X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=isl_convex_hull.c;h=0bab5fa5b67b92c183ad68dbe2d9e6c2bfba4d06;hb=a3474ffbe9847cd6df8936df50f0d0f351d86afe;hp=50795617df2718a8022ff3cf9f3aedd8a7124607;hpb=7c083539dd3121d783fc1d3d8a241826b7e6dbdd;p=platform%2Fupstream%2Fisl.git diff --git a/isl_convex_hull.c b/isl_convex_hull.c index 5079561..0bab5fa 100644 --- a/isl_convex_hull.c +++ b/isl_convex_hull.c @@ -50,7 +50,8 @@ int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap, if (i < total) return 0; - res = isl_solve_lp(*bmap, 0, c, (*bmap)->ctx->one, opt_n, opt_d); + res = isl_basic_map_solve_lp(*bmap, 0, c, (*bmap)->ctx->one, + opt_n, opt_d, NULL); if (res == isl_lp_unbounded) return 0; if (res == isl_lp_error) @@ -93,10 +94,10 @@ struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap) return bmap; tab = isl_tab_from_basic_map(bmap); - tab = isl_tab_detect_equalities(bmap->ctx, tab); - tab = isl_tab_detect_redundant(bmap->ctx, tab); + tab = isl_tab_detect_equalities(tab); + tab = isl_tab_detect_redundant(tab); bmap = isl_basic_map_update_from_tab(bmap, tab); - isl_tab_free(bmap->ctx, tab); + isl_tab_free(tab); ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT); return bmap; @@ -112,8 +113,7 @@ struct isl_basic_set *isl_basic_set_convex_hull(struct isl_basic_set *bset) * constraint c and if so, set the constant term such that the * resulting constraint is a bounding constraint for the set. */ -static int uset_is_bound(struct isl_ctx *ctx, struct isl_set *set, - isl_int *c, unsigned len) +static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len) { int first; int j; @@ -129,8 +129,8 @@ static int uset_is_bound(struct isl_ctx *ctx, struct isl_set *set, if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY)) continue; - res = isl_solve_lp((struct isl_basic_map*)set->p[j], - 0, c, ctx->one, &opt, &opt_denom); + res = isl_basic_set_solve_lp(set->p[j], + 0, c, set->ctx->one, &opt, &opt_denom, NULL); if (res == isl_lp_unbounded) break; if (res == isl_lp_error) @@ -163,8 +163,7 @@ error: * hyperplane (but not necessarily a facet). * Assumes set "set" is bounded. */ -static int is_independent_bound(struct isl_ctx *ctx, - struct isl_set *set, isl_int *c, +static int is_independent_bound(struct isl_set *set, isl_int *c, struct isl_mat *dirs, int n) { int is_bound; @@ -190,7 +189,7 @@ static int is_independent_bound(struct isl_ctx *ctx, } } - is_bound = uset_is_bound(ctx, set, dirs->row[n], dirs->n_col); + is_bound = uset_is_bound(set, dirs->row[n], dirs->n_col); if (is_bound != 1) return is_bound; if (i < n) { @@ -207,14 +206,13 @@ static int is_independent_bound(struct isl_ctx *ctx, * on the set "set", based on the constraints of the basic sets * in "set". */ -static struct isl_mat *independent_bounds(struct isl_ctx *ctx, - struct isl_set *set) +static struct isl_mat *independent_bounds(struct isl_set *set) { int i, j, n; struct isl_mat *dirs = NULL; unsigned dim = isl_set_n_dim(set); - dirs = isl_mat_alloc(ctx, dim, 1+dim); + dirs = isl_mat_alloc(set->ctx, dim, 1+dim); if (!dirs) goto error; @@ -224,16 +222,14 @@ static struct isl_mat *independent_bounds(struct isl_ctx *ctx, struct isl_basic_set *bset = set->p[i]; for (j = 0; n < dim && j < bset->n_eq; ++j) { - f = is_independent_bound(ctx, set, bset->eq[j], - dirs, n); + f = is_independent_bound(set, bset->eq[j], dirs, n); if (f < 0) goto error; if (f) ++n; } for (j = 0; n < dim && j < bset->n_ineq; ++j) { - f = is_independent_bound(ctx, set, bset->ineq[j], - dirs, n); + f = is_independent_bound(set, bset->ineq[j], dirs, n); if (f < 0) goto error; if (f) @@ -243,12 +239,11 @@ static struct isl_mat *independent_bounds(struct isl_ctx *ctx, dirs->n_row = n; return dirs; error: - isl_mat_free(ctx, dirs); + isl_mat_free(dirs); return NULL; } -static struct isl_basic_set *isl_basic_set_set_rational( - struct isl_basic_set *bset) +struct isl_basic_set *isl_basic_set_set_rational(struct isl_basic_set *bset) { if (!bset) return NULL; @@ -283,7 +278,7 @@ error: return NULL; } -static struct isl_basic_set *isl_basic_set_add_equality(struct isl_ctx *ctx, +static struct isl_basic_set *isl_basic_set_add_equality( struct isl_basic_set *bset, isl_int *c) { int i; @@ -308,8 +303,7 @@ error: return NULL; } -static struct isl_set *isl_set_add_equality(struct isl_ctx *ctx, - struct isl_set *set, isl_int *c) +static struct isl_set *isl_set_add_equality(struct isl_set *set, isl_int *c) { int i; @@ -317,7 +311,7 @@ static struct isl_set *isl_set_add_equality(struct isl_ctx *ctx, if (!set) return NULL; for (i = 0; i < set->n; ++i) { - set->p[i] = isl_basic_set_add_equality(ctx, set->p[i], c); + set->p[i] = isl_basic_set_add_equality(set->p[i], c); if (!set->p[i]) goto error; } @@ -471,7 +465,7 @@ static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge) isl_seq_clr(T->row[0]+1, dim - 1); isl_seq_cpy(T->row[1], facet, dim); isl_seq_cpy(T->row[2], ridge, dim); - T = isl_mat_right_inverse(set->ctx, T); + T = isl_mat_right_inverse(T); set = isl_set_preimage(set, T); T = NULL; if (!set) @@ -488,22 +482,22 @@ static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge) } isl_int_init(num); isl_int_init(den); - res = isl_solve_lp((struct isl_basic_map *)lp, 0, - obj->block.data, set->ctx->one, &num, &den); + res = isl_basic_set_solve_lp(lp, 0, + obj->block.data, set->ctx->one, &num, &den, NULL); if (res == isl_lp_ok) { isl_int_neg(num, num); isl_seq_combine(facet, num, facet, den, ridge, dim); } isl_int_clear(num); isl_int_clear(den); - isl_vec_free(set->ctx, obj); + isl_vec_free(obj); isl_basic_set_free(lp); isl_set_free(set); isl_assert(set->ctx, res == isl_lp_ok, return NULL); return facet; error: isl_basic_set_free(lp); - isl_mat_free(set->ctx, T); + isl_mat_free(T); isl_set_free(set); return NULL; } @@ -520,8 +514,8 @@ error: * The resulting linear combination of the bounding constraints will * correspond to a facet of the convex hull. */ -static struct isl_mat *initial_facet_constraint(struct isl_ctx *ctx, - struct isl_set *set, struct isl_mat *bounds) +static struct isl_mat *initial_facet_constraint(struct isl_set *set, + struct isl_mat *bounds) { struct isl_set *slice = NULL; struct isl_basic_set *face = NULL; @@ -534,7 +528,7 @@ static struct isl_mat *initial_facet_constraint(struct isl_ctx *ctx, while (bounds->n_row > 1) { slice = isl_set_copy(set); - slice = isl_set_add_equality(ctx, slice, bounds->row[0]); + slice = isl_set_add_equality(slice, bounds->row[0]); face = isl_set_affine_hull(slice); if (!face) goto error; @@ -542,23 +536,21 @@ static struct isl_mat *initial_facet_constraint(struct isl_ctx *ctx, isl_basic_set_free(face); break; } - m = isl_mat_alloc(ctx, 1 + face->n_eq, 1 + dim); + m = isl_mat_alloc(set->ctx, 1 + face->n_eq, 1 + dim); if (!m) goto error; isl_int_set_si(m->row[0][0], 1); isl_seq_clr(m->row[0]+1, dim); for (i = 0; i < face->n_eq; ++i) isl_seq_cpy(m->row[1 + i], face->eq[i], 1 + dim); - U = isl_mat_right_inverse(ctx, m); - Q = isl_mat_right_inverse(ctx, isl_mat_copy(ctx, U)); - U = isl_mat_drop_cols(ctx, U, 1 + face->n_eq, - dim - face->n_eq); - Q = isl_mat_drop_rows(ctx, Q, 1 + face->n_eq, - dim - face->n_eq); - U = isl_mat_drop_cols(ctx, U, 0, 1); - Q = isl_mat_drop_rows(ctx, Q, 0, 1); - bounds = isl_mat_product(ctx, bounds, U); - bounds = isl_mat_product(ctx, bounds, Q); + U = isl_mat_right_inverse(m); + Q = isl_mat_right_inverse(isl_mat_copy(U)); + U = isl_mat_drop_cols(U, 1 + face->n_eq, dim - face->n_eq); + Q = isl_mat_drop_rows(Q, 1 + face->n_eq, dim - face->n_eq); + U = isl_mat_drop_cols(U, 0, 1); + Q = isl_mat_drop_rows(Q, 0, 1); + bounds = isl_mat_product(bounds, U); + bounds = isl_mat_product(bounds, Q); while (isl_seq_first_non_zero(bounds->row[bounds->n_row-1], bounds->n_col) == -1) { bounds->n_row--; @@ -573,7 +565,7 @@ static struct isl_mat *initial_facet_constraint(struct isl_ctx *ctx, return bounds; error: isl_basic_set_free(face); - isl_mat_free(ctx, bounds); + isl_mat_free(bounds); return NULL; } @@ -632,10 +624,10 @@ static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c) isl_int_set_si(m->row[0][0], 1); isl_seq_clr(m->row[0]+1, dim); isl_seq_cpy(m->row[1], c, 1+dim); - U = isl_mat_right_inverse(set->ctx, m); - Q = isl_mat_right_inverse(set->ctx, isl_mat_copy(set->ctx, U)); - U = isl_mat_drop_cols(set->ctx, U, 1, 1); - Q = isl_mat_drop_rows(set->ctx, Q, 1, 1); + U = isl_mat_right_inverse(m); + Q = isl_mat_right_inverse(isl_mat_copy(U)); + U = isl_mat_drop_cols(U, 1, 1); + Q = isl_mat_drop_rows(Q, 1, 1); set = isl_set_preimage(set, U); facet = uset_convex_hull_wrap_bounded(set); facet = isl_basic_set_preimage(facet, Q); @@ -684,11 +676,11 @@ static struct isl_basic_set *extend(struct isl_basic_set *hull, for (i = 0; i < hull->n_ineq; ++i) { facet = compute_facet(set, hull->ineq[i]); - facet = isl_basic_set_add_equality(facet->ctx, facet, hull->ineq[i]); + facet = isl_basic_set_add_equality(facet, hull->ineq[i]); facet = isl_basic_set_gauss(facet, NULL); facet = isl_basic_set_normalize_constraints(facet); hull_facet = isl_basic_set_copy(hull); - hull_facet = isl_basic_set_add_equality(hull_facet->ctx, hull_facet, hull->ineq[i]); + hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]); hull_facet = isl_basic_set_gauss(hull_facet, NULL); hull_facet = isl_basic_set_normalize_constraints(hull_facet); if (!facet) @@ -727,8 +719,7 @@ error: * We simply collect the lower and upper bounds of each basic set * and the biggest of those. */ -static struct isl_basic_set *convex_hull_1d(struct isl_ctx *ctx, - struct isl_set *set) +static struct isl_basic_set *convex_hull_1d(struct isl_set *set) { struct isl_mat *c = NULL; isl_int *lower = NULL; @@ -745,13 +736,13 @@ static struct isl_basic_set *convex_hull_1d(struct isl_ctx *ctx, set = isl_set_remove_empty_parts(set); if (!set) goto error; - isl_assert(ctx, set->n > 0, goto error); - c = isl_mat_alloc(ctx, 2, 2); + isl_assert(set->ctx, set->n > 0, goto error); + c = isl_mat_alloc(set->ctx, 2, 2); if (!c) goto error; if (set->p[0]->n_eq > 0) { - isl_assert(ctx, set->p[0]->n_eq == 1, goto error); + isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error); lower = c->row[0]; upper = c->row[1]; if (isl_int_is_pos(set->p[0]->eq[0][1])) { @@ -826,7 +817,7 @@ static struct isl_basic_set *convex_hull_1d(struct isl_ctx *ctx, isl_int_clear(a); isl_int_clear(b); - hull = isl_basic_set_alloc(ctx, 0, 1, 0, 0, 2); + hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2); hull = isl_basic_set_set_rational(hull); if (!hull) goto error; @@ -840,11 +831,11 @@ static struct isl_basic_set *convex_hull_1d(struct isl_ctx *ctx, } hull = isl_basic_set_finalize(hull); isl_set_free(set); - isl_mat_free(ctx, c); + isl_mat_free(c); return hull; error: isl_set_free(set); - isl_mat_free(ctx, c); + isl_mat_free(c); return NULL; } @@ -879,7 +870,7 @@ static struct isl_basic_set *convex_hull_0d(struct isl_set *set) * to the two original basic sets, retaining only those corresponding * to the convex hull. */ -static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1, +static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1, struct isl_basic_set *bset2) { int i, j, k; @@ -943,12 +934,540 @@ error: return NULL; } +static int isl_basic_set_is_bounded(struct isl_basic_set *bset) +{ + struct isl_tab *tab; + int bounded; + + tab = isl_tab_from_recession_cone((struct isl_basic_map *)bset); + bounded = isl_tab_cone_is_bounded(tab); + isl_tab_free(tab); + return bounded; +} + +static int isl_set_is_bounded(struct isl_set *set) +{ + int i; + + for (i = 0; i < set->n; ++i) { + int bounded = isl_basic_set_is_bounded(set->p[i]); + if (!bounded || bounded < 0) + return bounded; + } + return 1; +} + +/* Compute the lineality space of the convex hull of bset1 and bset2. + * + * We first compute the intersection of the recession cone of bset1 + * with the negative of the recession cone of bset2 and then compute + * the linear hull of the resulting cone. + */ +static struct isl_basic_set *induced_lineality_space( + struct isl_basic_set *bset1, struct isl_basic_set *bset2) +{ + int i, k; + struct isl_basic_set *lin = NULL; + unsigned dim; + + if (!bset1 || !bset2) + goto error; + + dim = isl_basic_set_total_dim(bset1); + lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1), 0, + bset1->n_eq + bset2->n_eq, + bset1->n_ineq + bset2->n_ineq); + lin = isl_basic_set_set_rational(lin); + if (!lin) + goto error; + for (i = 0; i < bset1->n_eq; ++i) { + k = isl_basic_set_alloc_equality(lin); + if (k < 0) + goto error; + isl_int_set_si(lin->eq[k][0], 0); + isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim); + } + for (i = 0; i < bset1->n_ineq; ++i) { + k = isl_basic_set_alloc_inequality(lin); + if (k < 0) + goto error; + isl_int_set_si(lin->ineq[k][0], 0); + isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim); + } + for (i = 0; i < bset2->n_eq; ++i) { + k = isl_basic_set_alloc_equality(lin); + if (k < 0) + goto error; + isl_int_set_si(lin->eq[k][0], 0); + isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim); + } + for (i = 0; i < bset2->n_ineq; ++i) { + k = isl_basic_set_alloc_inequality(lin); + if (k < 0) + goto error; + isl_int_set_si(lin->ineq[k][0], 0); + isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim); + } + + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); + return isl_basic_set_affine_hull(lin); +error: + isl_basic_set_free(lin); + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); + return NULL; +} + +static struct isl_basic_set *uset_convex_hull(struct isl_set *set); + +/* Given a set and a linear space "lin" of dimension n > 0, + * project the linear space from the set, compute the convex hull + * and then map the set back to the original space. + * + * Let + * + * M x = 0 + * + * describe the linear space. We first compute the Hermite normal + * form H = M U of M = H Q, to obtain + * + * H Q x = 0 + * + * The last n rows of H will be zero, so the last n variables of x' = Q x + * are the one we want to project out. We do this by transforming each + * basic set A x >= b to A U x' >= b and then removing the last n dimensions. + * After computing the convex hull in x'_1, i.e., A' x'_1 >= b', + * we transform the hull back to the original space as A' Q_1 x >= b', + * with Q_1 all but the last n rows of Q. + */ +static struct isl_basic_set *modulo_lineality(struct isl_set *set, + struct isl_basic_set *lin) +{ + unsigned total = isl_basic_set_total_dim(lin); + unsigned lin_dim; + struct isl_basic_set *hull; + struct isl_mat *M, *U, *Q; + + if (!set || !lin) + goto error; + lin_dim = total - lin->n_eq; + M = isl_mat_sub_alloc(set->ctx, lin->eq, 0, lin->n_eq, 1, total); + M = isl_mat_left_hermite(M, 0, &U, &Q); + if (!M) + goto error; + isl_mat_free(M); + isl_basic_set_free(lin); + + Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim); + + U = isl_mat_lin_to_aff(U); + Q = isl_mat_lin_to_aff(Q); + + set = isl_set_preimage(set, U); + set = isl_set_remove_dims(set, total - lin_dim, lin_dim); + hull = uset_convex_hull(set); + hull = isl_basic_set_preimage(hull, Q); + + return hull; +error: + isl_basic_set_free(lin); + isl_set_free(set); + return NULL; +} + +/* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space, + * set up an LP for solving + * + * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j} + * + * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0 + * The next \alpha{ij} correspond to the equalities and come in pairs. + * The final \alpha{ij} correspond to the inequalities. + */ +static struct isl_basic_set *valid_direction_lp( + struct isl_basic_set *bset1, struct isl_basic_set *bset2) +{ + struct isl_dim *dim; + struct isl_basic_set *lp; + unsigned d; + int n; + int i, j, k; + + if (!bset1 || !bset2) + goto error; + d = 1 + isl_basic_set_total_dim(bset1); + n = 2 + + 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq; + dim = isl_dim_set_alloc(bset1->ctx, 0, n); + lp = isl_basic_set_alloc_dim(dim, 0, d, n); + if (!lp) + goto error; + for (i = 0; i < n; ++i) { + k = isl_basic_set_alloc_inequality(lp); + if (k < 0) + goto error; + isl_seq_clr(lp->ineq[k] + 1, n); + isl_int_set_si(lp->ineq[k][0], -1); + isl_int_set_si(lp->ineq[k][1 + i], 1); + } + for (i = 0; i < d; ++i) { + k = isl_basic_set_alloc_equality(lp); + if (k < 0) + goto error; + n = 0; + isl_int_set_si(lp->eq[k][n++], 0); + /* positivity constraint 1 >= 0 */ + isl_int_set_si(lp->eq[k][n++], i == 0); + for (j = 0; j < bset1->n_eq; ++j) { + isl_int_set(lp->eq[k][n++], bset1->eq[j][i]); + isl_int_neg(lp->eq[k][n++], bset1->eq[j][i]); + } + for (j = 0; j < bset1->n_ineq; ++j) + isl_int_set(lp->eq[k][n++], bset1->ineq[j][i]); + /* positivity constraint 1 >= 0 */ + isl_int_set_si(lp->eq[k][n++], -(i == 0)); + for (j = 0; j < bset2->n_eq; ++j) { + isl_int_neg(lp->eq[k][n++], bset2->eq[j][i]); + isl_int_set(lp->eq[k][n++], bset2->eq[j][i]); + } + for (j = 0; j < bset2->n_ineq; ++j) + isl_int_neg(lp->eq[k][n++], bset2->ineq[j][i]); + } + lp = isl_basic_set_gauss(lp, NULL); + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); + return lp; +error: + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); + return NULL; +} + +/* Compute a vector s in the homogeneous space such that > 0 + * for all rays in the homogeneous space of the two cones that correspond + * to the input polyhedra bset1 and bset2. + * + * We compute s as a vector that satisfies + * + * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*) + * + * with h_{ij} the normals of the facets of polyhedron i + * (including the "positivity constraint" 1 >= 0) and \alpha_{ij} + * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1. + * We first set up an LP with as variables the \alpha{ij}. + * In this formulateion, for each polyhedron i, + * the first constraint is the positivity constraint, followed by pairs + * of variables for the equalities, followed by variables for the inequalities. + * We then simply pick a feasible solution and compute s using (*). + * + * Note that we simply pick any valid direction and make no attempt + * to pick a "good" or even the "best" valid direction. + */ +static struct isl_vec *valid_direction( + struct isl_basic_set *bset1, struct isl_basic_set *bset2) +{ + struct isl_basic_set *lp; + struct isl_tab *tab; + struct isl_vec *sample = NULL; + struct isl_vec *dir; + unsigned d; + int i; + int n; + + if (!bset1 || !bset2) + goto error; + lp = valid_direction_lp(isl_basic_set_copy(bset1), + isl_basic_set_copy(bset2)); + tab = isl_tab_from_basic_set(lp); + sample = isl_tab_get_sample_value(tab); + isl_tab_free(tab); + isl_basic_set_free(lp); + if (!sample) + goto error; + d = isl_basic_set_total_dim(bset1); + dir = isl_vec_alloc(bset1->ctx, 1 + d); + if (!dir) + goto error; + isl_seq_clr(dir->block.data + 1, dir->size - 1); + n = 1; + /* positivity constraint 1 >= 0 */ + isl_int_set(dir->block.data[0], sample->block.data[n++]); + for (i = 0; i < bset1->n_eq; ++i) { + isl_int_sub(sample->block.data[n], + sample->block.data[n], sample->block.data[n+1]); + isl_seq_combine(dir->block.data, + bset1->ctx->one, dir->block.data, + sample->block.data[n], bset1->eq[i], 1 + d); + + n += 2; + } + for (i = 0; i < bset1->n_ineq; ++i) + isl_seq_combine(dir->block.data, + bset1->ctx->one, dir->block.data, + sample->block.data[n++], bset1->ineq[i], 1 + d); + isl_vec_free(sample); + isl_seq_normalize(bset1->ctx, dir->block.data + 1, dir->size - 1); + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); + return dir; +error: + isl_vec_free(sample); + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); + return NULL; +} + +/* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1}, + * compute b_i' + A_i' x' >= 0, with + * + * [ b_i A_i ] [ y' ] [ y' ] + * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0 + * + * In particular, add the "positivity constraint" and then perform + * the mapping. + */ +static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset, + struct isl_mat *T) +{ + int k; + + if (!bset) + goto error; + bset = isl_basic_set_extend_constraints(bset, 0, 1); + k = isl_basic_set_alloc_inequality(bset); + if (k < 0) + goto error; + isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset)); + isl_int_set_si(bset->ineq[k][0], 1); + bset = isl_basic_set_preimage(bset, T); + return bset; +error: + isl_mat_free(T); + isl_basic_set_free(bset); + return NULL; +} + +/* Compute the convex hull of a pair of basic sets without any parameters or + * integer divisions, where the convex hull is known to be pointed, + * but the basic sets may be unbounded. + * + * We turn this problem into the computation of a convex hull of a pair + * _bounded_ polyhedra by "changing the direction of the homogeneous + * dimension". This idea is due to Matthias Koeppe. + * + * Consider the cones in homogeneous space that correspond to the + * input polyhedra. The rays of these cones are also rays of the + * polyhedra if the coordinate that corresponds to the homogeneous + * dimension is zero. That is, if the inner product of the rays + * with the homogeneous direction is zero. + * The cones in the homogeneous space can also be considered to + * correspond to other pairs of polyhedra by chosing a different + * homogeneous direction. To ensure that both of these polyhedra + * are bounded, we need to make sure that all rays of the cones + * correspond to vertices and not to rays. + * Let s be a direction such that > 0 for all rays r of both cones. + * Then using s as a homogeneous direction, we obtain a pair of polytopes. + * The vector s is computed in valid_direction. + * + * Note that we need to consider _all_ rays of the cones and not just + * the rays that correspond to rays in the polyhedra. If we were to + * only consider those rays and turn them into vertices, then we + * may inadvertently turn some vertices into rays. + * + * The standard homogeneous direction is the unit vector in the 0th coordinate. + * We therefore transform the two polyhedra such that the selected + * direction is mapped onto this standard direction and then proceed + * with the normal computation. + * Let S be a non-singular square matrix with s as its first row, + * then we want to map the polyhedra to the space + * + * [ y' ] [ y ] [ y ] [ y' ] + * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ] + * + * We take S to be the unimodular completion of s to limit the growth + * of the coefficients in the following computations. + * + * Let b_i + A_i x >= 0 be the constraints of polyhedron i. + * We first move to the homogeneous dimension + * + * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ] + * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ] + * + * Then we change directoin + * + * [ b_i A_i ] [ y' ] [ y' ] + * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0 + * + * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0 + * resulting in b' + A' x' >= 0, which we then convert back + * + * [ y ] [ y ] + * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0 + * + * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra. + */ +static struct isl_basic_set *convex_hull_pair_pointed( + struct isl_basic_set *bset1, struct isl_basic_set *bset2) +{ + struct isl_ctx *ctx = NULL; + struct isl_vec *dir = NULL; + struct isl_mat *T = NULL; + struct isl_mat *T2 = NULL; + struct isl_basic_set *hull; + struct isl_set *set; + + if (!bset1 || !bset2) + goto error; + ctx = bset1->ctx; + dir = valid_direction(isl_basic_set_copy(bset1), + isl_basic_set_copy(bset2)); + if (!dir) + goto error; + T = isl_mat_alloc(bset1->ctx, dir->size, dir->size); + if (!T) + goto error; + isl_seq_cpy(T->row[0], dir->block.data, dir->size); + T = isl_mat_unimodular_complete(T, 1); + T2 = isl_mat_right_inverse(isl_mat_copy(T)); + + bset1 = homogeneous_map(bset1, isl_mat_copy(T2)); + bset2 = homogeneous_map(bset2, T2); + set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0); + set = isl_set_add(set, bset1); + set = isl_set_add(set, bset2); + hull = uset_convex_hull(set); + hull = isl_basic_set_preimage(hull, T); + + isl_vec_free(dir); + + return hull; +error: + isl_vec_free(dir); + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); + return NULL; +} + +/* Compute the convex hull of a pair of basic sets without any parameters or + * integer divisions. + * + * If the convex hull of the two basic sets would have a non-trivial + * lineality space, we first project out this lineality space. + */ +static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1, + struct isl_basic_set *bset2) +{ + struct isl_basic_set *lin; + + if (isl_basic_set_is_bounded(bset1) || isl_basic_set_is_bounded(bset2)) + return convex_hull_pair_pointed(bset1, bset2); + + lin = induced_lineality_space(isl_basic_set_copy(bset1), + isl_basic_set_copy(bset2)); + if (!lin) + goto error; + if (isl_basic_set_is_universe(lin)) { + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); + return lin; + } + if (lin->n_eq < isl_basic_set_total_dim(lin)) { + struct isl_set *set; + set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0); + set = isl_set_add(set, bset1); + set = isl_set_add(set, bset2); + return modulo_lineality(set, lin); + } + isl_basic_set_free(lin); + + return convex_hull_pair_pointed(bset1, bset2); +error: + isl_basic_set_free(bset1); + isl_basic_set_free(bset2); + return NULL; +} + +/* Compute the lineality space of a basic set. + * We currently do not allow the basic set to have any divs. + * We basically just drop the constants and turn every inequality + * into an equality. + */ +struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset) +{ + int i, k; + struct isl_basic_set *lin = NULL; + unsigned dim; + + if (!bset) + goto error; + isl_assert(bset->ctx, bset->n_div == 0, goto error); + dim = isl_basic_set_total_dim(bset); + + lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset), 0, dim, 0); + if (!lin) + goto error; + for (i = 0; i < bset->n_eq; ++i) { + k = isl_basic_set_alloc_equality(lin); + if (k < 0) + goto error; + isl_int_set_si(lin->eq[k][0], 0); + isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim); + } + lin = isl_basic_set_gauss(lin, NULL); + if (!lin) + goto error; + for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) { + k = isl_basic_set_alloc_equality(lin); + if (k < 0) + goto error; + isl_int_set_si(lin->eq[k][0], 0); + isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim); + lin = isl_basic_set_gauss(lin, NULL); + if (!lin) + goto error; + } + isl_basic_set_free(bset); + return lin; +error: + isl_basic_set_free(lin); + isl_basic_set_free(bset); + return NULL; +} + +/* Compute the (linear) hull of the lineality spaces of the basic sets in the + * "underlying" set "set". + */ +static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set) +{ + int i; + struct isl_set *lin = NULL; + + if (!set) + return NULL; + if (set->n == 0) { + struct isl_dim *dim = isl_set_get_dim(set); + isl_set_free(set); + return isl_basic_set_empty(dim); + } + + lin = isl_set_alloc_dim(isl_set_get_dim(set), set->n, 0); + for (i = 0; i < set->n; ++i) + lin = isl_set_add(lin, + isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i]))); + isl_set_free(set); + return isl_set_affine_hull(lin); +} + /* Compute the convex hull of a set without any parameters or - * integer divisions using Fourier-Motzkin elimination. + * integer divisions. * In each step, we combined two basic sets until only one * basic set is left. + * The input basic sets are assumed not to have a non-trivial + * lineality space. If any of the intermediate results has + * a non-trivial lineality space, it is projected out. */ -static struct isl_basic_set *uset_convex_hull_elim(struct isl_set *set) +static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set) { struct isl_basic_set *convex_hull = NULL; @@ -965,6 +1484,21 @@ static struct isl_basic_set *uset_convex_hull_elim(struct isl_set *set) if (!set) goto error; convex_hull = convex_hull_pair(convex_hull, t); + if (set->n == 0) + break; + t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull)); + if (!t) + goto error; + if (isl_basic_set_is_universe(t)) { + isl_basic_set_free(convex_hull); + convex_hull = t; + break; + } + if (t->n_eq < isl_basic_set_total_dim(t)) { + set = isl_set_add(set, convex_hull); + return modulo_lineality(set, t); + } + isl_basic_set_free(t); } isl_set_free(set); return convex_hull; @@ -992,11 +1526,11 @@ static struct isl_basic_set *initial_hull(struct isl_basic_set *hull, if (!hull) goto error; - bounds = independent_bounds(set->ctx, set); + bounds = independent_bounds(set); if (!bounds) goto error; isl_assert(set->ctx, bounds->n_row == isl_set_n_dim(set), goto error); - bounds = initial_facet_constraint(set->ctx, set, bounds); + bounds = initial_facet_constraint(set, bounds); if (!bounds) goto error; k = isl_basic_set_alloc_inequality(hull); @@ -1005,12 +1539,12 @@ static struct isl_basic_set *initial_hull(struct isl_basic_set *hull, dim = isl_set_n_dim(set); isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error); isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col); - isl_mat_free(set->ctx, bounds); + isl_mat_free(bounds); return hull; error: isl_basic_set_free(hull); - isl_mat_free(set->ctx, bounds); + isl_mat_free(bounds); return NULL; } @@ -1053,7 +1587,7 @@ static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table, c->ineq = ineq; return; } - c->c = isl_mat_cow(ctx, c->c); + c->c = isl_mat_cow(c->c); isl_int_set(c->c->row[0][0], con[0]); c->ineq = ineq; } @@ -1193,7 +1727,7 @@ static struct isl_basic_set *common_constraints(struct isl_basic_set *hull, isl_hash_table_clear(table); for (i = 0; i < min_constraints; ++i) - isl_mat_free(hull->ctx, constraints[i].c); + isl_mat_free(constraints[i].c); free(constraints); free(table); return hull; @@ -1202,7 +1736,7 @@ error: free(table); if (constraints) for (i = 0; i < min_constraints; ++i) - isl_mat_free(hull->ctx, constraints[i].c); + isl_mat_free(constraints[i].c); free(constraints); return hull; } @@ -1245,29 +1779,6 @@ static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set) return hull; } -static int isl_basic_set_is_bounded(struct isl_basic_set *bset) -{ - struct isl_tab *tab; - int bounded; - - tab = isl_tab_from_recession_cone((struct isl_basic_map *)bset); - bounded = isl_tab_cone_is_bounded(bset->ctx, tab); - isl_tab_free(bset->ctx, tab); - return bounded; -} - -static int isl_set_is_bounded(struct isl_set *set) -{ - int i; - - for (i = 0; i < set->n; ++i) { - int bounded = isl_basic_set_is_bounded(set->p[i]); - if (!bounded || bounded < 0) - return bounded; - } - return 1; -} - /* Compute the convex hull of a set without any parameters or * integer divisions. Depending on whether the set is bounded, * we pass control to the wrapping based convex hull or @@ -1278,6 +1789,7 @@ static struct isl_basic_set *uset_convex_hull(struct isl_set *set) { int i; struct isl_basic_set *convex_hull = NULL; + struct isl_basic_set *lin; if (isl_set_n_dim(set) == 0) return convex_hull_0d(set); @@ -1295,12 +1807,23 @@ static struct isl_basic_set *uset_convex_hull(struct isl_set *set) return convex_hull; } if (isl_set_n_dim(set) == 1) - return convex_hull_1d(set->ctx, set); + return convex_hull_1d(set); - if (!isl_set_is_bounded(set)) - return uset_convex_hull_elim(set); + if (isl_set_is_bounded(set)) + return uset_convex_hull_wrap(set); - return uset_convex_hull_wrap(set); + lin = uset_combined_lineality_space(isl_set_copy(set)); + if (!lin) + goto error; + if (isl_basic_set_is_universe(lin)) { + isl_set_free(set); + return lin; + } + if (lin->n_eq < isl_basic_set_total_dim(lin)) + return modulo_lineality(set, lin); + isl_basic_set_free(lin); + + return uset_convex_hull_unbounded(set); error: isl_set_free(set); isl_basic_set_free(convex_hull); @@ -1327,7 +1850,7 @@ static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set) if (!set) goto error; - set = isl_set_normalize(set); + set = isl_set_coalesce(set); if (!set) goto error; if (set->n == 1) { @@ -1336,7 +1859,7 @@ static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set) return convex_hull; } if (isl_set_n_dim(set) == 1) - return convex_hull_1d(set->ctx, set); + return convex_hull_1d(set); return uset_convex_hull_wrap(set); error: @@ -1462,7 +1985,7 @@ static void sh_data_free(struct sh_data *data) isl_hash_table_free(data->ctx, data->hull_table); for (i = 0; i < data->n; ++i) { isl_hash_table_free(data->ctx, data->p[i].table); - isl_tab_free(data->ctx, data->p[i].tab); + isl_tab_free(data->p[i].tab); } free(data); } @@ -1572,8 +2095,8 @@ static int is_bound(struct sh_data *data, struct isl_set *set, int j, isl_int_init(opt); - res = isl_tab_min(data->ctx, data->p[j].tab, ineq, data->ctx->one, - &opt, NULL); + res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one, + &opt, NULL, 0); if (res == isl_lp_ok && isl_int_is_neg(opt)) isl_int_sub(ineq[0], ineq[0], opt);