + total); + update_constraint(hull->ctx, table, + eq, total, n, 0); + } + } + for (i = 0; i < set->p[s]->n_ineq; ++i) { + isl_int *ineq = set->p[s]->ineq[i]; + update_constraint(hull->ctx, table, ineq, total, n, + set->p[s]->n_eq == 0); + } + ++n; + } + + for (i = 0; i < min_constraints; ++i) { + if (constraints[i].count < n) + continue; + if (!constraints[i].ineq) + continue; + j = isl_basic_set_alloc_inequality(hull); + if (j < 0) + goto error; + isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total); + } + + for (s = 0; s < set->n; ++s) { + if (set->p[s]->n_eq) + continue; + if (set->p[s]->n_ineq != hull->n_ineq) + continue; + for (i = 0; i < set->p[s]->n_ineq; ++i) { + isl_int *ineq = set->p[s]->ineq[i]; + if (!has_constraint(hull->ctx, table, ineq, total, n)) + break; + } + if (i == set->p[s]->n_ineq) + *is_hull = 1; + } + + isl_hash_table_clear(table); + for (i = 0; i < min_constraints; ++i) + isl_mat_free(constraints[i].c); + free(constraints); + free(table); + return hull; +error: + isl_hash_table_clear(table); + free(table); + if (constraints) + for (i = 0; i < min_constraints; ++i) + isl_mat_free(constraints[i].c); + free(constraints); + return hull; +} + +/* Create a template for the convex hull of "set" and fill it up + * obvious facet constraints, if any. If the result happens to + * be the convex hull of "set" then *is_hull is set to 1. + */ +static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull) +{ + struct isl_basic_set *hull; + unsigned n_ineq; + int i; + + n_ineq = 1; + for (i = 0; i < set->n; ++i) { + n_ineq += set->p[i]->n_eq; + n_ineq += set->p[i]->n_ineq; + } + hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq); + hull = isl_basic_set_set_rational(hull); + if (!hull) + return NULL; + return common_constraints(hull, set, is_hull); +} + +static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set) +{ + struct isl_basic_set *hull; + int is_hull; + + hull = proto_hull(set, &is_hull); + if (hull && !is_hull) { + if (hull->n_ineq == 0) + hull = initial_hull(hull, set); + hull = extend(hull, set); + } + isl_set_free(set); + + return hull; +} + +/* Compute the convex hull of a set without any parameters or + * integer divisions. Depending on whether the set is bounded, + * we pass control to the wrapping based convex hull or + * the Fourier-Motzkin elimination based convex hull. + * We also handle a few special cases before checking the boundedness. + */ +static struct isl_basic_set *uset_convex_hull(struct isl_set *set) +{ + int i; + struct isl_basic_set *convex_hull = NULL; + struct isl_basic_set *lin; + + if (isl_set_n_dim(set) == 0) + return convex_hull_0d(set); + + set = isl_set_coalesce(set); + set = isl_set_set_rational(set); + + if (!set) + goto error; + if (!set) + return NULL; + if (set->n == 1) { + convex_hull = isl_basic_set_copy(set->p[0]); + isl_set_free(set); + return convex_hull; + } + if (isl_set_n_dim(set) == 1) + return convex_hull_1d(set); + + if (isl_set_is_bounded(set)) + return uset_convex_hull_wrap(set); + + lin = uset_combined_lineality_space(isl_set_copy(set)); + if (!lin) + goto error; + if (isl_basic_set_is_universe(lin)) { + isl_set_free(set); + return lin; + } + if (lin->n_eq < isl_basic_set_total_dim(lin)) + return modulo_lineality(set, lin); + isl_basic_set_free(lin); + + return uset_convex_hull_unbounded(set); +error: + isl_set_free(set); + isl_basic_set_free(convex_hull); + return NULL; +} + +/* This is the core procedure, where "set" is a "pure" set, i.e., + * without parameters or divs and where the convex hull of set is + * known to be full-dimensional. + */ +static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set) +{ + int i; + struct isl_basic_set *convex_hull = NULL; + + if (isl_set_n_dim(set) == 0) { + convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim)); + isl_set_free(set); + convex_hull = isl_basic_set_set_rational(convex_hull); + return convex_hull; + } + + set = isl_set_set_rational(set); + + if (!set) + goto error; + set = isl_set_coalesce(set); + if (!set) + goto error; + if (set->n == 1) { + convex_hull = isl_basic_set_copy(set->p[0]); + isl_set_free(set); + return convex_hull; + } + if (isl_set_n_dim(set) == 1) + return convex_hull_1d(set); + + return uset_convex_hull_wrap(set); +error: + isl_set_free(set); + return NULL; +} + +/* Compute the convex hull of set "set" with affine hull "affine_hull", + * We first remove the equalities (transforming the set), compute the + * convex hull of the transformed set and then add the equalities back + * (after performing the inverse transformation. + */ +static struct isl_basic_set *modulo_affine_hull(struct isl_ctx *ctx, + struct isl_set *set, struct isl_basic_set *affine_hull) +{ + struct isl_mat *T; + struct isl_mat *T2; + struct isl_basic_set *dummy; + struct isl_basic_set *convex_hull; + + dummy = isl_basic_set_remove_equalities( + isl_basic_set_copy(affine_hull), &T, &T2); + if (!dummy) + goto error; + isl_basic_set_free(dummy); + set = isl_set_preimage(set, T); + convex_hull = uset_convex_hull(set); + convex_hull = isl_basic_set_preimage(convex_hull, T2); + convex_hull = isl_basic_set_intersect(convex_hull, affine_hull); + return convex_hull; +error: + isl_basic_set_free(affine_hull); + isl_set_free(set); + return NULL; +} + +/* Compute the convex hull of a map. + * + * The implementation was inspired by "Extended Convex Hull" by Fukuda et al., + * specifically, the wrapping of facets to obtain new facets. + */ +struct isl_basic_map *isl_map_convex_hull(struct isl_map *map) +{ + struct isl_basic_set *bset; + struct isl_basic_map *model = NULL; + struct isl_basic_set *affine_hull = NULL; + struct isl_basic_map *convex_hull = NULL; + struct isl_set *set = NULL; + struct isl_ctx *ctx; + + if (!map) + goto error; + + ctx = map->ctx; + if (map->n == 0) { + convex_hull = isl_basic_map_empty_like_map(map); + isl_map_free(map); + return convex_hull; + } + + map = isl_map_detect_equalities(map); + map = isl_map_align_divs(map); + model = isl_basic_map_copy(map->p[0]); + set = isl_map_underlying_set(map); + if (!set) + goto error; + affine_hull = isl_set_affine_hull(isl_set_copy(set)); if (!affine_hull) goto error; @@ -1157,6 +1938,8 @@ struct isl_basic_map *isl_map_convex_hull(struct isl_map *map) convex_hull = isl_basic_map_overlying_set(bset, model); + ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT); + ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES); ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL); return convex_hull; error: @@ -1171,22 +1954,334 @@ struct isl_basic_set *isl_set_convex_hull(struct isl_set *set) isl_map_convex_hull((struct isl_map *)set); } +struct sh_data_entry { + struct isl_hash_table *table; + struct isl_tab *tab; +}; + +/* Holds the data needed during the simple hull computation. + * In particular, + * n the number of basic sets in the original set + * hull_table a hash table of already computed constraints + * in the simple hull + * p for each basic set, + * table a hash table of the constraints + * tab the tableau corresponding to the basic set + */ +struct sh_data { + struct isl_ctx *ctx; + unsigned n; + struct isl_hash_table *hull_table; + struct sh_data_entry p[0]; +}; + +static void sh_data_free(struct sh_data *data) +{ + int i; + + if (!data) + return; + isl_hash_table_free(data->ctx, data->hull_table); + for (i = 0; i < data->n; ++i) { + isl_hash_table_free(data->ctx, data->p[i].table); + isl_tab_free(data->p[i].tab); + } + free(data); +} + +struct ineq_cmp_data { + unsigned len; + isl_int *p; +}; + +static int has_ineq(const void *entry, const void *val) +{ + isl_int *row = (isl_int *)entry; + struct ineq_cmp_data *v = (struct ineq_cmp_data *)val; + + return isl_seq_eq(row + 1, v->p + 1, v->len) || + isl_seq_is_neg(row + 1, v->p + 1, v->len); +} + +static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table, + isl_int *ineq, unsigned len) +{ + uint32_t c_hash; + struct ineq_cmp_data v; + struct isl_hash_table_entry *entry; + + v.len = len; + v.p = ineq; + c_hash = isl_seq_hash(ineq + 1, len, isl_hash_init()); + entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1); + if (!entry) + return - 1; + entry->data = ineq; + return 0; +} + +/* Fill hash table "table" with the constraints of "bset". + * Equalities are added as two inequalities. + * The value in the hash table is a pointer to the (in)equality of "bset". + */ +static int hash_basic_set(struct isl_hash_table *table, + struct isl_basic_set *bset) +{ + int i, j; + unsigned dim = isl_basic_set_total_dim(bset); + + for (i = 0; i < bset->n_eq; ++i) { + for (j = 0; j < 2; ++j) { + isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim); + if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0) + return -1; + } + } + for (i = 0; i < bset->n_ineq; ++i) { + if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0) + return -1; + } + return 0; +} + +static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq) +{ + struct sh_data *data; + int i; + + data = isl_calloc(set->ctx, struct sh_data, + sizeof(struct sh_data) + set->n * sizeof(struct sh_data_entry)); + if (!data) + return NULL; + data->ctx = set->ctx; + data->n = set->n; + data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq); + if (!data->hull_table) + goto error; + for (i = 0; i < set->n; ++i) { + data->p[i].table = isl_hash_table_alloc(set->ctx, + 2 * set->p[i]->n_eq + set->p[i]->n_ineq); + if (!data->p[i].table) + goto error; + if (hash_basic_set(data->p[i].table, set->p[i]) < 0) + goto error; + } + return data; +error: + sh_data_free(data); + return NULL; +} + +/* Check if inequality "ineq" is a bound for basic set "j" or if + * it can be relaxed (by increasing the constant term) to become + * a bound for that basic set. In the latter case, the constant + * term is updated. + * Return 1 if "ineq" is a bound + * 0 if "ineq" may attain arbitrarily small values on basic set "j" + * -1 if some error occurred + */ +static int is_bound(struct sh_data *data, struct isl_set *set, int j, + isl_int *ineq) +{ + enum isl_lp_result res; + isl_int opt; + + if (!data->p[j].tab) { + data->p[j].tab = isl_tab_from_basic_set(set->p[j]); + if (!data->p[j].tab) + return -1; + } + + isl_int_init(opt); + + res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one, + &opt, NULL, 0); + if (res == isl_lp_ok && isl_int_is_neg(opt)) + isl_int_sub(ineq[0], ineq[0], opt); + + isl_int_clear(opt); + + return res == isl_lp_ok ? 1 : + res == isl_lp_unbounded ? 0 : -1; +} + +/* Check if inequality "ineq" from basic set "i" can be relaxed to + * become a bound on the whole set. If so, add the (relaxed) inequality + * to "hull". + * + * We first check if "hull" already contains a translate of the inequality. + * If so, we are done. + * Then, we check if any of the previous basic sets contains a translate + * of the inequality. If so, then we have already considered this + * inequality and we are done. + * Otherwise, for each basic set other than "i", we check if the inequality + * is a bound on the basic set. + * For previous basic sets, we know that they do not contain a translate + * of the inequality, so we directly call is_bound. + * For following basic sets, we first check if a translate of the + * inequality appears in its description and if so directly update + * the inequality accordingly. + */ +static struct isl_basic_set *add_bound(struct isl_basic_set *hull, + struct sh_data *data, struct isl_set *set, int i, isl_int *ineq) +{ + uint32_t c_hash; + struct ineq_cmp_data v; + struct isl_hash_table_entry *entry; + int j, k; + + if (!hull) + return NULL; + + v.len = isl_basic_set_total_dim(hull); + v.p = ineq; + c_hash = isl_seq_hash(ineq + 1, v.len, isl_hash_init()); + + entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash, + has_ineq, &v, 0); + if (entry) + return hull; + + for (j = 0; j < i; ++j) { + entry = isl_hash_table_find(hull->ctx, data->p[j].table, + c_hash, has_ineq, &v, 0); + if (entry) + break; + } + if (j < i) + return hull; + + k = isl_basic_set_alloc_inequality(hull); + isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len); + if (k < 0) + goto error; + + for (j = 0; j < i; ++j) { + int bound; + bound = is_bound(data, set, j, hull->ineq[k]); + if (bound < 0) + goto error; + if (!bound) + break; + } + if (j < i) { + isl_basic_set_free_inequality(hull, 1); + return hull; + } + + for (j = i + 1; j < set->n; ++j) { + int bound, neg; + isl_int *ineq_j; + entry = isl_hash_table_find(hull->ctx, data->p[j].table, + c_hash, has_ineq, &v, 0); + if (entry) { + ineq_j = entry->data; + neg = isl_seq_is_neg(ineq_j + 1, + hull->ineq[k] + 1, v.len); + if (neg) + isl_int_neg(ineq_j[0], ineq_j[0]); + if (isl_int_gt(ineq_j[0], hull->ineq[k][0])) + isl_int_set(hull->ineq[k][0], ineq_j[0]); + if (neg) + isl_int_neg(ineq_j[0], ineq_j[0]); + continue; + } + bound = is_bound(data, set, j, hull->ineq[k]); + if (bound < 0) + goto error; + if (!bound) + break; + } + if (j < set->n) { + isl_basic_set_free_inequality(hull, 1); + return hull; + } + + entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash, + has_ineq, &v, 1); + if (!entry) + goto error; + entry->data = hull->ineq[k]; + + return hull; +error: + isl_basic_set_free(hull); + return NULL; +} + +/* Check if any inequality from basic set "i" can be relaxed to + * become a bound on the whole set. If so, add the (relaxed) inequality + * to "hull". + */ +static struct isl_basic_set *add_bounds(struct isl_basic_set *bset, + struct sh_data *data, struct isl_set *set, int i) +{ + int j, k; + unsigned dim = isl_basic_set_total_dim(bset); + + for (j = 0; j < set->p[i]->n_eq; ++j) { + for (k = 0; k < 2; ++k) { + isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim); + add_bound(bset, data, set, i, set->p[i]->eq[j]); + } + } + for (j = 0; j < set->p[i]->n_ineq; ++j) + add_bound(bset, data, set, i, set->p[i]->ineq[j]); + return bset; +} + +/* Compute a superset of the convex hull of set that is described + * by only translates of the constraints in the constituents of set. + */ +static struct isl_basic_set *uset_simple_hull(struct isl_set *set) +{ + struct sh_data *data = NULL; + struct isl_basic_set *hull = NULL; + unsigned n_ineq; + int i, j; + + if (!set) + return NULL; + + n_ineq = 0; + for (i = 0; i < set->n; ++i) { + if (!set->p[i]) + goto error; + n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq; + } + + hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq); + if (!hull) + goto error; + + data = sh_data_alloc(set, n_ineq); + if (!data) + goto error; + + for (i = 0; i < set->n; ++i) + hull = add_bounds(hull, data, set, i); + + sh_data_free(data); + isl_set_free(set); + + return hull; +error: + sh_data_free(data); + isl_basic_set_free(hull); + isl_set_free(set); + return NULL; +} + /* Compute a superset of the convex hull of map that is described * by only translates of the constraints in the constituents of map. - * - * The implementation is not very efficient. In particular, if - * constraints with the same normal appear in more than one - * basic map, they will be (re)examined each time. */ struct isl_basic_map *isl_map_simple_hull(struct isl_map *map) { struct isl_set *set = NULL; struct isl_basic_map *model = NULL; struct isl_basic_map *hull; + struct isl_basic_map *affine_hull; struct isl_basic_set *bset = NULL; - int i, j; - unsigned n_ineq; - unsigned dim; if (!map) return NULL; @@ -1201,63 +2296,107 @@ struct isl_basic_map *isl_map_simple_hull(struct isl_map *map) return hull; } + map = isl_map_detect_equalities(map); + affine_hull = isl_map_affine_hull(isl_map_copy(map)); map = isl_map_align_divs(map); model = isl_basic_map_copy(map->p[0]); - n_ineq = 0; - for (i = 0; i < map->n; ++i) { - if (!map->p[i]) - goto error; - n_ineq += map->p[i]->n_ineq; - } - set = isl_map_underlying_set(map); - if (!set) - goto error; - bset = isl_set_affine_hull(isl_set_copy(set)); - if (!bset) - goto error; - dim = isl_basic_set_n_dim(bset); - bset = isl_basic_set_extend(bset, 0, dim, 0, 0, n_ineq); - if (!bset) + bset = uset_simple_hull(set); + + hull = isl_basic_map_overlying_set(bset, model); + + hull = isl_basic_map_intersect(hull, affine_hull); + hull = isl_basic_map_convex_hull(hull); + ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT); + ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES); + + return hull; +} + +struct isl_basic_set *isl_set_simple_hull(struct isl_set *set) +{ + return (struct isl_basic_set *) + isl_map_simple_hull((struct isl_map *)set); +} + +/* Given a set "set", return parametric bounds on the dimension "dim". + */ +static struct isl_basic_set *set_bounds(struct isl_set *set, int dim) +{ + unsigned set_dim = isl_set_dim(set, isl_dim_set); + set = isl_set_copy(set); + set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1)); + set = isl_set_eliminate_dims(set, 0, dim); + return isl_set_convex_hull(set); +} + +/* Computes a "simple hull" and then check if each dimension in the + * resulting hull is bounded by a symbolic constant. If not, the + * hull is intersected with the corresponding bounds on the whole set. + */ +struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set) +{ + int i, j; + struct isl_basic_set *hull; + unsigned nparam, left; + int removed_divs = 0; + + hull = isl_set_simple_hull(isl_set_copy(set)); + if (!hull) goto error; - for (i = 0; i < set->n; ++i) { - for (j = 0; j < set->p[i]->n_ineq; ++j) { - int k; - int is_bound; + nparam = isl_basic_set_dim(hull, isl_dim_param); + for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) { + int lower = 0, upper = 0; + struct isl_basic_set *bounds; - k = isl_basic_set_alloc_inequality(bset); - if (k < 0) - goto error; - isl_seq_cpy(bset->ineq[k], set->p[i]->ineq[j], 1 + dim); - is_bound = uset_is_bound(set->ctx, set, bset->ineq[k], - 1 + dim); - if (is_bound < 0) - goto error; - if (!is_bound) - isl_basic_set_free_inequality(bset, 1); + left = isl_basic_set_total_dim(hull) - nparam - i - 1; + for (j = 0; j < hull->n_eq; ++j) { + if (isl_int_is_zero(hull->eq[j][1 + nparam + i])) + continue; + if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1, + left) == -1) + break; + } + if (j < hull->n_eq) + continue; + + for (j = 0; j < hull->n_ineq; ++j) { + if (isl_int_is_zero(hull->ineq[j][1 + nparam + i])) + continue; + if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1, + left) != -1 || + isl_seq_first_non_zero(hull->ineq[j]+1+nparam, + i) != -1) + continue; + if (isl_int_is_pos(hull->ineq[j][1 + nparam + i])) + lower = 1; + else + upper = 1; + if (lower && upper) + break; } - } - bset = isl_basic_set_simplify(bset); - bset = isl_basic_set_finalize(bset); - bset = isl_basic_set_convex_hull(bset); + if (lower && upper) + continue; - hull = isl_basic_map_overlying_set(bset, model); + if (!removed_divs) { + set = isl_set_remove_divs(set); + if (!set) + goto error; + removed_divs = 1; + } + bounds = set_bounds(set, i); + hull = isl_basic_set_intersect(hull, bounds); + if (!hull) + goto error; + } isl_set_free(set); return hull; error: - isl_basic_set_free(bset); isl_set_free(set); - isl_basic_map_free(model); return NULL; } - -struct isl_basic_set *isl_set_simple_hull(struct isl_set *set) -{ - return (struct isl_basic_set *) - isl_map_simple_hull((struct isl_map *)set); -}