X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=isl_coalesce.c;h=c2c3bb44d7366e169a2337b0f2feb1546011f6f7;hb=de51a9bc4da5dd3f1f9f57c2362da6f9752c44e0;hp=07a69a648799257de67a5d6038f368ca4758e319;hpb=c8559a035708368a2b037ae8affb66f8d1df08fc;p=platform%2Fupstream%2Fisl.git diff --git a/isl_coalesce.c b/isl_coalesce.c index 07a69a6..c2c3bb4 100644 --- a/isl_coalesce.c +++ b/isl_coalesce.c @@ -1,5 +1,23 @@ +/* + * Copyright 2008-2009 Katholieke Universiteit Leuven + * Copyright 2010 INRIA Saclay + * Copyright 2012 Ecole Normale Superieure + * + * Use of this software is governed by the MIT license + * + * Written by Sven Verdoolaege, K.U.Leuven, Departement + * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium + * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, + * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France + * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France + */ + #include "isl_map_private.h" +#include +#include #include "isl_tab.h" +#include +#include #define STATUS_ERROR -1 #define STATUS_REDUNDANT 1 @@ -9,10 +27,11 @@ #define STATUS_ADJ_EQ 5 #define STATUS_ADJ_INEQ 6 -static int status_in(struct isl_ctx *ctx, isl_int *ineq, struct isl_tab *tab) +static int status_in(isl_int *ineq, struct isl_tab *tab) { - enum isl_ineq_type type = isl_tab_ineq_type(ctx, tab, ineq); + enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq); switch (type) { + default: case isl_ineq_error: return STATUS_ERROR; case isl_ineq_redundant: return STATUS_VALID; case isl_ineq_separate: return STATUS_SEPARATE; @@ -22,25 +41,24 @@ static int status_in(struct isl_ctx *ctx, isl_int *ineq, struct isl_tab *tab) } } -/* Compute the position of the equalities of basic set "i" - * with respect to basic set "j". +/* Compute the position of the equalities of basic map "bmap_i" + * with respect to the basic map represented by "tab_j". * The resulting array has twice as many entries as the number * of equalities corresponding to the two inequalties to which * each equality corresponds. */ -static int *eq_status_in(struct isl_set *set, int i, int j, - struct isl_tab **tabs) +static int *eq_status_in(__isl_keep isl_basic_map *bmap_i, + struct isl_tab *tab_j) { int k, l; - int *eq = isl_calloc_array(set->ctx, int, 2 * set->p[i]->n_eq); + int *eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq); unsigned dim; - dim = isl_basic_set_total_dim(set->p[i]); - for (k = 0; k < set->p[i]->n_eq; ++k) { + dim = isl_basic_map_total_dim(bmap_i); + for (k = 0; k < bmap_i->n_eq; ++k) { for (l = 0; l < 2; ++l) { - isl_seq_neg(set->p[i]->eq[k], set->p[i]->eq[k], 1+dim); - eq[2 * k + l] = status_in(set->ctx, set->p[i]->eq[k], - tabs[j]); + isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim); + eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j); if (eq[2 * k + l] == STATUS_ERROR) goto error; } @@ -55,22 +73,23 @@ error: return NULL; } -/* Compute the position of the inequalities of basic set "i" - * with respect to basic set "j". +/* Compute the position of the inequalities of basic map "bmap_i" + * (also represented by "tab_i", if not NULL) with respect to the basic map + * represented by "tab_j". */ -static int *ineq_status_in(struct isl_set *set, int i, int j, - struct isl_tab **tabs) +static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i, + struct isl_tab *tab_i, struct isl_tab *tab_j) { int k; - unsigned n_eq = set->p[i]->n_eq; - int *ineq = isl_calloc_array(set->ctx, int, set->p[i]->n_ineq); + unsigned n_eq = bmap_i->n_eq; + int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq); - for (k = 0; k < set->p[i]->n_ineq; ++k) { - if (isl_tab_is_redundant(set->ctx, tabs[i], n_eq + k)) { + for (k = 0; k < bmap_i->n_ineq; ++k) { + if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) { ineq[k] = STATUS_REDUNDANT; continue; } - ineq[k] = status_in(set->ctx, set->p[i]->ineq[k], tabs[j]); + ineq[k] = status_in(bmap_i->ineq[k], tab_j); if (ineq[k] == STATUS_ERROR) goto error; if (ineq[k] == STATUS_SEPARATE) @@ -117,94 +136,123 @@ static int all(int *con, unsigned len, int status) return 1; } -static void drop(struct isl_set *set, int i, struct isl_tab **tabs) +static void drop(struct isl_map *map, int i, struct isl_tab **tabs) { - isl_basic_set_free(set->p[i]); - isl_tab_free(set->ctx, tabs[i]); + isl_basic_map_free(map->p[i]); + isl_tab_free(tabs[i]); - if (i != set->n - 1) { - set->p[i] = set->p[set->n - 1]; - tabs[i] = tabs[set->n - 1]; + if (i != map->n - 1) { + map->p[i] = map->p[map->n - 1]; + tabs[i] = tabs[map->n - 1]; } - tabs[set->n - 1] = NULL; - set->n--; + tabs[map->n - 1] = NULL; + map->n--; } -/* Replace the pair of basic sets i and j but the basic set bounded - * by the valid constraints in both basic sets. +/* Replace the pair of basic maps i and j by the basic map bounded + * by the valid constraints in both basic maps and the constraint + * in extra (if not NULL). */ -static int fuse(struct isl_set *set, int i, int j, struct isl_tab **tabs, - int *ineq_i, int *ineq_j) +static int fuse(struct isl_map *map, int i, int j, + struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j, + __isl_keep isl_mat *extra) { int k, l; - struct isl_basic_set *fused = NULL; + struct isl_basic_map *fused = NULL; struct isl_tab *fused_tab = NULL; - unsigned total = isl_basic_set_total_dim(set->p[i]); + unsigned total = isl_basic_map_total_dim(map->p[i]); + unsigned extra_rows = extra ? extra->n_row : 0; - fused = isl_basic_set_alloc_dim(isl_dim_copy(set->p[i]->dim), - set->p[i]->n_div, - set->p[i]->n_eq + set->p[j]->n_eq, - set->p[i]->n_ineq + set->p[j]->n_ineq); + fused = isl_basic_map_alloc_space(isl_space_copy(map->p[i]->dim), + map->p[i]->n_div, + map->p[i]->n_eq + map->p[j]->n_eq, + map->p[i]->n_ineq + map->p[j]->n_ineq + extra_rows); if (!fused) goto error; - for (k = 0; k < set->p[i]->n_eq; ++k) { - int l = isl_basic_set_alloc_equality(fused); - isl_seq_cpy(fused->eq[l], set->p[i]->eq[k], 1 + total); + for (k = 0; k < map->p[i]->n_eq; ++k) { + if (eq_i && (eq_i[2 * k] != STATUS_VALID || + eq_i[2 * k + 1] != STATUS_VALID)) + continue; + l = isl_basic_map_alloc_equality(fused); + if (l < 0) + goto error; + isl_seq_cpy(fused->eq[l], map->p[i]->eq[k], 1 + total); } - for (k = 0; k < set->p[j]->n_eq; ++k) { - int l = isl_basic_set_alloc_equality(fused); - isl_seq_cpy(fused->eq[l], set->p[j]->eq[k], 1 + total); + for (k = 0; k < map->p[j]->n_eq; ++k) { + if (eq_j && (eq_j[2 * k] != STATUS_VALID || + eq_j[2 * k + 1] != STATUS_VALID)) + continue; + l = isl_basic_map_alloc_equality(fused); + if (l < 0) + goto error; + isl_seq_cpy(fused->eq[l], map->p[j]->eq[k], 1 + total); } - for (k = 0; k < set->p[i]->n_ineq; ++k) { + for (k = 0; k < map->p[i]->n_ineq; ++k) { if (ineq_i[k] != STATUS_VALID) continue; - l = isl_basic_set_alloc_inequality(fused); - isl_seq_cpy(fused->ineq[l], set->p[i]->ineq[k], 1 + total); + l = isl_basic_map_alloc_inequality(fused); + if (l < 0) + goto error; + isl_seq_cpy(fused->ineq[l], map->p[i]->ineq[k], 1 + total); } - for (k = 0; k < set->p[j]->n_ineq; ++k) { + for (k = 0; k < map->p[j]->n_ineq; ++k) { if (ineq_j[k] != STATUS_VALID) continue; - l = isl_basic_set_alloc_inequality(fused); - isl_seq_cpy(fused->ineq[l], set->p[j]->ineq[k], 1 + total); + l = isl_basic_map_alloc_inequality(fused); + if (l < 0) + goto error; + isl_seq_cpy(fused->ineq[l], map->p[j]->ineq[k], 1 + total); } - for (k = 0; k < set->p[i]->n_div; ++k) { - int l = isl_basic_set_alloc_div(fused); - isl_seq_cpy(fused->div[l], set->p[i]->div[k], 1 + 1 + total); + for (k = 0; k < map->p[i]->n_div; ++k) { + int l = isl_basic_map_alloc_div(fused); + if (l < 0) + goto error; + isl_seq_cpy(fused->div[l], map->p[i]->div[k], 1 + 1 + total); } - fused = isl_basic_set_gauss(fused, NULL); - ISL_F_SET(fused, ISL_BASIC_SET_FINAL); + for (k = 0; k < extra_rows; ++k) { + l = isl_basic_map_alloc_inequality(fused); + if (l < 0) + goto error; + isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total); + } + + fused = isl_basic_map_gauss(fused, NULL); + ISL_F_SET(fused, ISL_BASIC_MAP_FINAL); + if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) && + ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL)) + ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL); - fused_tab = isl_tab_from_basic_set(fused); - fused_tab = isl_tab_detect_redundant(set->ctx, fused_tab); - if (!fused_tab) + fused_tab = isl_tab_from_basic_map(fused, 0); + if (isl_tab_detect_redundant(fused_tab) < 0) goto error; - isl_basic_set_free(set->p[i]); - set->p[i] = fused; - isl_tab_free(set->ctx, tabs[i]); + isl_basic_map_free(map->p[i]); + map->p[i] = fused; + isl_tab_free(tabs[i]); tabs[i] = fused_tab; - drop(set, j, tabs); + drop(map, j, tabs); return 1; error: - isl_basic_set_free(fused); + isl_tab_free(fused_tab); + isl_basic_map_free(fused); return -1; } -/* Given a pair of basic sets i and j such that all constraints are either +/* Given a pair of basic maps i and j such that all constraints are either * "valid" or "cut", check if the facets corresponding to the "cut" - * constraints of i lie entirely within basic set j. - * If so, replace the pair by the basic set consisting of the valid - * constraints in both basic sets. + * constraints of i lie entirely within basic map j. + * If so, replace the pair by the basic map consisting of the valid + * constraints in both basic maps. * * To see that we are not introducing any extra points, call the - * two basic sets A and B and the resulting set U and let x + * two basic maps A and B and the resulting map U and let x * be an element of U \setminus ( A \cup B ). * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x * violates them. Let X be the intersection of U with the opposites @@ -216,43 +264,45 @@ error: * c_2 must be opposites of each other, but then x could not violate * both of them. */ -static int check_facets(struct isl_set *set, int i, int j, +static int check_facets(struct isl_map *map, int i, int j, struct isl_tab **tabs, int *ineq_i, int *ineq_j) { int k, l; struct isl_tab_undo *snap; - unsigned n_eq = set->p[i]->n_eq; + unsigned n_eq = map->p[i]->n_eq; - snap = isl_tab_snap(set->ctx, tabs[i]); + snap = isl_tab_snap(tabs[i]); - for (k = 0; k < set->p[i]->n_ineq; ++k) { + for (k = 0; k < map->p[i]->n_ineq; ++k) { if (ineq_i[k] != STATUS_CUT) continue; - tabs[i] = isl_tab_select_facet(set->ctx, tabs[i], n_eq + k); - for (l = 0; l < set->p[j]->n_ineq; ++l) { + if (isl_tab_select_facet(tabs[i], n_eq + k) < 0) + return -1; + for (l = 0; l < map->p[j]->n_ineq; ++l) { int stat; if (ineq_j[l] != STATUS_CUT) continue; - stat = status_in(set->ctx, set->p[j]->ineq[l], tabs[i]); + stat = status_in(map->p[j]->ineq[l], tabs[i]); if (stat != STATUS_VALID) break; } - isl_tab_rollback(set->ctx, tabs[i], snap); - if (l < set->p[j]->n_ineq) + if (isl_tab_rollback(tabs[i], snap) < 0) + return -1; + if (l < map->p[j]->n_ineq) break; } - if (k < set->p[i]->n_ineq) + if (k < map->p[i]->n_ineq) /* BAD CUT PAIR */ return 0; - return fuse(set, i, j, tabs, ineq_i, ineq_j); + return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL); } -/* Both basic sets have at least one inequality with and adjacent - * (but opposite) inequality in the other basic set. +/* Both basic maps have at least one inequality with and adjacent + * (but opposite) inequality in the other basic map. * Check that there are no cut constraints and that there is only * a single pair of adjacent inequalities. - * If so, we can replace the pair by a single basic set described + * If so, we can replace the pair by a single basic map described * by all but the pair of adjacent inequalities. * Any additional points introduced lie strictly between the two * adjacent hyperplanes and can therefore be integral. @@ -265,7 +315,7 @@ static int check_facets(struct isl_set *set, int i, int j, * \___||_/ \_____/ * * The test for a single pair of adjancent inequalities is important - * for avoiding the combination of two basic sets like the following + * for avoiding the combination of two basic maps like the following * * /| * / | @@ -275,70 +325,65 @@ static int check_facets(struct isl_set *set, int i, int j, * | | * |___| */ -static int check_adj_ineq(struct isl_set *set, int i, int j, +static int check_adj_ineq(struct isl_map *map, int i, int j, struct isl_tab **tabs, int *ineq_i, int *ineq_j) { int changed = 0; - if (any(ineq_i, set->p[i]->n_ineq, STATUS_CUT) || - any(ineq_j, set->p[j]->n_ineq, STATUS_CUT)) + if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT) || + any(ineq_j, map->p[j]->n_ineq, STATUS_CUT)) /* ADJ INEQ CUT */ ; - else if (count(ineq_i, set->p[i]->n_ineq, STATUS_ADJ_INEQ) == 1 && - count(ineq_j, set->p[j]->n_ineq, STATUS_ADJ_INEQ) == 1) - changed = fuse(set, i, j, tabs, ineq_i, ineq_j); + else if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) == 1 && + count(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ) == 1) + changed = fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL); /* else ADJ INEQ TOO MANY */ return changed; } -/* Check if basic set "i" contains the basic set represented +/* Check if basic map "i" contains the basic map represented * by the tableau "tab". */ -static int contains(struct isl_set *set, int i, int *ineq_i, +static int contains(struct isl_map *map, int i, int *ineq_i, struct isl_tab *tab) { int k, l; unsigned dim; - dim = isl_basic_set_total_dim(set->p[i]); - for (k = 0; k < set->p[i]->n_eq; ++k) { + dim = isl_basic_map_total_dim(map->p[i]); + for (k = 0; k < map->p[i]->n_eq; ++k) { for (l = 0; l < 2; ++l) { int stat; - isl_seq_neg(set->p[i]->eq[k], set->p[i]->eq[k], 1+dim); - stat = status_in(set->ctx, set->p[i]->eq[k], tab); + isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim); + stat = status_in(map->p[i]->eq[k], tab); if (stat != STATUS_VALID) return 0; } } - for (k = 0; k < set->p[i]->n_ineq; ++k) { + for (k = 0; k < map->p[i]->n_ineq; ++k) { int stat; - if (ineq_i[l] == STATUS_REDUNDANT) + if (ineq_i[k] == STATUS_REDUNDANT) continue; - stat = status_in(set->ctx, set->p[i]->ineq[k], tab); + stat = status_in(map->p[i]->ineq[k], tab); if (stat != STATUS_VALID) return 0; } return 1; } -/* At least one of the basic sets has an equality that is adjacent - * to inequality. Make sure that only one of the basic sets has - * such an equality and that the other basic set has exactly one - * inequality adjacent to an equality. - * We call the basic set that has the inequality "i" and the basic - * set that has the equality "j". - * If "i" has any "cut" inequality, then relaxing the inequality - * by one would not result in a basic set that contains the other - * basic set. - * Otherwise, we relax the constraint, compute the corresponding - * facet and check whether it is included in the other basic set. - * If so, we know that relaxing the constraint extend the basic - * set with exactly the other basic set (we already know that this - * other basic set is included in the extension, because there +/* Basic map "i" has an inequality "k" that is adjacent to some equality + * of basic map "j". All the other inequalities are valid for "j". + * Check if basic map "j" forms an extension of basic map "i". + * + * In particular, we relax constraint "k", compute the corresponding + * facet and check whether it is included in the other basic map. + * If so, we know that relaxing the constraint extends the basic + * map with exactly the other basic map (we already know that this + * other basic map is included in the extension, because there * were no "cut" inequalities in "i") and we can replace the - * two basic sets by thie extension. + * two basic maps by thie extension. * ____ _____ * / || / | * / || / | @@ -346,113 +391,850 @@ static int contains(struct isl_set *set, int i, int *ineq_i, * \ || \ | * \___|| \____| */ -static int check_adj_eq(struct isl_set *set, int i, int j, +static int is_extension(struct isl_map *map, int i, int j, int k, struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) { int changed = 0; int super; - int k; struct isl_tab_undo *snap, *snap2; - unsigned n_eq = set->p[i]->n_eq; + unsigned n_eq = map->p[i]->n_eq; + + if (isl_tab_is_equality(tabs[i], n_eq + k)) + return 0; + + snap = isl_tab_snap(tabs[i]); + tabs[i] = isl_tab_relax(tabs[i], n_eq + k); + snap2 = isl_tab_snap(tabs[i]); + if (isl_tab_select_facet(tabs[i], n_eq + k) < 0) + return -1; + super = contains(map, j, ineq_j, tabs[i]); + if (super) { + if (isl_tab_rollback(tabs[i], snap2) < 0) + return -1; + map->p[i] = isl_basic_map_cow(map->p[i]); + if (!map->p[i]) + return -1; + isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1); + ISL_F_SET(map->p[i], ISL_BASIC_MAP_FINAL); + drop(map, j, tabs); + changed = 1; + } else + if (isl_tab_rollback(tabs[i], snap) < 0) + return -1; - if (any(eq_i, 2 * set->p[i]->n_eq, STATUS_ADJ_INEQ) && - any(eq_j, 2 * set->p[j]->n_eq, STATUS_ADJ_INEQ)) + return changed; +} + +/* Data structure that keeps track of the wrapping constraints + * and of information to bound the coefficients of those constraints. + * + * bound is set if we want to apply a bound on the coefficients + * mat contains the wrapping constraints + * max is the bound on the coefficients (if bound is set) + */ +struct isl_wraps { + int bound; + isl_mat *mat; + isl_int max; +}; + +/* Update wraps->max to be greater than or equal to the coefficients + * in the equalities and inequalities of bmap that can be removed if we end up + * applying wrapping. + */ +static void wraps_update_max(struct isl_wraps *wraps, + __isl_keep isl_basic_map *bmap, int *eq, int *ineq) +{ + int k; + isl_int max_k; + unsigned total = isl_basic_map_total_dim(bmap); + + isl_int_init(max_k); + + for (k = 0; k < bmap->n_eq; ++k) { + if (eq[2 * k] == STATUS_VALID && + eq[2 * k + 1] == STATUS_VALID) + continue; + isl_seq_abs_max(bmap->eq[k] + 1, total, &max_k); + if (isl_int_abs_gt(max_k, wraps->max)) + isl_int_set(wraps->max, max_k); + } + + for (k = 0; k < bmap->n_ineq; ++k) { + if (ineq[k] == STATUS_VALID || ineq[k] == STATUS_REDUNDANT) + continue; + isl_seq_abs_max(bmap->ineq[k] + 1, total, &max_k); + if (isl_int_abs_gt(max_k, wraps->max)) + isl_int_set(wraps->max, max_k); + } + + isl_int_clear(max_k); +} + +/* Initialize the isl_wraps data structure. + * If we want to bound the coefficients of the wrapping constraints, + * we set wraps->max to the largest coefficient + * in the equalities and inequalities that can be removed if we end up + * applying wrapping. + */ +static void wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat, + __isl_keep isl_map *map, int i, int j, + int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) +{ + isl_ctx *ctx; + + wraps->bound = 0; + wraps->mat = mat; + if (!mat) + return; + ctx = isl_mat_get_ctx(mat); + wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx); + if (!wraps->bound) + return; + isl_int_init(wraps->max); + isl_int_set_si(wraps->max, 0); + wraps_update_max(wraps, map->p[i], eq_i, ineq_i); + wraps_update_max(wraps, map->p[j], eq_j, ineq_j); +} + +/* Free the contents of the isl_wraps data structure. + */ +static void wraps_free(struct isl_wraps *wraps) +{ + isl_mat_free(wraps->mat); + if (wraps->bound) + isl_int_clear(wraps->max); +} + +/* Is the wrapping constraint in row "row" allowed? + * + * If wraps->bound is set, we check that none of the coefficients + * is greater than wraps->max. + */ +static int allow_wrap(struct isl_wraps *wraps, int row) +{ + int i; + + if (!wraps->bound) + return 1; + + for (i = 1; i < wraps->mat->n_col; ++i) + if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max)) + return 0; + + return 1; +} + +/* For each non-redundant constraint in "bmap" (as determined by "tab"), + * wrap the constraint around "bound" such that it includes the whole + * set "set" and append the resulting constraint to "wraps". + * "wraps" is assumed to have been pre-allocated to the appropriate size. + * wraps->n_row is the number of actual wrapped constraints that have + * been added. + * If any of the wrapping problems results in a constraint that is + * identical to "bound", then this means that "set" is unbounded in such + * way that no wrapping is possible. If this happens then wraps->n_row + * is reset to zero. + * Similarly, if we want to bound the coefficients of the wrapping + * constraints and a newly added wrapping constraint does not + * satisfy the bound, then wraps->n_row is also reset to zero. + */ +static int add_wraps(struct isl_wraps *wraps, __isl_keep isl_basic_map *bmap, + struct isl_tab *tab, isl_int *bound, __isl_keep isl_set *set) +{ + int l; + int w; + unsigned total = isl_basic_map_total_dim(bmap); + + w = wraps->mat->n_row; + + for (l = 0; l < bmap->n_ineq; ++l) { + if (isl_seq_is_neg(bound, bmap->ineq[l], 1 + total)) + continue; + if (isl_seq_eq(bound, bmap->ineq[l], 1 + total)) + continue; + if (isl_tab_is_redundant(tab, bmap->n_eq + l)) + continue; + + isl_seq_cpy(wraps->mat->row[w], bound, 1 + total); + if (!isl_set_wrap_facet(set, wraps->mat->row[w], bmap->ineq[l])) + return -1; + if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total)) + goto unbounded; + if (!allow_wrap(wraps, w)) + goto unbounded; + ++w; + } + for (l = 0; l < bmap->n_eq; ++l) { + if (isl_seq_is_neg(bound, bmap->eq[l], 1 + total)) + continue; + if (isl_seq_eq(bound, bmap->eq[l], 1 + total)) + continue; + + isl_seq_cpy(wraps->mat->row[w], bound, 1 + total); + isl_seq_neg(wraps->mat->row[w + 1], bmap->eq[l], 1 + total); + if (!isl_set_wrap_facet(set, wraps->mat->row[w], + wraps->mat->row[w + 1])) + return -1; + if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total)) + goto unbounded; + if (!allow_wrap(wraps, w)) + goto unbounded; + ++w; + + isl_seq_cpy(wraps->mat->row[w], bound, 1 + total); + if (!isl_set_wrap_facet(set, wraps->mat->row[w], bmap->eq[l])) + return -1; + if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total)) + goto unbounded; + if (!allow_wrap(wraps, w)) + goto unbounded; + ++w; + } + + wraps->mat->n_row = w; + return 0; +unbounded: + wraps->mat->n_row = 0; + return 0; +} + +/* Check if the constraints in "wraps" from "first" until the last + * are all valid for the basic set represented by "tab". + * If not, wraps->n_row is set to zero. + */ +static int check_wraps(__isl_keep isl_mat *wraps, int first, + struct isl_tab *tab) +{ + int i; + + for (i = first; i < wraps->n_row; ++i) { + enum isl_ineq_type type; + type = isl_tab_ineq_type(tab, wraps->row[i]); + if (type == isl_ineq_error) + return -1; + if (type == isl_ineq_redundant) + continue; + wraps->n_row = 0; + return 0; + } + + return 0; +} + +/* Return a set that corresponds to the non-redudant constraints + * (as recorded in tab) of bmap. + * + * It's important to remove the redundant constraints as some + * of the other constraints may have been modified after the + * constraints were marked redundant. + * In particular, a constraint may have been relaxed. + * Redundant constraints are ignored when a constraint is relaxed + * and should therefore continue to be ignored ever after. + * Otherwise, the relaxation might be thwarted by some of + * these constraints. + */ +static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap, + struct isl_tab *tab) +{ + bmap = isl_basic_map_copy(bmap); + bmap = isl_basic_map_cow(bmap); + bmap = isl_basic_map_update_from_tab(bmap, tab); + return isl_set_from_basic_set(isl_basic_map_underlying_set(bmap)); +} + +/* Given a basic set i with a constraint k that is adjacent to either the + * whole of basic set j or a facet of basic set j, check if we can wrap + * both the facet corresponding to k and the facet of j (or the whole of j) + * around their ridges to include the other set. + * If so, replace the pair of basic sets by their union. + * + * All constraints of i (except k) are assumed to be valid for j. + * + * However, the constraints of j may not be valid for i and so + * we have to check that the wrapping constraints for j are valid for i. + * + * In the case where j has a facet adjacent to i, tab[j] is assumed + * to have been restricted to this facet, so that the non-redundant + * constraints in tab[j] are the ridges of the facet. + * Note that for the purpose of wrapping, it does not matter whether + * we wrap the ridges of i around the whole of j or just around + * the facet since all the other constraints are assumed to be valid for j. + * In practice, we wrap to include the whole of j. + * ____ _____ + * / | / \ + * / || / | + * \ || => \ | + * \ || \ | + * \___|| \____| + * + */ +static int can_wrap_in_facet(struct isl_map *map, int i, int j, int k, + struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) +{ + int changed = 0; + struct isl_wraps wraps; + isl_mat *mat; + struct isl_set *set_i = NULL; + struct isl_set *set_j = NULL; + struct isl_vec *bound = NULL; + unsigned total = isl_basic_map_total_dim(map->p[i]); + struct isl_tab_undo *snap; + int n; + + set_i = set_from_updated_bmap(map->p[i], tabs[i]); + set_j = set_from_updated_bmap(map->p[j], tabs[j]); + mat = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) + + map->p[i]->n_ineq + map->p[j]->n_ineq, + 1 + total); + wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j); + bound = isl_vec_alloc(map->ctx, 1 + total); + if (!set_i || !set_j || !wraps.mat || !bound) + goto error; + + isl_seq_cpy(bound->el, map->p[i]->ineq[k], 1 + total); + isl_int_add_ui(bound->el[0], bound->el[0], 1); + + isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total); + wraps.mat->n_row = 1; + + if (add_wraps(&wraps, map->p[j], tabs[j], bound->el, set_i) < 0) + goto error; + if (!wraps.mat->n_row) + goto unbounded; + + snap = isl_tab_snap(tabs[i]); + + if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + k) < 0) + goto error; + if (isl_tab_detect_redundant(tabs[i]) < 0) + goto error; + + isl_seq_neg(bound->el, map->p[i]->ineq[k], 1 + total); + + n = wraps.mat->n_row; + if (add_wraps(&wraps, map->p[i], tabs[i], bound->el, set_j) < 0) + goto error; + + if (isl_tab_rollback(tabs[i], snap) < 0) + goto error; + if (check_wraps(wraps.mat, n, tabs[i]) < 0) + goto error; + if (!wraps.mat->n_row) + goto unbounded; + + changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps.mat); + +unbounded: + wraps_free(&wraps); + + isl_set_free(set_i); + isl_set_free(set_j); + + isl_vec_free(bound); + + return changed; +error: + wraps_free(&wraps); + isl_vec_free(bound); + isl_set_free(set_i); + isl_set_free(set_j); + return -1; +} + +/* Set the is_redundant property of the "n" constraints in "cuts", + * except "k" to "v". + * This is a fairly tricky operation as it bypasses isl_tab.c. + * The reason we want to temporarily mark some constraints redundant + * is that we want to ignore them in add_wraps. + * + * Initially all cut constraints are non-redundant, but the + * selection of a facet right before the call to this function + * may have made some of them redundant. + * Likewise, the same constraints are marked non-redundant + * in the second call to this function, before they are officially + * made non-redundant again in the subsequent rollback. + */ +static void set_is_redundant(struct isl_tab *tab, unsigned n_eq, + int *cuts, int n, int k, int v) +{ + int l; + + for (l = 0; l < n; ++l) { + if (l == k) + continue; + tab->con[n_eq + cuts[l]].is_redundant = v; + } +} + +/* Given a pair of basic maps i and j such that j sticks out + * of i at n cut constraints, each time by at most one, + * try to compute wrapping constraints and replace the two + * basic maps by a single basic map. + * The other constraints of i are assumed to be valid for j. + * + * The facets of i corresponding to the cut constraints are + * wrapped around their ridges, except those ridges determined + * by any of the other cut constraints. + * The intersections of cut constraints need to be ignored + * as the result of wrapping one cut constraint around another + * would result in a constraint cutting the union. + * In each case, the facets are wrapped to include the union + * of the two basic maps. + * + * The pieces of j that lie at an offset of exactly one from + * one of the cut constraints of i are wrapped around their edges. + * Here, there is no need to ignore intersections because we + * are wrapping around the union of the two basic maps. + * + * If any wrapping fails, i.e., if we cannot wrap to touch + * the union, then we give up. + * Otherwise, the pair of basic maps is replaced by their union. + */ +static int wrap_in_facets(struct isl_map *map, int i, int j, + int *cuts, int n, struct isl_tab **tabs, + int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) +{ + int changed = 0; + struct isl_wraps wraps; + isl_mat *mat; + isl_set *set = NULL; + isl_vec *bound = NULL; + unsigned total = isl_basic_map_total_dim(map->p[i]); + int max_wrap; + int k; + struct isl_tab_undo *snap_i, *snap_j; + + if (isl_tab_extend_cons(tabs[j], 1) < 0) + goto error; + + max_wrap = 2 * (map->p[i]->n_eq + map->p[j]->n_eq) + + map->p[i]->n_ineq + map->p[j]->n_ineq; + max_wrap *= n; + + set = isl_set_union(set_from_updated_bmap(map->p[i], tabs[i]), + set_from_updated_bmap(map->p[j], tabs[j])); + mat = isl_mat_alloc(map->ctx, max_wrap, 1 + total); + wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j); + bound = isl_vec_alloc(map->ctx, 1 + total); + if (!set || !wraps.mat || !bound) + goto error; + + snap_i = isl_tab_snap(tabs[i]); + snap_j = isl_tab_snap(tabs[j]); + + wraps.mat->n_row = 0; + + for (k = 0; k < n; ++k) { + if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + cuts[k]) < 0) + goto error; + if (isl_tab_detect_redundant(tabs[i]) < 0) + goto error; + set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 1); + + isl_seq_neg(bound->el, map->p[i]->ineq[cuts[k]], 1 + total); + if (!tabs[i]->empty && + add_wraps(&wraps, map->p[i], tabs[i], bound->el, set) < 0) + goto error; + + set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 0); + if (isl_tab_rollback(tabs[i], snap_i) < 0) + goto error; + + if (tabs[i]->empty) + break; + if (!wraps.mat->n_row) + break; + + isl_seq_cpy(bound->el, map->p[i]->ineq[cuts[k]], 1 + total); + isl_int_add_ui(bound->el[0], bound->el[0], 1); + if (isl_tab_add_eq(tabs[j], bound->el) < 0) + goto error; + if (isl_tab_detect_redundant(tabs[j]) < 0) + goto error; + + if (!tabs[j]->empty && + add_wraps(&wraps, map->p[j], tabs[j], bound->el, set) < 0) + goto error; + + if (isl_tab_rollback(tabs[j], snap_j) < 0) + goto error; + + if (!wraps.mat->n_row) + break; + } + + if (k == n) + changed = fuse(map, i, j, tabs, + eq_i, ineq_i, eq_j, ineq_j, wraps.mat); + + isl_vec_free(bound); + wraps_free(&wraps); + isl_set_free(set); + + return changed; +error: + isl_vec_free(bound); + wraps_free(&wraps); + isl_set_free(set); + return -1; +} + +/* Given two basic sets i and j such that i has no cut equalities, + * check if relaxing all the cut inequalities of i by one turns + * them into valid constraint for j and check if we can wrap in + * the bits that are sticking out. + * If so, replace the pair by their union. + * + * We first check if all relaxed cut inequalities of i are valid for j + * and then try to wrap in the intersections of the relaxed cut inequalities + * with j. + * + * During this wrapping, we consider the points of j that lie at a distance + * of exactly 1 from i. In particular, we ignore the points that lie in + * between this lower-dimensional space and the basic map i. + * We can therefore only apply this to integer maps. + * ____ _____ + * / ___|_ / \ + * / | | / | + * \ | | => \ | + * \|____| \ | + * \___| \____/ + * + * _____ ______ + * | ____|_ | \ + * | | | | | + * | | | => | | + * |_| | | | + * |_____| \______| + * + * _______ + * | | + * | |\ | + * | | \ | + * | | \ | + * | | \| + * | | \ + * | |_____\ + * | | + * |_______| + * + * Wrapping can fail if the result of wrapping one of the facets + * around its edges does not produce any new facet constraint. + * In particular, this happens when we try to wrap in unbounded sets. + * + * _______________________________________________________________________ + * | + * | ___ + * | | | + * |_| |_________________________________________________________________ + * |___| + * + * The following is not an acceptable result of coalescing the above two + * sets as it includes extra integer points. + * _______________________________________________________________________ + * | + * | + * | + * | + * \______________________________________________________________________ + */ +static int can_wrap_in_set(struct isl_map *map, int i, int j, + struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) +{ + int changed = 0; + int k, m; + int n; + int *cuts = NULL; + + if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) || + ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL)) + return 0; + + n = count(ineq_i, map->p[i]->n_ineq, STATUS_CUT); + if (n == 0) + return 0; + + cuts = isl_alloc_array(map->ctx, int, n); + if (!cuts) + return -1; + + for (k = 0, m = 0; m < n; ++k) { + enum isl_ineq_type type; + + if (ineq_i[k] != STATUS_CUT) + continue; + + isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1); + type = isl_tab_ineq_type(tabs[j], map->p[i]->ineq[k]); + isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1); + if (type == isl_ineq_error) + goto error; + if (type != isl_ineq_redundant) + break; + cuts[m] = k; + ++m; + } + + if (m == n) + changed = wrap_in_facets(map, i, j, cuts, n, tabs, + eq_i, ineq_i, eq_j, ineq_j); + + free(cuts); + + return changed; +error: + free(cuts); + return -1; +} + +/* Check if either i or j has a single cut constraint that can + * be used to wrap in (a facet of) the other basic set. + * if so, replace the pair by their union. + */ +static int check_wrap(struct isl_map *map, int i, int j, + struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) +{ + int changed = 0; + + if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT)) + changed = can_wrap_in_set(map, i, j, tabs, + eq_i, ineq_i, eq_j, ineq_j); + if (changed) + return changed; + + if (!any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT)) + changed = can_wrap_in_set(map, j, i, tabs, + eq_j, ineq_j, eq_i, ineq_i); + return changed; +} + +/* At least one of the basic maps has an equality that is adjacent + * to inequality. Make sure that only one of the basic maps has + * such an equality and that the other basic map has exactly one + * inequality adjacent to an equality. + * We call the basic map that has the inequality "i" and the basic + * map that has the equality "j". + * If "i" has any "cut" (in)equality, then relaxing the inequality + * by one would not result in a basic map that contains the other + * basic map. + */ +static int check_adj_eq(struct isl_map *map, int i, int j, + struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) +{ + int changed = 0; + int k; + + if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) && + any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) /* ADJ EQ TOO MANY */ return 0; - if (any(eq_i, 2 * set->p[i]->n_eq, STATUS_ADJ_INEQ)) - return check_adj_eq(set, j, i, tabs, + if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ)) + return check_adj_eq(map, j, i, tabs, eq_j, ineq_j, eq_i, ineq_i); /* j has an equality adjacent to an inequality in i */ - if (any(ineq_i, set->p[i]->n_ineq, STATUS_CUT)) + if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT)) + return 0; + if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT)) /* ADJ EQ CUT */ return 0; - if (count(eq_j, 2 * set->p[j]->n_eq, STATUS_ADJ_INEQ) != 1 || - count(ineq_i, set->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 || - any(ineq_j, set->p[j]->n_ineq, STATUS_ADJ_EQ) || - any(ineq_i, set->p[i]->n_ineq, STATUS_ADJ_INEQ) || - any(ineq_j, set->p[j]->n_ineq, STATUS_ADJ_INEQ)) + if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 || + any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ) || + any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) || + any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) /* ADJ EQ TOO MANY */ return 0; - for (k = 0; k < set->p[i]->n_ineq ; ++k) + for (k = 0; k < map->p[i]->n_ineq ; ++k) if (ineq_i[k] == STATUS_ADJ_EQ) break; - snap = isl_tab_snap(set->ctx, tabs[i]); - tabs[i] = isl_tab_relax(set->ctx, tabs[i], n_eq + k); - snap2 = isl_tab_snap(set->ctx, tabs[i]); - tabs[i] = isl_tab_select_facet(set->ctx, tabs[i], n_eq + k); - super = contains(set, j, ineq_j, tabs[i]); - if (super) { - isl_tab_rollback(set->ctx, tabs[i], snap2); - set->p[i] = isl_basic_set_cow(set->p[i]); - if (!set->p[i]) - return -1; - isl_int_add_ui(set->p[i]->ineq[k][0], set->p[i]->ineq[k][0], 1); - ISL_F_SET(set->p[i], ISL_BASIC_SET_FINAL); - drop(set, j, tabs); - changed = 1; - } else - isl_tab_rollback(set->ctx, tabs[i], snap); + changed = is_extension(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j); + if (changed) + return changed; + + if (count(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ) != 1) + return 0; + + changed = can_wrap_in_facet(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j); return changed; } -/* Check if the union of the given pair of basic sets - * can be represented by a single basic set. - * If so, replace the pair by the single basic set and return 1. +/* The two basic maps lie on adjacent hyperplanes. In particular, + * basic map "i" has an equality that lies parallel to basic map "j". + * Check if we can wrap the facets around the parallel hyperplanes + * to include the other set. + * + * We perform basically the same operations as can_wrap_in_facet, + * except that we don't need to select a facet of one of the sets. + * _ + * \\ \\ + * \\ => \\ + * \ \| + * + * We only allow one equality of "i" to be adjacent to an equality of "j" + * to avoid coalescing + * + * [m, n] -> { [x, y] -> [x, 1 + y] : x >= 1 and y >= 1 and + * x <= 10 and y <= 10; + * [x, y] -> [1 + x, y] : x >= 1 and x <= 20 and + * y >= 5 and y <= 15 } + * + * to + * + * [m, n] -> { [x, y] -> [x2, y2] : x >= 1 and 10y2 <= 20 - x + 10y and + * 4y2 >= 5 + 3y and 5y2 <= 15 + 4y and + * y2 <= 1 + x + y - x2 and y2 >= y and + * y2 >= 1 + x + y - x2 } + */ +static int check_eq_adj_eq(struct isl_map *map, int i, int j, + struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j) +{ + int k; + int changed = 0; + struct isl_wraps wraps; + isl_mat *mat; + struct isl_set *set_i = NULL; + struct isl_set *set_j = NULL; + struct isl_vec *bound = NULL; + unsigned total = isl_basic_map_total_dim(map->p[i]); + + if (count(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ) != 1) + return 0; + + for (k = 0; k < 2 * map->p[i]->n_eq ; ++k) + if (eq_i[k] == STATUS_ADJ_EQ) + break; + + set_i = set_from_updated_bmap(map->p[i], tabs[i]); + set_j = set_from_updated_bmap(map->p[j], tabs[j]); + mat = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) + + map->p[i]->n_ineq + map->p[j]->n_ineq, + 1 + total); + wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j); + bound = isl_vec_alloc(map->ctx, 1 + total); + if (!set_i || !set_j || !wraps.mat || !bound) + goto error; + + if (k % 2 == 0) + isl_seq_neg(bound->el, map->p[i]->eq[k / 2], 1 + total); + else + isl_seq_cpy(bound->el, map->p[i]->eq[k / 2], 1 + total); + isl_int_add_ui(bound->el[0], bound->el[0], 1); + + isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total); + wraps.mat->n_row = 1; + + if (add_wraps(&wraps, map->p[j], tabs[j], bound->el, set_i) < 0) + goto error; + if (!wraps.mat->n_row) + goto unbounded; + + isl_int_sub_ui(bound->el[0], bound->el[0], 1); + isl_seq_neg(bound->el, bound->el, 1 + total); + + isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total); + wraps.mat->n_row++; + + if (add_wraps(&wraps, map->p[i], tabs[i], bound->el, set_j) < 0) + goto error; + if (!wraps.mat->n_row) + goto unbounded; + + changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps.mat); + + if (0) { +error: changed = -1; + } +unbounded: + + wraps_free(&wraps); + isl_set_free(set_i); + isl_set_free(set_j); + isl_vec_free(bound); + + return changed; +} + +/* Check if the union of the given pair of basic maps + * can be represented by a single basic map. + * If so, replace the pair by the single basic map and return 1. * Otherwise, return 0; + * The two basic maps are assumed to live in the same local space. * - * We first check the effect of each constraint of one basic set - * on the other basic set. + * We first check the effect of each constraint of one basic map + * on the other basic map. * The constraint may be * redundant the constraint is redundant in its own - * basic set and should be ignore and removed + * basic map and should be ignore and removed * in the end - * valid all (integer) points of the other basic set + * valid all (integer) points of the other basic map * satisfy the constraint - * separate no (integer) point of the other basic set + * separate no (integer) point of the other basic map * satisfies the constraint - * cut some but not all points of the other basic set + * cut some but not all points of the other basic map * satisfy the constraint * adj_eq the given constraint is adjacent (on the outside) - * to an equality of the other basic set + * to an equality of the other basic map * adj_ineq the given constraint is adjacent (on the outside) - * to an inequality of the other basic set + * to an inequality of the other basic map * - * We consider four cases in which we can replace the pair by a single - * basic set. We ignore all "redundant" constraints. + * We consider seven cases in which we can replace the pair by a single + * basic map. We ignore all "redundant" constraints. * - * 1. all constraints of one basic set are valid - * => the other basic set is a subset and can be removed + * 1. all constraints of one basic map are valid + * => the other basic map is a subset and can be removed * - * 2. all constraints of both basic sets are either "valid" or "cut" + * 2. all constraints of both basic maps are either "valid" or "cut" * and the facets corresponding to the "cut" constraints - * of one of the basic sets lies entirely inside the other basic set - * => the pair can be replaced by a basic set consisting - * of the valid constraints in both basic sets + * of one of the basic maps lies entirely inside the other basic map + * => the pair can be replaced by a basic map consisting + * of the valid constraints in both basic maps * * 3. there is a single pair of adjacent inequalities * (all other constraints are "valid") - * => the pair can be replaced by a basic set consisting - * of the valid constraints in both basic sets + * => the pair can be replaced by a basic map consisting + * of the valid constraints in both basic maps * * 4. there is a single adjacent pair of an inequality and an equality, - * the other constraints of the basic set containing the equality are - * "valid". Moreover, if the inequality the basic set is relaxed + * the other constraints of the basic map containing the inequality are + * "valid". Moreover, if the inequality the basic map is relaxed * and then turned into an equality, then resulting facet lies - * entirely inside the other basic set - * => the pair can be replaced by the basic set containing + * entirely inside the other basic map + * => the pair can be replaced by the basic map containing * the inequality, with the inequality relaxed. * + * 5. there is a single adjacent pair of an inequality and an equality, + * the other constraints of the basic map containing the inequality are + * "valid". Moreover, the facets corresponding to both + * the inequality and the equality can be wrapped around their + * ridges to include the other basic map + * => the pair can be replaced by a basic map consisting + * of the valid constraints in both basic maps together + * with all wrapping constraints + * + * 6. one of the basic maps extends beyond the other by at most one. + * Moreover, the facets corresponding to the cut constraints and + * the pieces of the other basic map at offset one from these cut + * constraints can be wrapped around their ridges to include + * the union of the two basic maps + * => the pair can be replaced by a basic map consisting + * of the valid constraints in both basic maps together + * with all wrapping constraints + * + * 7. the two basic maps live in adjacent hyperplanes. In principle + * such sets can always be combined through wrapping, but we impose + * that there is only one such pair, to avoid overeager coalescing. + * * Throughout the computation, we maintain a collection of tableaus - * corresponding to the basic sets. When the basic sets are dropped + * corresponding to the basic maps. When the basic maps are dropped * or combined, the tableaus are modified accordingly. */ -static int coalesce_pair(struct isl_set *set, int i, int j, +static int coalesce_local_pair(__isl_keep isl_map *map, int i, int j, struct isl_tab **tabs) { int changed = 0; @@ -461,57 +1243,74 @@ static int coalesce_pair(struct isl_set *set, int i, int j, int *ineq_i = NULL; int *ineq_j = NULL; - eq_i = eq_status_in(set, i, j, tabs); - if (any(eq_i, 2 * set->p[i]->n_eq, STATUS_ERROR)) + eq_i = eq_status_in(map->p[i], tabs[j]); + if (!eq_i) + goto error; + if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ERROR)) goto error; - if (any(eq_i, 2 * set->p[i]->n_eq, STATUS_SEPARATE)) + if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_SEPARATE)) goto done; - eq_j = eq_status_in(set, j, i, tabs); - if (any(eq_j, 2 * set->p[j]->n_eq, STATUS_ERROR)) + eq_j = eq_status_in(map->p[j], tabs[i]); + if (!eq_j) goto error; - if (any(eq_j, 2 * set->p[j]->n_eq, STATUS_SEPARATE)) + if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ERROR)) + goto error; + if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_SEPARATE)) goto done; - ineq_i = ineq_status_in(set, i, j, tabs); - if (any(ineq_i, set->p[i]->n_ineq, STATUS_ERROR)) + ineq_i = ineq_status_in(map->p[i], tabs[i], tabs[j]); + if (!ineq_i) + goto error; + if (any(ineq_i, map->p[i]->n_ineq, STATUS_ERROR)) goto error; - if (any(ineq_i, set->p[i]->n_ineq, STATUS_SEPARATE)) + if (any(ineq_i, map->p[i]->n_ineq, STATUS_SEPARATE)) goto done; - ineq_j = ineq_status_in(set, j, i, tabs); - if (any(ineq_j, set->p[j]->n_ineq, STATUS_ERROR)) + ineq_j = ineq_status_in(map->p[j], tabs[j], tabs[i]); + if (!ineq_j) + goto error; + if (any(ineq_j, map->p[j]->n_ineq, STATUS_ERROR)) goto error; - if (any(ineq_j, set->p[j]->n_ineq, STATUS_SEPARATE)) + if (any(ineq_j, map->p[j]->n_ineq, STATUS_SEPARATE)) goto done; - if (all(eq_i, 2 * set->p[i]->n_eq, STATUS_VALID) && - all(ineq_i, set->p[i]->n_ineq, STATUS_VALID)) { - drop(set, j, tabs); + if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) && + all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) { + drop(map, j, tabs); changed = 1; - } else if (all(eq_j, 2 * set->p[j]->n_eq, STATUS_VALID) && - all(ineq_j, set->p[j]->n_ineq, STATUS_VALID)) { - drop(set, i, tabs); + } else if (all(eq_j, 2 * map->p[j]->n_eq, STATUS_VALID) && + all(ineq_j, map->p[j]->n_ineq, STATUS_VALID)) { + drop(map, i, tabs); changed = 1; - } else if (any(eq_i, 2 * set->p[i]->n_eq, STATUS_CUT) || - any(eq_j, 2 * set->p[j]->n_eq, STATUS_CUT)) { - /* BAD CUT */ - } else if (any(eq_i, 2 * set->p[i]->n_eq, STATUS_ADJ_EQ) || - any(eq_j, 2 * set->p[j]->n_eq, STATUS_ADJ_EQ)) { - /* ADJ EQ PAIR */ - } else if (any(eq_i, 2 * set->p[i]->n_eq, STATUS_ADJ_INEQ) || - any(eq_j, 2 * set->p[j]->n_eq, STATUS_ADJ_INEQ)) { - changed = check_adj_eq(set, i, j, tabs, + } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ)) { + changed = check_eq_adj_eq(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j); - } else if (any(ineq_i, set->p[i]->n_ineq, STATUS_ADJ_EQ) || - any(ineq_j, set->p[j]->n_ineq, STATUS_ADJ_EQ)) { + } else if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_EQ)) { + changed = check_eq_adj_eq(map, j, i, tabs, + eq_j, ineq_j, eq_i, ineq_i); + } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) || + any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) { + changed = check_adj_eq(map, i, j, tabs, + eq_i, ineq_i, eq_j, ineq_j); + } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) || + any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ)) { /* Can't happen */ /* BAD ADJ INEQ */ - } else if (any(ineq_i, set->p[i]->n_ineq, STATUS_ADJ_INEQ) || - any(ineq_j, set->p[j]->n_ineq, STATUS_ADJ_INEQ)) { - changed = check_adj_ineq(set, i, j, tabs, ineq_i, ineq_j); - } else - changed = check_facets(set, i, j, tabs, ineq_i, ineq_j); + } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) || + any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) { + if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) && + !any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT)) + changed = check_adj_ineq(map, i, j, tabs, + ineq_i, ineq_j); + } else { + if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) && + !any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT)) + changed = check_facets(map, i, j, tabs, ineq_i, ineq_j); + if (!changed) + changed = check_wrap(map, i, j, tabs, + eq_i, ineq_i, eq_j, ineq_j); + } done: free(eq_i); @@ -527,85 +1326,298 @@ error: return -1; } -static struct isl_set *coalesce(struct isl_set *set, struct isl_tab **tabs) +/* Do the two basic maps live in the same local space, i.e., + * do they have the same (known) divs? + * If either basic map has any unknown divs, then we can only assume + * that they do not live in the same local space. + */ +static int same_divs(__isl_keep isl_basic_map *bmap1, + __isl_keep isl_basic_map *bmap2) +{ + int i; + int known; + int total; + + if (!bmap1 || !bmap2) + return -1; + if (bmap1->n_div != bmap2->n_div) + return 0; + + if (bmap1->n_div == 0) + return 1; + + known = isl_basic_map_divs_known(bmap1); + if (known < 0 || !known) + return known; + known = isl_basic_map_divs_known(bmap2); + if (known < 0 || !known) + return known; + + total = isl_basic_map_total_dim(bmap1); + for (i = 0; i < bmap1->n_div; ++i) + if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total)) + return 0; + + return 1; +} + +/* Given two basic maps "i" and "j", where the divs of "i" form a subset + * of those of "j", check if basic map "j" is a subset of basic map "i" + * and, if so, drop basic map "j". + * + * We first expand the divs of basic map "i" to match those of basic map "j", + * using the divs and expansion computed by the caller. + * Then we check if all constraints of the expanded "i" are valid for "j". + */ +static int coalesce_subset(__isl_keep isl_map *map, int i, int j, + struct isl_tab **tabs, __isl_keep isl_mat *div, int *exp) +{ + isl_basic_map *bmap; + int changed = 0; + int *eq_i = NULL; + int *ineq_i = NULL; + + bmap = isl_basic_map_copy(map->p[i]); + bmap = isl_basic_set_expand_divs(bmap, isl_mat_copy(div), exp); + + if (!bmap) + goto error; + + eq_i = eq_status_in(bmap, tabs[j]); + if (!eq_i) + goto error; + if (any(eq_i, 2 * bmap->n_eq, STATUS_ERROR)) + goto error; + if (any(eq_i, 2 * bmap->n_eq, STATUS_SEPARATE)) + goto done; + + ineq_i = ineq_status_in(bmap, NULL, tabs[j]); + if (!ineq_i) + goto error; + if (any(ineq_i, bmap->n_ineq, STATUS_ERROR)) + goto error; + if (any(ineq_i, bmap->n_ineq, STATUS_SEPARATE)) + goto done; + + if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) && + all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) { + drop(map, j, tabs); + changed = 1; + } + +done: + isl_basic_map_free(bmap); + free(eq_i); + free(ineq_i); + return 0; +error: + isl_basic_map_free(bmap); + free(eq_i); + free(ineq_i); + return -1; +} + +/* Check if the basic map "j" is a subset of basic map "i", + * assuming that "i" has fewer divs that "j". + * If not, then we change the order. + * + * If the two basic maps have the same number of divs, then + * they must necessarily be different. Otherwise, we would have + * called coalesce_local_pair. We therefore don't do try anyhing + * in this case. + * + * We first check if the divs of "i" are all known and form a subset + * of those of "j". If so, we pass control over to coalesce_subset. + */ +static int check_coalesce_subset(__isl_keep isl_map *map, int i, int j, + struct isl_tab **tabs) +{ + int known; + isl_mat *div_i, *div_j, *div; + int *exp1 = NULL; + int *exp2 = NULL; + isl_ctx *ctx; + int subset; + + if (map->p[i]->n_div == map->p[j]->n_div) + return 0; + if (map->p[j]->n_div < map->p[i]->n_div) + return check_coalesce_subset(map, j, i, tabs); + + known = isl_basic_map_divs_known(map->p[i]); + if (known < 0 || !known) + return known; + + ctx = isl_map_get_ctx(map); + + div_i = isl_basic_map_get_divs(map->p[i]); + div_j = isl_basic_map_get_divs(map->p[j]); + + if (!div_i || !div_j) + goto error; + + exp1 = isl_alloc_array(ctx, int, div_i->n_row); + exp2 = isl_alloc_array(ctx, int, div_j->n_row); + if (!exp1 || !exp2) + goto error; + + div = isl_merge_divs(div_i, div_j, exp1, exp2); + if (!div) + goto error; + + if (div->n_row == div_j->n_row) + subset = coalesce_subset(map, i, j, tabs, div, exp1); + else + subset = 0; + + isl_mat_free(div); + + isl_mat_free(div_i); + isl_mat_free(div_j); + + free(exp2); + free(exp1); + + return subset; +error: + isl_mat_free(div_i); + isl_mat_free(div_j); + free(exp1); + free(exp2); + return -1; +} + +/* Check if the union of the given pair of basic maps + * can be represented by a single basic map. + * If so, replace the pair by the single basic map and return 1. + * Otherwise, return 0; + * + * We first check if the two basic maps live in the same local space. + * If so, we do the complete check. Otherwise, we check if one is + * an obvious subset of the other. + */ +static int coalesce_pair(__isl_keep isl_map *map, int i, int j, + struct isl_tab **tabs) +{ + int same; + + same = same_divs(map->p[i], map->p[j]); + if (same < 0) + return -1; + if (same) + return coalesce_local_pair(map, i, j, tabs); + + return check_coalesce_subset(map, i, j, tabs); +} + +static struct isl_map *coalesce(struct isl_map *map, struct isl_tab **tabs) { int i, j; - for (i = 0; i < set->n - 1; ++i) - for (j = i + 1; j < set->n; ++j) { + for (i = map->n - 2; i >= 0; --i) +restart: + for (j = i + 1; j < map->n; ++j) { int changed; - changed = coalesce_pair(set, i, j, tabs); + changed = coalesce_pair(map, i, j, tabs); if (changed < 0) goto error; if (changed) - return coalesce(set, tabs); + goto restart; } - return set; + return map; error: - isl_set_free(set); + isl_map_free(map); return NULL; } -/* For each pair of basic sets in the set, check if the union of the two - * can be represented by a single basic set. - * If so, replace the pair by the single basic set and start over. +/* For each pair of basic maps in the map, check if the union of the two + * can be represented by a single basic map. + * If so, replace the pair by the single basic map and start over. + * + * Since we are constructing the tableaus of the basic maps anyway, + * we exploit them to detect implicit equalities and redundant constraints. + * This also helps the coalescing as it can ignore the redundant constraints. + * In order to avoid confusion, we make all implicit equalities explicit + * in the basic maps. We don't call isl_basic_map_gauss, though, + * as that may affect the number of constraints. + * This means that we have to call isl_basic_map_gauss at the end + * of the computation to ensure that the basic maps are not left + * in an unexpected state. */ -struct isl_set *isl_set_coalesce(struct isl_set *set) +struct isl_map *isl_map_coalesce(struct isl_map *map) { int i; unsigned n; - struct isl_ctx *ctx; struct isl_tab **tabs = NULL; - if (!set) + map = isl_map_remove_empty_parts(map); + if (!map) return NULL; - if (set->n <= 1) - return set; + if (map->n <= 1) + return map; - set = isl_set_align_divs(set); + map = isl_map_sort_divs(map); + map = isl_map_cow(map); - tabs = isl_calloc_array(set->ctx, struct isl_tab *, set->n); + tabs = isl_calloc_array(map->ctx, struct isl_tab *, map->n); if (!tabs) goto error; - n = set->n; - ctx = set->ctx; - for (i = 0; i < set->n; ++i) { - tabs[i] = isl_tab_from_basic_set(set->p[i]); + n = map->n; + for (i = 0; i < map->n; ++i) { + tabs[i] = isl_tab_from_basic_map(map->p[i], 0); if (!tabs[i]) goto error; - if (!ISL_F_ISSET(set->p[i], ISL_BASIC_SET_NO_IMPLICIT)) - tabs[i] = isl_tab_detect_equalities(set->ctx, tabs[i]); - if (!ISL_F_ISSET(set->p[i], ISL_BASIC_SET_NO_REDUNDANT)) - tabs[i] = isl_tab_detect_redundant(set->ctx, tabs[i]); + if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT)) + if (isl_tab_detect_implicit_equalities(tabs[i]) < 0) + goto error; + map->p[i] = isl_tab_make_equalities_explicit(tabs[i], + map->p[i]); + if (!map->p[i]) + goto error; + if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT)) + if (isl_tab_detect_redundant(tabs[i]) < 0) + goto error; } - for (i = set->n - 1; i >= 0; --i) + for (i = map->n - 1; i >= 0; --i) if (tabs[i]->empty) - drop(set, i, tabs); + drop(map, i, tabs); - set = coalesce(set, tabs); + map = coalesce(map, tabs); - if (set) - for (i = 0; i < set->n; ++i) { - set->p[i] = isl_basic_set_update_from_tab(set->p[i], + if (map) + for (i = 0; i < map->n; ++i) { + map->p[i] = isl_basic_map_update_from_tab(map->p[i], tabs[i]); - if (!set->p[i]) + map->p[i] = isl_basic_map_gauss(map->p[i], NULL); + map->p[i] = isl_basic_map_finalize(map->p[i]); + if (!map->p[i]) goto error; - ISL_F_SET(set->p[i], ISL_BASIC_SET_NO_IMPLICIT); - ISL_F_SET(set->p[i], ISL_BASIC_SET_NO_REDUNDANT); + ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT); + ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT); } for (i = 0; i < n; ++i) - isl_tab_free(ctx, tabs[i]); + isl_tab_free(tabs[i]); free(tabs); - return set; + return map; error: if (tabs) for (i = 0; i < n; ++i) - isl_tab_free(ctx, tabs[i]); + isl_tab_free(tabs[i]); free(tabs); + isl_map_free(map); return NULL; } + +/* For each pair of basic sets in the set, check if the union of the two + * can be represented by a single basic set. + * If so, replace the pair by the single basic set and start over. + */ +struct isl_set *isl_set_coalesce(struct isl_set *set) +{ + return (struct isl_set *)isl_map_coalesce((struct isl_map *)set); +}