X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=gdb%2Fi387-tdep.c;h=d66ac6ab07941ba0922f2122ec014feeec5dd4c2;hb=012d8ebc4bd1a1afb95d902604007b04762207f0;hp=bb69b808453d259c85497ff547d36190546d08f8;hpb=4583280ca5c253f8d32b7c397ab10099c049073c;p=platform%2Fupstream%2Fbinutils.git diff --git a/gdb/i387-tdep.c b/gdb/i387-tdep.c index bb69b80..d66ac6a 100644 --- a/gdb/i387-tdep.c +++ b/gdb/i387-tdep.c @@ -1,12 +1,12 @@ /* Intel 387 floating point stuff. - Copyright 1988, 1989, 1991, 1992, 1993, 1994, 1998, 1999, 2000, 2001 - Free Software Foundation, Inc. + + Copyright (C) 1988-2014 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or + the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, @@ -15,154 +15,27 @@ GNU General Public License for more details. You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 59 Temple Place - Suite 330, - Boston, MA 02111-1307, USA. */ + along with this program. If not, see . */ #include "defs.h" +#include "doublest.h" +#include "floatformat.h" #include "frame.h" +#include "gdbcore.h" #include "inferior.h" #include "language.h" -#include "value.h" -#include "gdbcore.h" -#include "floatformat.h" #include "regcache.h" -#include "gdb_assert.h" -#include "doublest.h" +#include "value.h" -#if GDB_MULTI_ARCH >0 #include "i386-tdep.h" -#endif - -/* FIXME: Eliminate the next two functions when we have the time to - change all the callers. */ - -void i387_to_double (char *from, char *to); -void double_to_i387 (char *from, char *to); - -void -i387_to_double (char *from, char *to) -{ - floatformat_to_double (&floatformat_i387_ext, from, (double *) to); -} - -void -double_to_i387 (char *from, char *to) -{ - floatformat_from_double (&floatformat_i387_ext, (double *) from, to); -} - - -/* FIXME: The functions on this page are used by the old `info float' - implementations that a few of the i386 targets provide. These - functions should be removed if all of these have been converted to - use the generic implementation based on the new register file - layout. */ - -static void print_387_control_bits (unsigned int control); -static void print_387_status_bits (unsigned int status); - -static void -print_387_control_bits (unsigned int control) -{ - switch ((control >> 8) & 3) - { - case 0: - puts_unfiltered (" 24 bit; "); - break; - case 1: - puts_unfiltered (" (bad); "); - break; - case 2: - puts_unfiltered (" 53 bit; "); - break; - case 3: - puts_unfiltered (" 64 bit; "); - break; - } - switch ((control >> 10) & 3) - { - case 0: - puts_unfiltered ("NEAR; "); - break; - case 1: - puts_unfiltered ("DOWN; "); - break; - case 2: - puts_unfiltered ("UP; "); - break; - case 3: - puts_unfiltered ("CHOP; "); - break; - } - if (control & 0x3f) - { - puts_unfiltered ("mask"); - if (control & 0x0001) - puts_unfiltered (" INVAL"); - if (control & 0x0002) - puts_unfiltered (" DENOR"); - if (control & 0x0004) - puts_unfiltered (" DIVZ"); - if (control & 0x0008) - puts_unfiltered (" OVERF"); - if (control & 0x0010) - puts_unfiltered (" UNDER"); - if (control & 0x0020) - puts_unfiltered (" LOS"); - puts_unfiltered (";"); - } - - if (control & 0xe080) - warning ("\nreserved bits on: %s", - local_hex_string (control & 0xe080)); -} - -void -print_387_control_word (unsigned int control) -{ - printf_filtered ("control %s:", local_hex_string(control & 0xffff)); - print_387_control_bits (control); - puts_unfiltered ("\n"); -} - -static void -print_387_status_bits (unsigned int status) -{ - printf_unfiltered (" flags %d%d%d%d; ", - (status & 0x4000) != 0, - (status & 0x0400) != 0, - (status & 0x0200) != 0, - (status & 0x0100) != 0); - printf_unfiltered ("top %d; ", (status >> 11) & 7); - if (status & 0xff) - { - puts_unfiltered ("excep"); - if (status & 0x0001) puts_unfiltered (" INVAL"); - if (status & 0x0002) puts_unfiltered (" DENOR"); - if (status & 0x0004) puts_unfiltered (" DIVZ"); - if (status & 0x0008) puts_unfiltered (" OVERF"); - if (status & 0x0010) puts_unfiltered (" UNDER"); - if (status & 0x0020) puts_unfiltered (" LOS"); - if (status & 0x0040) puts_unfiltered (" STACK"); - } -} - -void -print_387_status_word (unsigned int status) -{ - printf_filtered ("status %s:", local_hex_string (status & 0xffff)); - print_387_status_bits (status); - puts_unfiltered ("\n"); -} - - -/* Implement the `info float' layout based on the register definitions - in `tm-i386.h'. */ +#include "i387-tdep.h" +#include "x86-xstate.h" /* Print the floating point number specified by RAW. */ + static void -print_i387_value (char *raw) +print_i387_value (struct gdbarch *gdbarch, + const gdb_byte *raw, struct ui_file *file) { DOUBLEST value; @@ -170,22 +43,24 @@ print_i387_value (char *raw) of certain numbers such as NaNs, even if GDB is running natively. This is fine since our caller already detects such special numbers and we print the hexadecimal representation anyway. */ - value = extract_typed_floating (raw, builtin_type_i387_ext); + value = extract_typed_floating (raw, i387_ext_type (gdbarch)); /* We try to print 19 digits. The last digit may or may not contain garbage, but we'd better print one too many. We need enough room to print the value, 1 position for the sign, 1 for the decimal point, 19 for the digits and 6 for the exponent adds up to 27. */ #ifdef PRINTF_HAS_LONG_DOUBLE - printf_filtered (" %-+27.19Lg", (long double) value); + fprintf_filtered (file, " %-+27.19Lg", (long double) value); #else - printf_filtered (" %-+27.19g", (double) value); + fprintf_filtered (file, " %-+27.19g", (double) value); #endif } /* Print the classification for the register contents RAW. */ + static void -print_i387_ext (unsigned char *raw) +print_i387_ext (struct gdbarch *gdbarch, + const gdb_byte *raw, struct ui_file *file) { int sign; int integer; @@ -203,190 +78,1697 @@ print_i387_ext (unsigned char *raw) { if (fraction[0] == 0x00000000 && fraction[1] == 0x00000000) /* Infinity. */ - printf_filtered (" %cInf", (sign ? '-' : '+')); + fprintf_filtered (file, " %cInf", (sign ? '-' : '+')); else if (sign && fraction[0] == 0x00000000 && fraction[1] == 0x40000000) /* Real Indefinite (QNaN). */ - puts_unfiltered (" Real Indefinite (QNaN)"); + fputs_unfiltered (" Real Indefinite (QNaN)", file); else if (fraction[1] & 0x40000000) /* QNaN. */ - puts_filtered (" QNaN"); + fputs_filtered (" QNaN", file); else /* SNaN. */ - puts_filtered (" SNaN"); + fputs_filtered (" SNaN", file); } else if (exponent < 0x7fff && exponent > 0x0000 && integer) /* Normal. */ - print_i387_value (raw); + print_i387_value (gdbarch, raw, file); else if (exponent == 0x0000) { /* Denormal or zero. */ - print_i387_value (raw); + print_i387_value (gdbarch, raw, file); if (integer) /* Pseudo-denormal. */ - puts_filtered (" Pseudo-denormal"); + fputs_filtered (" Pseudo-denormal", file); else if (fraction[0] || fraction[1]) /* Denormal. */ - puts_filtered (" Denormal"); + fputs_filtered (" Denormal", file); } else /* Unsupported. */ - puts_filtered (" Unsupported"); + fputs_filtered (" Unsupported", file); } -/* Print the status word STATUS. */ +/* Print the status word STATUS. If STATUS_P is false, then STATUS + was unavailable. */ + static void -print_i387_status_word (unsigned int status) +print_i387_status_word (int status_p, + unsigned int status, struct ui_file *file) { - printf_filtered ("Status Word: %s", - local_hex_string_custom (status, "04")); - puts_filtered (" "); - printf_filtered (" %s", (status & 0x0001) ? "IE" : " "); - printf_filtered (" %s", (status & 0x0002) ? "DE" : " "); - printf_filtered (" %s", (status & 0x0004) ? "ZE" : " "); - printf_filtered (" %s", (status & 0x0008) ? "OE" : " "); - printf_filtered (" %s", (status & 0x0010) ? "UE" : " "); - printf_filtered (" %s", (status & 0x0020) ? "PE" : " "); - puts_filtered (" "); - printf_filtered (" %s", (status & 0x0080) ? "ES" : " "); - puts_filtered (" "); - printf_filtered (" %s", (status & 0x0040) ? "SF" : " "); - puts_filtered (" "); - printf_filtered (" %s", (status & 0x0100) ? "C0" : " "); - printf_filtered (" %s", (status & 0x0200) ? "C1" : " "); - printf_filtered (" %s", (status & 0x0400) ? "C2" : " "); - printf_filtered (" %s", (status & 0x4000) ? "C3" : " "); - - puts_filtered ("\n"); - - printf_filtered (" TOP: %d\n", ((status >> 11) & 7)); + fprintf_filtered (file, "Status Word: "); + if (!status_p) + { + fprintf_filtered (file, "%s\n", _("")); + return; + } + + fprintf_filtered (file, "%s", hex_string_custom (status, 4)); + fputs_filtered (" ", file); + fprintf_filtered (file, " %s", (status & 0x0001) ? "IE" : " "); + fprintf_filtered (file, " %s", (status & 0x0002) ? "DE" : " "); + fprintf_filtered (file, " %s", (status & 0x0004) ? "ZE" : " "); + fprintf_filtered (file, " %s", (status & 0x0008) ? "OE" : " "); + fprintf_filtered (file, " %s", (status & 0x0010) ? "UE" : " "); + fprintf_filtered (file, " %s", (status & 0x0020) ? "PE" : " "); + fputs_filtered (" ", file); + fprintf_filtered (file, " %s", (status & 0x0080) ? "ES" : " "); + fputs_filtered (" ", file); + fprintf_filtered (file, " %s", (status & 0x0040) ? "SF" : " "); + fputs_filtered (" ", file); + fprintf_filtered (file, " %s", (status & 0x0100) ? "C0" : " "); + fprintf_filtered (file, " %s", (status & 0x0200) ? "C1" : " "); + fprintf_filtered (file, " %s", (status & 0x0400) ? "C2" : " "); + fprintf_filtered (file, " %s", (status & 0x4000) ? "C3" : " "); + + fputs_filtered ("\n", file); + + fprintf_filtered (file, + " TOP: %d\n", ((status >> 11) & 7)); } -/* Print the control word CONTROL. */ +/* Print the control word CONTROL. If CONTROL_P is false, then + CONTROL was unavailable. */ + static void -print_i387_control_word (unsigned int control) +print_i387_control_word (int control_p, + unsigned int control, struct ui_file *file) { - printf_filtered ("Control Word: %s", - local_hex_string_custom (control, "04")); - puts_filtered (" "); - printf_filtered (" %s", (control & 0x0001) ? "IM" : " "); - printf_filtered (" %s", (control & 0x0002) ? "DM" : " "); - printf_filtered (" %s", (control & 0x0004) ? "ZM" : " "); - printf_filtered (" %s", (control & 0x0008) ? "OM" : " "); - printf_filtered (" %s", (control & 0x0010) ? "UM" : " "); - printf_filtered (" %s", (control & 0x0020) ? "PM" : " "); - - puts_filtered ("\n"); - - puts_filtered (" PC: "); + fprintf_filtered (file, "Control Word: "); + if (!control_p) + { + fprintf_filtered (file, "%s\n", _("")); + return; + } + + fprintf_filtered (file, "%s", hex_string_custom (control, 4)); + fputs_filtered (" ", file); + fprintf_filtered (file, " %s", (control & 0x0001) ? "IM" : " "); + fprintf_filtered (file, " %s", (control & 0x0002) ? "DM" : " "); + fprintf_filtered (file, " %s", (control & 0x0004) ? "ZM" : " "); + fprintf_filtered (file, " %s", (control & 0x0008) ? "OM" : " "); + fprintf_filtered (file, " %s", (control & 0x0010) ? "UM" : " "); + fprintf_filtered (file, " %s", (control & 0x0020) ? "PM" : " "); + + fputs_filtered ("\n", file); + + fputs_filtered (" PC: ", file); switch ((control >> 8) & 3) { case 0: - puts_filtered ("Single Precision (24-bits)\n"); + fputs_filtered ("Single Precision (24-bits)\n", file); break; case 1: - puts_filtered ("Reserved\n"); + fputs_filtered ("Reserved\n", file); break; case 2: - puts_filtered ("Double Precision (53-bits)\n"); + fputs_filtered ("Double Precision (53-bits)\n", file); break; case 3: - puts_filtered ("Extended Precision (64-bits)\n"); + fputs_filtered ("Extended Precision (64-bits)\n", file); break; } - puts_filtered (" RC: "); + fputs_filtered (" RC: ", file); switch ((control >> 10) & 3) { case 0: - puts_filtered ("Round to nearest\n"); + fputs_filtered ("Round to nearest\n", file); break; case 1: - puts_filtered ("Round down\n"); + fputs_filtered ("Round down\n", file); break; case 2: - puts_filtered ("Round up\n"); + fputs_filtered ("Round up\n", file); break; case 3: - puts_filtered ("Round toward zero\n"); + fputs_filtered ("Round toward zero\n", file); break; } } -/* Print out the i387 floating poin state. */ +/* Print out the i387 floating point state. Note that we ignore FRAME + in the code below. That's OK since floating-point registers are + never saved on the stack. */ + void -i387_float_info (void) +i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, + struct frame_info *frame, const char *args) { - unsigned int fctrl; - unsigned int fstat; - unsigned int ftag; - unsigned int fiseg; - unsigned int fioff; - unsigned int foseg; - unsigned int fooff; - unsigned int fop; + struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame)); + ULONGEST fctrl; + int fctrl_p; + ULONGEST fstat; + int fstat_p; + ULONGEST ftag; + int ftag_p; + ULONGEST fiseg; + int fiseg_p; + ULONGEST fioff; + int fioff_p; + ULONGEST foseg; + int foseg_p; + ULONGEST fooff; + int fooff_p; + ULONGEST fop; + int fop_p; int fpreg; int top; - fctrl = read_register (FCTRL_REGNUM); - fstat = read_register (FSTAT_REGNUM); - ftag = read_register (FTAG_REGNUM); - fiseg = read_register (FCS_REGNUM); - fioff = read_register (FCOFF_REGNUM); - foseg = read_register (FDS_REGNUM); - fooff = read_register (FDOFF_REGNUM); - fop = read_register (FOP_REGNUM); - - top = ((fstat >> 11) & 7); - - for (fpreg = 7; fpreg >= 0; fpreg--) + gdb_assert (gdbarch == get_frame_arch (frame)); + + fctrl_p = read_frame_register_unsigned (frame, + I387_FCTRL_REGNUM (tdep), &fctrl); + fstat_p = read_frame_register_unsigned (frame, + I387_FSTAT_REGNUM (tdep), &fstat); + ftag_p = read_frame_register_unsigned (frame, + I387_FTAG_REGNUM (tdep), &ftag); + fiseg_p = read_frame_register_unsigned (frame, + I387_FISEG_REGNUM (tdep), &fiseg); + fioff_p = read_frame_register_unsigned (frame, + I387_FIOFF_REGNUM (tdep), &fioff); + foseg_p = read_frame_register_unsigned (frame, + I387_FOSEG_REGNUM (tdep), &foseg); + fooff_p = read_frame_register_unsigned (frame, + I387_FOOFF_REGNUM (tdep), &fooff); + fop_p = read_frame_register_unsigned (frame, + I387_FOP_REGNUM (tdep), &fop); + + if (fstat_p) + { + top = ((fstat >> 11) & 7); + + for (fpreg = 7; fpreg >= 0; fpreg--) + { + struct value *regval; + int regnum; + int i; + int tag = -1; + + fprintf_filtered (file, "%sR%d: ", fpreg == top ? "=>" : " ", fpreg); + + if (ftag_p) + { + tag = (ftag >> (fpreg * 2)) & 3; + + switch (tag) + { + case 0: + fputs_filtered ("Valid ", file); + break; + case 1: + fputs_filtered ("Zero ", file); + break; + case 2: + fputs_filtered ("Special ", file); + break; + case 3: + fputs_filtered ("Empty ", file); + break; + } + } + else + fputs_filtered ("Unknown ", file); + + regnum = (fpreg + 8 - top) % 8 + I387_ST0_REGNUM (tdep); + regval = get_frame_register_value (frame, regnum); + + if (value_entirely_available (regval)) + { + const gdb_byte *raw = value_contents (regval); + + fputs_filtered ("0x", file); + for (i = 9; i >= 0; i--) + fprintf_filtered (file, "%02x", raw[i]); + + if (tag != -1 && tag != 3) + print_i387_ext (gdbarch, raw, file); + } + else + fprintf_filtered (file, "%s", _("")); + + fputs_filtered ("\n", file); + } + } + + fputs_filtered ("\n", file); + print_i387_status_word (fstat_p, fstat, file); + print_i387_control_word (fctrl_p, fctrl, file); + fprintf_filtered (file, "Tag Word: %s\n", + ftag_p ? hex_string_custom (ftag, 4) : _("")); + fprintf_filtered (file, "Instruction Pointer: %s:", + fiseg_p ? hex_string_custom (fiseg, 2) : _("")); + fprintf_filtered (file, "%s\n", + fioff_p ? hex_string_custom (fioff, 8) : _("")); + fprintf_filtered (file, "Operand Pointer: %s:", + foseg_p ? hex_string_custom (foseg, 2) : _("")); + fprintf_filtered (file, "%s\n", + fooff_p ? hex_string_custom (fooff, 8) : _("")); + fprintf_filtered (file, "Opcode: %s\n", + fop_p + ? (hex_string_custom (fop ? (fop | 0xd800) : 0, 4)) + : _("")); +} + + +/* Return nonzero if a value of type TYPE stored in register REGNUM + needs any special handling. */ + +int +i387_convert_register_p (struct gdbarch *gdbarch, int regnum, + struct type *type) +{ + if (i386_fp_regnum_p (gdbarch, regnum)) + { + /* Floating point registers must be converted unless we are + accessing them in their hardware type. */ + if (type == i387_ext_type (gdbarch)) + return 0; + else + return 1; + } + + return 0; +} + +/* Read a value of type TYPE from register REGNUM in frame FRAME, and + return its contents in TO. */ + +int +i387_register_to_value (struct frame_info *frame, int regnum, + struct type *type, gdb_byte *to, + int *optimizedp, int *unavailablep) +{ + struct gdbarch *gdbarch = get_frame_arch (frame); + gdb_byte from[I386_MAX_REGISTER_SIZE]; + + gdb_assert (i386_fp_regnum_p (gdbarch, regnum)); + + /* We only support floating-point values. */ + if (TYPE_CODE (type) != TYPE_CODE_FLT) + { + warning (_("Cannot convert floating-point register value " + "to non-floating-point type.")); + *optimizedp = *unavailablep = 0; + return 0; + } + + /* Convert to TYPE. */ + if (!get_frame_register_bytes (frame, regnum, 0, TYPE_LENGTH (type), + from, optimizedp, unavailablep)) + return 0; + + convert_typed_floating (from, i387_ext_type (gdbarch), to, type); + *optimizedp = *unavailablep = 0; + return 1; +} + +/* Write the contents FROM of a value of type TYPE into register + REGNUM in frame FRAME. */ + +void +i387_value_to_register (struct frame_info *frame, int regnum, + struct type *type, const gdb_byte *from) +{ + struct gdbarch *gdbarch = get_frame_arch (frame); + gdb_byte to[I386_MAX_REGISTER_SIZE]; + + gdb_assert (i386_fp_regnum_p (gdbarch, regnum)); + + /* We only support floating-point values. */ + if (TYPE_CODE (type) != TYPE_CODE_FLT) + { + warning (_("Cannot convert non-floating-point type " + "to floating-point register value.")); + return; + } + + /* Convert from TYPE. */ + convert_typed_floating (from, type, to, i387_ext_type (gdbarch)); + put_frame_register (frame, regnum, to); +} + + +/* Handle FSAVE and FXSAVE formats. */ + +/* At fsave_offset[REGNUM] you'll find the offset to the location in + the data structure used by the "fsave" instruction where GDB + register REGNUM is stored. */ + +static int fsave_offset[] = +{ + 28 + 0 * 10, /* %st(0) ... */ + 28 + 1 * 10, + 28 + 2 * 10, + 28 + 3 * 10, + 28 + 4 * 10, + 28 + 5 * 10, + 28 + 6 * 10, + 28 + 7 * 10, /* ... %st(7). */ + 0, /* `fctrl' (16 bits). */ + 4, /* `fstat' (16 bits). */ + 8, /* `ftag' (16 bits). */ + 16, /* `fiseg' (16 bits). */ + 12, /* `fioff'. */ + 24, /* `foseg' (16 bits). */ + 20, /* `fooff'. */ + 18 /* `fop' (bottom 11 bits). */ +}; + +#define FSAVE_ADDR(tdep, fsave, regnum) \ + (fsave + fsave_offset[regnum - I387_ST0_REGNUM (tdep)]) + + +/* Fill register REGNUM in REGCACHE with the appropriate value from + *FSAVE. This function masks off any of the reserved bits in + *FSAVE. */ + +void +i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + const gdb_byte *regs = fsave; + int i; + + gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); + + for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) + if (regnum == -1 || regnum == i) + { + if (fsave == NULL) + { + regcache_raw_supply (regcache, i, NULL); + continue; + } + + /* Most of the FPU control registers occupy only 16 bits in the + fsave area. Give those a special treatment. */ + if (i >= I387_FCTRL_REGNUM (tdep) + && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) + { + gdb_byte val[4]; + + memcpy (val, FSAVE_ADDR (tdep, regs, i), 2); + val[2] = val[3] = 0; + if (i == I387_FOP_REGNUM (tdep)) + val[1] &= ((1 << 3) - 1); + regcache_raw_supply (regcache, i, val); + } + else + regcache_raw_supply (regcache, i, FSAVE_ADDR (tdep, regs, i)); + } + + /* Provide dummy values for the SSE registers. */ + for (i = I387_XMM0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++) + if (regnum == -1 || regnum == i) + regcache_raw_supply (regcache, i, NULL); + if (regnum == -1 || regnum == I387_MXCSR_REGNUM (tdep)) + { + gdb_byte buf[4]; + + store_unsigned_integer (buf, 4, byte_order, 0x1f80); + regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), buf); + } +} + +/* Fill register REGNUM (if it is a floating-point register) in *FSAVE + with the value from REGCACHE. If REGNUM is -1, do this for all + registers. This function doesn't touch any of the reserved bits in + *FSAVE. */ + +void +i387_collect_fsave (const struct regcache *regcache, int regnum, void *fsave) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache)); + gdb_byte *regs = fsave; + int i; + + gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); + + for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) + if (regnum == -1 || regnum == i) + { + /* Most of the FPU control registers occupy only 16 bits in + the fsave area. Give those a special treatment. */ + if (i >= I387_FCTRL_REGNUM (tdep) + && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) + { + gdb_byte buf[4]; + + regcache_raw_collect (regcache, i, buf); + + if (i == I387_FOP_REGNUM (tdep)) + { + /* The opcode occupies only 11 bits. Make sure we + don't touch the other bits. */ + buf[1] &= ((1 << 3) - 1); + buf[1] |= ((FSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1)); + } + memcpy (FSAVE_ADDR (tdep, regs, i), buf, 2); + } + else + regcache_raw_collect (regcache, i, FSAVE_ADDR (tdep, regs, i)); + } +} + + +/* At fxsave_offset[REGNUM] you'll find the offset to the location in + the data structure used by the "fxsave" instruction where GDB + register REGNUM is stored. */ + +static int fxsave_offset[] = +{ + 32, /* %st(0) through ... */ + 48, + 64, + 80, + 96, + 112, + 128, + 144, /* ... %st(7) (80 bits each). */ + 0, /* `fctrl' (16 bits). */ + 2, /* `fstat' (16 bits). */ + 4, /* `ftag' (16 bits). */ + 12, /* `fiseg' (16 bits). */ + 8, /* `fioff'. */ + 20, /* `foseg' (16 bits). */ + 16, /* `fooff'. */ + 6, /* `fop' (bottom 11 bits). */ + 160 + 0 * 16, /* %xmm0 through ... */ + 160 + 1 * 16, + 160 + 2 * 16, + 160 + 3 * 16, + 160 + 4 * 16, + 160 + 5 * 16, + 160 + 6 * 16, + 160 + 7 * 16, + 160 + 8 * 16, + 160 + 9 * 16, + 160 + 10 * 16, + 160 + 11 * 16, + 160 + 12 * 16, + 160 + 13 * 16, + 160 + 14 * 16, + 160 + 15 * 16, /* ... %xmm15 (128 bits each). */ +}; + +#define FXSAVE_ADDR(tdep, fxsave, regnum) \ + (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM (tdep)]) + +/* We made an unfortunate choice in putting %mxcsr after the SSE + registers %xmm0-%xmm7 instead of before, since it makes supporting + the registers %xmm8-%xmm15 on AMD64 a bit involved. Therefore we + don't include the offset for %mxcsr here above. */ + +#define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24) + +static int i387_tag (const gdb_byte *raw); + + +/* Fill register REGNUM in REGCACHE with the appropriate + floating-point or SSE register value from *FXSAVE. This function + masks off any of the reserved bits in *FXSAVE. */ + +void +i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache)); + const gdb_byte *regs = fxsave; + int i; + + gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); + gdb_assert (tdep->num_xmm_regs > 0); + + for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++) + if (regnum == -1 || regnum == i) + { + if (regs == NULL) + { + regcache_raw_supply (regcache, i, NULL); + continue; + } + + /* Most of the FPU control registers occupy only 16 bits in + the fxsave area. Give those a special treatment. */ + if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep) + && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) + { + gdb_byte val[4]; + + memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2); + val[2] = val[3] = 0; + if (i == I387_FOP_REGNUM (tdep)) + val[1] &= ((1 << 3) - 1); + else if (i== I387_FTAG_REGNUM (tdep)) + { + /* The fxsave area contains a simplified version of + the tag word. We have to look at the actual 80-bit + FP data to recreate the traditional i387 tag word. */ + + unsigned long ftag = 0; + int fpreg; + int top; + + top = ((FXSAVE_ADDR (tdep, regs, + I387_FSTAT_REGNUM (tdep)))[1] >> 3); + top &= 0x7; + + for (fpreg = 7; fpreg >= 0; fpreg--) + { + int tag; + + if (val[0] & (1 << fpreg)) + { + int thisreg = (fpreg + 8 - top) % 8 + + I387_ST0_REGNUM (tdep); + tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg)); + } + else + tag = 3; /* Empty */ + + ftag |= tag << (2 * fpreg); + } + val[0] = ftag & 0xff; + val[1] = (ftag >> 8) & 0xff; + } + regcache_raw_supply (regcache, i, val); + } + else + regcache_raw_supply (regcache, i, FXSAVE_ADDR (tdep, regs, i)); + } + + if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1) + { + if (regs == NULL) + regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), NULL); + else + regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), + FXSAVE_MXCSR_ADDR (regs)); + } +} + +/* Fill register REGNUM (if it is a floating-point or SSE register) in + *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for + all registers. This function doesn't touch any of the reserved + bits in *FXSAVE. */ + +void +i387_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache)); + gdb_byte *regs = fxsave; + int i; + + gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); + gdb_assert (tdep->num_xmm_regs > 0); + + for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++) + if (regnum == -1 || regnum == i) + { + /* Most of the FPU control registers occupy only 16 bits in + the fxsave area. Give those a special treatment. */ + if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep) + && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) + { + gdb_byte buf[4]; + + regcache_raw_collect (regcache, i, buf); + + if (i == I387_FOP_REGNUM (tdep)) + { + /* The opcode occupies only 11 bits. Make sure we + don't touch the other bits. */ + buf[1] &= ((1 << 3) - 1); + buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1)); + } + else if (i == I387_FTAG_REGNUM (tdep)) + { + /* Converting back is much easier. */ + + unsigned short ftag; + int fpreg; + + ftag = (buf[1] << 8) | buf[0]; + buf[0] = 0; + buf[1] = 0; + + for (fpreg = 7; fpreg >= 0; fpreg--) + { + int tag = (ftag >> (fpreg * 2)) & 3; + + if (tag != 3) + buf[0] |= (1 << fpreg); + } + } + memcpy (FXSAVE_ADDR (tdep, regs, i), buf, 2); + } + else + regcache_raw_collect (regcache, i, FXSAVE_ADDR (tdep, regs, i)); + } + + if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1) + regcache_raw_collect (regcache, I387_MXCSR_REGNUM (tdep), + FXSAVE_MXCSR_ADDR (regs)); +} + +/* `xstate_bv' is at byte offset 512. */ +#define XSAVE_XSTATE_BV_ADDR(xsave) (xsave + 512) + +/* At xsave_avxh_offset[REGNUM] you'll find the offset to the location in + the upper 128bit of AVX register data structure used by the "xsave" + instruction where GDB register REGNUM is stored. */ + +static int xsave_avxh_offset[] = +{ + 576 + 0 * 16, /* Upper 128bit of %ymm0 through ... */ + 576 + 1 * 16, + 576 + 2 * 16, + 576 + 3 * 16, + 576 + 4 * 16, + 576 + 5 * 16, + 576 + 6 * 16, + 576 + 7 * 16, + 576 + 8 * 16, + 576 + 9 * 16, + 576 + 10 * 16, + 576 + 11 * 16, + 576 + 12 * 16, + 576 + 13 * 16, + 576 + 14 * 16, + 576 + 15 * 16 /* Upper 128bit of ... %ymm15 (128 bits each). */ +}; + +#define XSAVE_AVXH_ADDR(tdep, xsave, regnum) \ + (xsave + xsave_avxh_offset[regnum - I387_YMM0H_REGNUM (tdep)]) + +/* At xsave_ymm_avx512_offset[REGNUM] you'll find the offset to the location in + the upper 128bit of ZMM register data structure used by the "xsave" + instruction where GDB register REGNUM is stored. */ + +static int xsave_ymm_avx512_offset[] = +{ + /* HI16_ZMM_area + 16 bytes + regnum* 64 bytes. */ + 1664 + 16 + 0 * 64, /* %ymm16 through... */ + 1664 + 16 + 1 * 64, + 1664 + 16 + 2 * 64, + 1664 + 16 + 3 * 64, + 1664 + 16 + 4 * 64, + 1664 + 16 + 5 * 64, + 1664 + 16 + 6 * 64, + 1664 + 16 + 7 * 64, + 1664 + 16 + 8 * 64, + 1664 + 16 + 9 * 64, + 1664 + 16 + 10 * 64, + 1664 + 16 + 11 * 64, + 1664 + 16 + 12 * 64, + 1664 + 16 + 13 * 64, + 1664 + 16 + 14 * 64, + 1664 + 16 + 15 * 64 /* ... %ymm31 (128 bits each). */ +}; + +#define XSAVE_YMM_AVX512_ADDR(tdep, xsave, regnum) \ + (xsave + xsave_ymm_avx512_offset[regnum - I387_YMM16H_REGNUM (tdep)]) + +static int xsave_xmm_avx512_offset[] = +{ + 1664 + 0 * 64, /* %ymm16 through... */ + 1664 + 1 * 64, + 1664 + 2 * 64, + 1664 + 3 * 64, + 1664 + 4 * 64, + 1664 + 5 * 64, + 1664 + 6 * 64, + 1664 + 7 * 64, + 1664 + 8 * 64, + 1664 + 9 * 64, + 1664 + 10 * 64, + 1664 + 11 * 64, + 1664 + 12 * 64, + 1664 + 13 * 64, + 1664 + 14 * 64, + 1664 + 15 * 64 /* ... %ymm31 (128 bits each). */ +}; + +#define XSAVE_XMM_AVX512_ADDR(tdep, xsave, regnum) \ + (xsave + xsave_xmm_avx512_offset[regnum - I387_XMM16_REGNUM (tdep)]) + +static int xsave_mpx_offset[] = { + 960 + 0 * 16, /* bnd0r...bnd3r registers. */ + 960 + 1 * 16, + 960 + 2 * 16, + 960 + 3 * 16, + 1024 + 0 * 8, /* bndcfg ... bndstatus. */ + 1024 + 1 * 8, +}; + +#define XSAVE_MPX_ADDR(tdep, xsave, regnum) \ + (xsave + xsave_mpx_offset[regnum - I387_BND0R_REGNUM (tdep)]) + + /* At xsave_avx512__h_offset[REGNUM] you find the offset to the location + of the AVX512 opmask register data structure used by the "xsave" + instruction where GDB register REGNUM is stored. */ + +static int xsave_avx512_k_offset[] = +{ + 1088 + 0 * 8, /* %k0 through... */ + 1088 + 1 * 8, + 1088 + 2 * 8, + 1088 + 3 * 8, + 1088 + 4 * 8, + 1088 + 5 * 8, + 1088 + 6 * 8, + 1088 + 7 * 8 /* %k7 (64 bits each). */ +}; + +#define XSAVE_AVX512_K_ADDR(tdep, xsave, regnum) \ + (xsave + xsave_avx512_k_offset[regnum - I387_K0_REGNUM (tdep)]) + +/* At xsave_avx512_zmm_h_offset[REGNUM] you find the offset to the location in + the upper 256bit of AVX512 ZMMH register data structure used by the "xsave" + instruction where GDB register REGNUM is stored. */ + +static int xsave_avx512_zmm_h_offset[] = +{ + 1152 + 0 * 32, + 1152 + 1 * 32, /* Upper 256bit of %zmmh0 through... */ + 1152 + 2 * 32, + 1152 + 3 * 32, + 1152 + 4 * 32, + 1152 + 5 * 32, + 1152 + 6 * 32, + 1152 + 7 * 32, + 1152 + 8 * 32, + 1152 + 9 * 32, + 1152 + 10 * 32, + 1152 + 11 * 32, + 1152 + 12 * 32, + 1152 + 13 * 32, + 1152 + 14 * 32, + 1152 + 15 * 32, /* Upper 256bit of... %zmmh15 (256 bits each). */ + 1664 + 32 + 0 * 64, /* Upper 256bit of... %zmmh16 (256 bits each). */ + 1664 + 32 + 1 * 64, + 1664 + 32 + 2 * 64, + 1664 + 32 + 3 * 64, + 1664 + 32 + 4 * 64, + 1664 + 32 + 5 * 64, + 1664 + 32 + 6 * 64, + 1664 + 32 + 7 * 64, + 1664 + 32 + 8 * 64, + 1664 + 32 + 9 * 64, + 1664 + 32 + 10 * 64, + 1664 + 32 + 11 * 64, + 1664 + 32 + 12 * 64, + 1664 + 32 + 13 * 64, + 1664 + 32 + 14 * 64, + 1664 + 32 + 15 * 64 /* Upper 256bit of... %zmmh31 (256 bits each). */ +}; + +#define XSAVE_AVX512_ZMM_H_ADDR(tdep, xsave, regnum) \ + (xsave + xsave_avx512_zmm_h_offset[regnum - I387_ZMM0H_REGNUM (tdep)]) + +/* Similar to i387_supply_fxsave, but use XSAVE extended state. */ + +void +i387_supply_xsave (struct regcache *regcache, int regnum, + const void *xsave) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + const gdb_byte *regs = xsave; + int i; + unsigned int clear_bv; + static const gdb_byte zero[MAX_REGISTER_SIZE] = { 0 }; + enum + { + none = 0x0, + x87 = 0x1, + sse = 0x2, + avxh = 0x4, + mpx = 0x8, + avx512_k = 0x10, + avx512_zmm_h = 0x20, + avx512_ymmh_avx512 = 0x40, + avx512_xmm_avx512 = 0x80, + all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h + | avx512_ymmh_avx512 | avx512_xmm_avx512 + } regclass; + + gdb_assert (regs != NULL); + gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); + gdb_assert (tdep->num_xmm_regs > 0); + + if (regnum == -1) + regclass = all; + else if (regnum >= I387_ZMM0H_REGNUM (tdep) + && regnum < I387_ZMMENDH_REGNUM (tdep)) + regclass = avx512_zmm_h; + else if (regnum >= I387_K0_REGNUM (tdep) + && regnum < I387_KEND_REGNUM (tdep)) + regclass = avx512_k; + else if (regnum >= I387_YMM16H_REGNUM (tdep) + && regnum < I387_YMMH_AVX512_END_REGNUM (tdep)) + regclass = avx512_ymmh_avx512; + else if (regnum >= I387_XMM16_REGNUM (tdep) + && regnum < I387_XMM_AVX512_END_REGNUM (tdep)) + regclass = avx512_xmm_avx512; + else if (regnum >= I387_YMM0H_REGNUM (tdep) + && regnum < I387_YMMENDH_REGNUM (tdep)) + regclass = avxh; + else if (regnum >= I387_BND0R_REGNUM (tdep) + && regnum < I387_MPXEND_REGNUM (tdep)) + regclass = mpx; + else if (regnum >= I387_XMM0_REGNUM (tdep) + && regnum < I387_MXCSR_REGNUM (tdep)) + regclass = sse; + else if (regnum >= I387_ST0_REGNUM (tdep) + && regnum < I387_FCTRL_REGNUM (tdep)) + regclass = x87; + else + regclass = none; + + if (regclass != none) + { + /* Get `xstat_bv'. */ + const gdb_byte *xstate_bv_p = XSAVE_XSTATE_BV_ADDR (regs); + + /* The supported bits in `xstat_bv' are 1 byte. Clear part in + vector registers if its bit in xstat_bv is zero. */ + clear_bv = (~(*xstate_bv_p)) & tdep->xcr0; + } + else + clear_bv = X86_XSTATE_ALL_MASK; + + /* With the delayed xsave mechanism, in between the program + starting, and the program accessing the vector registers for the + first time, the register's values are invalid. The kernel + initializes register states to zero when they are set the first + time in a program. This means that from the user-space programs' + perspective, it's the same as if the registers have always been + zero from the start of the program. Therefore, the debugger + should provide the same illusion to the user. */ + + switch (regclass) + { + case none: + break; + + case avx512_zmm_h: + if ((clear_bv & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM))) + regcache_raw_supply (regcache, regnum, zero); + else + regcache_raw_supply (regcache, regnum, + XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum)); + return; + + case avx512_k: + if ((clear_bv & X86_XSTATE_K)) + regcache_raw_supply (regcache, regnum, zero); + else + regcache_raw_supply (regcache, regnum, + XSAVE_AVX512_K_ADDR (tdep, regs, regnum)); + return; + + case avx512_ymmh_avx512: + if ((clear_bv & X86_XSTATE_ZMM)) + regcache_raw_supply (regcache, regnum, zero); + else + regcache_raw_supply (regcache, regnum, + XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum)); + return; + + case avx512_xmm_avx512: + if ((clear_bv & X86_XSTATE_ZMM)) + regcache_raw_supply (regcache, regnum, zero); + else + regcache_raw_supply (regcache, regnum, + XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum)); + return; + + case avxh: + if ((clear_bv & X86_XSTATE_AVX)) + regcache_raw_supply (regcache, regnum, zero); + else + regcache_raw_supply (regcache, regnum, + XSAVE_AVXH_ADDR (tdep, regs, regnum)); + return; + + case mpx: + if ((clear_bv & X86_XSTATE_BNDREGS)) + regcache_raw_supply (regcache, regnum, zero); + else + regcache_raw_supply (regcache, regnum, + XSAVE_MPX_ADDR (tdep, regs, regnum)); + return; + + case sse: + if ((clear_bv & X86_XSTATE_SSE)) + regcache_raw_supply (regcache, regnum, zero); + else + regcache_raw_supply (regcache, regnum, + FXSAVE_ADDR (tdep, regs, regnum)); + return; + + case x87: + if ((clear_bv & X86_XSTATE_X87)) + regcache_raw_supply (regcache, regnum, zero); + else + regcache_raw_supply (regcache, regnum, + FXSAVE_ADDR (tdep, regs, regnum)); + return; + + case all: + /* Handle the upper ZMM registers. */ + if ((tdep->xcr0 & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM))) + { + if ((clear_bv & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM))) + { + for (i = I387_ZMM0H_REGNUM (tdep); + i < I387_ZMMENDH_REGNUM (tdep); + i++) + regcache_raw_supply (regcache, i, zero); + } + else + { + for (i = I387_ZMM0H_REGNUM (tdep); + i < I387_ZMMENDH_REGNUM (tdep); + i++) + regcache_raw_supply (regcache, i, + XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i)); + } + } + + /* Handle AVX512 OpMask registers. */ + if ((tdep->xcr0 & X86_XSTATE_K)) + { + if ((clear_bv & X86_XSTATE_K)) + { + for (i = I387_K0_REGNUM (tdep); + i < I387_KEND_REGNUM (tdep); + i++) + regcache_raw_supply (regcache, i, zero); + } + else + { + for (i = I387_K0_REGNUM (tdep); + i < I387_KEND_REGNUM (tdep); + i++) + regcache_raw_supply (regcache, i, + XSAVE_AVX512_K_ADDR (tdep, regs, i)); + } + } + + /* Handle the YMM_AVX512 registers. */ + if ((tdep->xcr0 & X86_XSTATE_ZMM)) + { + if ((clear_bv & X86_XSTATE_ZMM)) + { + for (i = I387_YMM16H_REGNUM (tdep); + i < I387_YMMH_AVX512_END_REGNUM (tdep); + i++) + regcache_raw_supply (regcache, i, zero); + for (i = I387_XMM16_REGNUM (tdep); + i < I387_XMM_AVX512_END_REGNUM (tdep); + i++) + regcache_raw_supply (regcache, i, zero); + } + else + { + for (i = I387_YMM16H_REGNUM (tdep); + i < I387_YMMH_AVX512_END_REGNUM (tdep); + i++) + regcache_raw_supply (regcache, i, + XSAVE_YMM_AVX512_ADDR (tdep, regs, i)); + for (i = I387_XMM16_REGNUM (tdep); + i < I387_XMM_AVX512_END_REGNUM (tdep); + i++) + regcache_raw_supply (regcache, i, + XSAVE_XMM_AVX512_ADDR (tdep, regs, i)); + } + } + /* Handle the upper YMM registers. */ + if ((tdep->xcr0 & X86_XSTATE_AVX)) + { + if ((clear_bv & X86_XSTATE_AVX)) + { + for (i = I387_YMM0H_REGNUM (tdep); + i < I387_YMMENDH_REGNUM (tdep); + i++) + regcache_raw_supply (regcache, i, zero); + } + else + { + for (i = I387_YMM0H_REGNUM (tdep); + i < I387_YMMENDH_REGNUM (tdep); + i++) + regcache_raw_supply (regcache, i, + XSAVE_AVXH_ADDR (tdep, regs, i)); + } + } + + /* Handle the MPX registers. */ + if ((tdep->xcr0 & X86_XSTATE_BNDREGS)) + { + if (clear_bv & X86_XSTATE_BNDREGS) + { + for (i = I387_BND0R_REGNUM (tdep); + i < I387_BNDCFGU_REGNUM (tdep); i++) + regcache_raw_supply (regcache, i, zero); + } + else + { + for (i = I387_BND0R_REGNUM (tdep); + i < I387_BNDCFGU_REGNUM (tdep); i++) + regcache_raw_supply (regcache, i, + XSAVE_MPX_ADDR (tdep, regs, i)); + } + } + + /* Handle the MPX registers. */ + if ((tdep->xcr0 & X86_XSTATE_BNDCFG)) + { + if (clear_bv & X86_XSTATE_BNDCFG) + { + for (i = I387_BNDCFGU_REGNUM (tdep); + i < I387_MPXEND_REGNUM (tdep); i++) + regcache_raw_supply (regcache, i, zero); + } + else + { + for (i = I387_BNDCFGU_REGNUM (tdep); + i < I387_MPXEND_REGNUM (tdep); i++) + regcache_raw_supply (regcache, i, + XSAVE_MPX_ADDR (tdep, regs, i)); + } + } + + /* Handle the XMM registers. */ + if ((tdep->xcr0 & X86_XSTATE_SSE)) + { + if ((clear_bv & X86_XSTATE_SSE)) + { + for (i = I387_XMM0_REGNUM (tdep); + i < I387_MXCSR_REGNUM (tdep); + i++) + regcache_raw_supply (regcache, i, zero); + } + else + { + for (i = I387_XMM0_REGNUM (tdep); + i < I387_MXCSR_REGNUM (tdep); i++) + regcache_raw_supply (regcache, i, + FXSAVE_ADDR (tdep, regs, i)); + } + } + + /* Handle the x87 registers. */ + if ((tdep->xcr0 & X86_XSTATE_X87)) + { + if ((clear_bv & X86_XSTATE_X87)) + { + for (i = I387_ST0_REGNUM (tdep); + i < I387_FCTRL_REGNUM (tdep); + i++) + regcache_raw_supply (regcache, i, zero); + } + else + { + for (i = I387_ST0_REGNUM (tdep); + i < I387_FCTRL_REGNUM (tdep); + i++) + regcache_raw_supply (regcache, i, FXSAVE_ADDR (tdep, regs, i)); + } + } + break; + } + + /* Only handle x87 control registers. */ + for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) + if (regnum == -1 || regnum == i) + { + /* Most of the FPU control registers occupy only 16 bits in + the xsave extended state. Give those a special treatment. */ + if (i != I387_FIOFF_REGNUM (tdep) + && i != I387_FOOFF_REGNUM (tdep)) + { + gdb_byte val[4]; + + memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2); + val[2] = val[3] = 0; + if (i == I387_FOP_REGNUM (tdep)) + val[1] &= ((1 << 3) - 1); + else if (i== I387_FTAG_REGNUM (tdep)) + { + /* The fxsave area contains a simplified version of + the tag word. We have to look at the actual 80-bit + FP data to recreate the traditional i387 tag word. */ + + unsigned long ftag = 0; + int fpreg; + int top; + + top = ((FXSAVE_ADDR (tdep, regs, + I387_FSTAT_REGNUM (tdep)))[1] >> 3); + top &= 0x7; + + for (fpreg = 7; fpreg >= 0; fpreg--) + { + int tag; + + if (val[0] & (1 << fpreg)) + { + int thisreg = (fpreg + 8 - top) % 8 + + I387_ST0_REGNUM (tdep); + tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg)); + } + else + tag = 3; /* Empty */ + + ftag |= tag << (2 * fpreg); + } + val[0] = ftag & 0xff; + val[1] = (ftag >> 8) & 0xff; + } + regcache_raw_supply (regcache, i, val); + } + else + regcache_raw_supply (regcache, i, FXSAVE_ADDR (tdep, regs, i)); + } + + if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1) + regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), + FXSAVE_MXCSR_ADDR (regs)); +} + +/* Similar to i387_collect_fxsave, but use XSAVE extended state. */ + +void +i387_collect_xsave (const struct regcache *regcache, int regnum, + void *xsave, int gcore) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + gdb_byte *regs = xsave; + int i; + enum + { + none = 0x0, + check = 0x1, + x87 = 0x2 | check, + sse = 0x4 | check, + avxh = 0x8 | check, + mpx = 0x10 | check, + avx512_k = 0x20 | check, + avx512_zmm_h = 0x40 | check, + avx512_ymmh_avx512 = 0x80 | check, + avx512_xmm_avx512 = 0x100 | check, + all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h + | avx512_ymmh_avx512 | avx512_xmm_avx512 + } regclass; + + gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); + gdb_assert (tdep->num_xmm_regs > 0); + + if (regnum == -1) + regclass = all; + else if (regnum >= I387_ZMM0H_REGNUM (tdep) + && regnum < I387_ZMMENDH_REGNUM (tdep)) + regclass = avx512_zmm_h; + else if (regnum >= I387_K0_REGNUM (tdep) + && regnum < I387_KEND_REGNUM (tdep)) + regclass = avx512_k; + else if (regnum >= I387_YMM16H_REGNUM (tdep) + && regnum < I387_YMMH_AVX512_END_REGNUM (tdep)) + regclass = avx512_ymmh_avx512; + else if (regnum >= I387_XMM16_REGNUM (tdep) + && regnum < I387_XMM_AVX512_END_REGNUM (tdep)) + regclass = avx512_xmm_avx512; + else if (regnum >= I387_YMM0H_REGNUM (tdep) + && regnum < I387_YMMENDH_REGNUM (tdep)) + regclass = avxh; + else if (regnum >= I387_BND0R_REGNUM (tdep) + && regnum < I387_MPXEND_REGNUM (tdep)) + regclass = mpx; + else if (regnum >= I387_XMM0_REGNUM (tdep) + && regnum < I387_MXCSR_REGNUM (tdep)) + regclass = sse; + else if (regnum >= I387_ST0_REGNUM (tdep) + && regnum < I387_FCTRL_REGNUM (tdep)) + regclass = x87; + else + regclass = none; + + if (gcore) { - unsigned char raw[FPU_REG_RAW_SIZE]; - int tag = (ftag >> (fpreg * 2)) & 3; - int i; + /* Clear XSAVE extended state. */ + memset (regs, 0, X86_XSTATE_SIZE (tdep->xcr0)); + + /* Update XCR0 and `xstate_bv' with XCR0 for gcore. */ + if (tdep->xsave_xcr0_offset != -1) + memcpy (regs + tdep->xsave_xcr0_offset, &tdep->xcr0, 8); + memcpy (XSAVE_XSTATE_BV_ADDR (regs), &tdep->xcr0, 8); + } + + if ((regclass & check)) + { + gdb_byte raw[I386_MAX_REGISTER_SIZE]; + gdb_byte *xstate_bv_p = XSAVE_XSTATE_BV_ADDR (regs); + unsigned int xstate_bv = 0; + /* The supported bits in `xstat_bv' are 1 byte. */ + unsigned int clear_bv = (~(*xstate_bv_p)) & tdep->xcr0; + gdb_byte *p; + + /* Clear register set if its bit in xstat_bv is zero. */ + if (clear_bv) + { + if ((clear_bv & X86_XSTATE_BNDREGS)) + for (i = I387_BND0R_REGNUM (tdep); + i < I387_BNDCFGU_REGNUM (tdep); i++) + memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 16); + + if ((clear_bv & X86_XSTATE_BNDCFG)) + for (i = I387_BNDCFGU_REGNUM (tdep); + i < I387_MPXEND_REGNUM (tdep); i++) + memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 8); + + if ((clear_bv & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM))) + for (i = I387_ZMM0H_REGNUM (tdep); + i < I387_ZMMENDH_REGNUM (tdep); i++) + memset (XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i), 0, 32); + + if ((clear_bv & X86_XSTATE_K)) + for (i = I387_K0_REGNUM (tdep); + i < I387_KEND_REGNUM (tdep); i++) + memset (XSAVE_AVX512_K_ADDR (tdep, regs, i), 0, 8); + + if ((clear_bv & X86_XSTATE_ZMM)) + { + for (i = I387_YMM16H_REGNUM (tdep); + i < I387_YMMH_AVX512_END_REGNUM (tdep); i++) + memset (XSAVE_YMM_AVX512_ADDR (tdep, regs, i), 0, 16); + for (i = I387_XMM16_REGNUM (tdep); + i < I387_XMM_AVX512_END_REGNUM (tdep); i++) + memset (XSAVE_XMM_AVX512_ADDR (tdep, regs, i), 0, 16); + } + + if ((clear_bv & X86_XSTATE_AVX)) + for (i = I387_YMM0H_REGNUM (tdep); + i < I387_YMMENDH_REGNUM (tdep); i++) + memset (XSAVE_AVXH_ADDR (tdep, regs, i), 0, 16); + + if ((clear_bv & X86_XSTATE_SSE)) + for (i = I387_XMM0_REGNUM (tdep); + i < I387_MXCSR_REGNUM (tdep); i++) + memset (FXSAVE_ADDR (tdep, regs, i), 0, 16); - printf_filtered ("%sR%d: ", fpreg == top ? "=>" : " ", fpreg); + if ((clear_bv & X86_XSTATE_X87)) + for (i = I387_ST0_REGNUM (tdep); + i < I387_FCTRL_REGNUM (tdep); i++) + memset (FXSAVE_ADDR (tdep, regs, i), 0, 10); + } + + if (regclass == all) + { + /* Check if any ZMMH registers are changed. */ + if ((tdep->xcr0 & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM))) + for (i = I387_ZMM0H_REGNUM (tdep); + i < I387_ZMMENDH_REGNUM (tdep); i++) + { + regcache_raw_collect (regcache, i, raw); + p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i); + if (memcmp (raw, p, 32) != 0) + { + xstate_bv |= (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM); + memcpy (p, raw, 32); + } + } + + /* Check if any K registers are changed. */ + if ((tdep->xcr0 & X86_XSTATE_K)) + for (i = I387_K0_REGNUM (tdep); + i < I387_KEND_REGNUM (tdep); i++) + { + regcache_raw_collect (regcache, i, raw); + p = XSAVE_AVX512_K_ADDR (tdep, regs, i); + if (memcmp (raw, p, 8) != 0) + { + xstate_bv |= X86_XSTATE_K; + memcpy (p, raw, 8); + } + } + + /* Check if any XMM or upper YMM registers are changed. */ + if ((tdep->xcr0 & X86_XSTATE_ZMM)) + { + for (i = I387_YMM16H_REGNUM (tdep); + i < I387_YMMH_AVX512_END_REGNUM (tdep); i++) + { + regcache_raw_collect (regcache, i, raw); + p = XSAVE_YMM_AVX512_ADDR (tdep, regs, i); + if (memcmp (raw, p, 16) != 0) + { + xstate_bv |= X86_XSTATE_ZMM; + memcpy (p, raw, 16); + } + } + for (i = I387_XMM16_REGNUM (tdep); + i < I387_XMM_AVX512_END_REGNUM (tdep); i++) + { + regcache_raw_collect (regcache, i, raw); + p = XSAVE_XMM_AVX512_ADDR (tdep, regs, i); + if (memcmp (raw, p, 16) != 0) + { + xstate_bv |= X86_XSTATE_ZMM; + memcpy (p, raw, 16); + } + } + } + + /* Check if any upper YMM registers are changed. */ + if ((tdep->xcr0 & X86_XSTATE_AVX)) + for (i = I387_YMM0H_REGNUM (tdep); + i < I387_YMMENDH_REGNUM (tdep); i++) + { + regcache_raw_collect (regcache, i, raw); + p = XSAVE_AVXH_ADDR (tdep, regs, i); + if (memcmp (raw, p, 16)) + { + xstate_bv |= X86_XSTATE_AVX; + memcpy (p, raw, 16); + } + } + /* Check if any upper MPX registers are changed. */ + if ((tdep->xcr0 & X86_XSTATE_BNDREGS)) + for (i = I387_BND0R_REGNUM (tdep); + i < I387_BNDCFGU_REGNUM (tdep); i++) + { + regcache_raw_collect (regcache, i, raw); + p = XSAVE_MPX_ADDR (tdep, regs, i); + if (memcmp (raw, p, 16)) + { + xstate_bv |= X86_XSTATE_BNDREGS; + memcpy (p, raw, 16); + } + } - switch (tag) + /* Check if any upper MPX registers are changed. */ + if ((tdep->xcr0 & X86_XSTATE_BNDCFG)) + for (i = I387_BNDCFGU_REGNUM (tdep); + i < I387_MPXEND_REGNUM (tdep); i++) + { + regcache_raw_collect (regcache, i, raw); + p = XSAVE_MPX_ADDR (tdep, regs, i); + if (memcmp (raw, p, 8)) + { + xstate_bv |= X86_XSTATE_BNDCFG; + memcpy (p, raw, 8); + } + } + + /* Check if any SSE registers are changed. */ + if ((tdep->xcr0 & X86_XSTATE_SSE)) + for (i = I387_XMM0_REGNUM (tdep); + i < I387_MXCSR_REGNUM (tdep); i++) + { + regcache_raw_collect (regcache, i, raw); + p = FXSAVE_ADDR (tdep, regs, i); + if (memcmp (raw, p, 16)) + { + xstate_bv |= X86_XSTATE_SSE; + memcpy (p, raw, 16); + } + } + + /* Check if any X87 registers are changed. */ + if ((tdep->xcr0 & X86_XSTATE_X87)) + for (i = I387_ST0_REGNUM (tdep); + i < I387_FCTRL_REGNUM (tdep); i++) + { + regcache_raw_collect (regcache, i, raw); + p = FXSAVE_ADDR (tdep, regs, i); + if (memcmp (raw, p, 10)) + { + xstate_bv |= X86_XSTATE_X87; + memcpy (p, raw, 10); + } + } + } + else { - case 0: - puts_filtered ("Valid "); - break; - case 1: - puts_filtered ("Zero "); - break; - case 2: - puts_filtered ("Special "); - break; - case 3: - puts_filtered ("Empty "); - break; + /* Check if REGNUM is changed. */ + regcache_raw_collect (regcache, regnum, raw); + + switch (regclass) + { + default: + internal_error (__FILE__, __LINE__, + _("invalid i387 regclass")); + + case avx512_zmm_h: + /* This is a ZMM register. */ + p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum); + if (memcmp (raw, p, 32) != 0) + { + xstate_bv |= (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM); + memcpy (p, raw, 32); + } + break; + case avx512_k: + /* This is a AVX512 mask register. */ + p = XSAVE_AVX512_K_ADDR (tdep, regs, regnum); + if (memcmp (raw, p, 8) != 0) + { + xstate_bv |= X86_XSTATE_K; + memcpy (p, raw, 8); + } + break; + + case avx512_ymmh_avx512: + /* This is an upper YMM16-31 register. */ + p = XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum); + if (memcmp (raw, p, 16) != 0) + { + xstate_bv |= X86_XSTATE_ZMM; + memcpy (p, raw, 16); + } + break; + + case avx512_xmm_avx512: + /* This is an upper XMM16-31 register. */ + p = XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum); + if (memcmp (raw, p, 16) != 0) + { + xstate_bv |= X86_XSTATE_ZMM; + memcpy (p, raw, 16); + } + break; + + case avxh: + /* This is an upper YMM register. */ + p = XSAVE_AVXH_ADDR (tdep, regs, regnum); + if (memcmp (raw, p, 16)) + { + xstate_bv |= X86_XSTATE_AVX; + memcpy (p, raw, 16); + } + break; + + case mpx: + if (regnum < I387_BNDCFGU_REGNUM (tdep)) + { + regcache_raw_collect (regcache, regnum, raw); + p = XSAVE_MPX_ADDR (tdep, regs, regnum); + if (memcmp (raw, p, 16)) + { + xstate_bv |= X86_XSTATE_BNDREGS; + memcpy (p, raw, 16); + } + } + else + { + p = XSAVE_MPX_ADDR (tdep, regs, regnum); + xstate_bv |= X86_XSTATE_BNDCFG; + memcpy (p, raw, 8); + } + break; + + case sse: + /* This is an SSE register. */ + p = FXSAVE_ADDR (tdep, regs, regnum); + if (memcmp (raw, p, 16)) + { + xstate_bv |= X86_XSTATE_SSE; + memcpy (p, raw, 16); + } + break; + + case x87: + /* This is an x87 register. */ + p = FXSAVE_ADDR (tdep, regs, regnum); + if (memcmp (raw, p, 10)) + { + xstate_bv |= X86_XSTATE_X87; + memcpy (p, raw, 10); + } + break; + } } - read_register_gen ((fpreg + 8 - top) % 8 + FP0_REGNUM, raw); + /* Update the corresponding bits in `xstate_bv' if any SSE/AVX + registers are changed. */ + if (xstate_bv) + { + /* The supported bits in `xstat_bv' are 1 byte. */ + *xstate_bv_p |= (gdb_byte) xstate_bv; - puts_filtered ("0x"); - for (i = 9; i >= 0; i--) - printf_filtered ("%02x", raw[i]); + switch (regclass) + { + default: + internal_error (__FILE__, __LINE__, + _("invalid i387 regclass")); - if (tag != 3) - print_i387_ext (raw); + case all: + break; - puts_filtered ("\n"); + case x87: + case sse: + case avxh: + case mpx: + case avx512_k: + case avx512_zmm_h: + case avx512_ymmh_avx512: + case avx512_xmm_avx512: + /* Register REGNUM has been updated. Return. */ + return; + } + } + else + { + /* Return if REGNUM isn't changed. */ + if (regclass != all) + return; + } } - puts_filtered ("\n"); - - print_i387_status_word (fstat); - print_i387_control_word (fctrl); - printf_filtered ("Tag Word: %s\n", - local_hex_string_custom (ftag, "04")); - printf_filtered ("Instruction Pointer: %s:", - local_hex_string_custom (fiseg, "02")); - printf_filtered ("%s\n", local_hex_string_custom (fioff, "08")); - printf_filtered ("Operand Pointer: %s:", - local_hex_string_custom (foseg, "02")); - printf_filtered ("%s\n", local_hex_string_custom (fooff, "08")); - printf_filtered ("Opcode: %s\n", - local_hex_string_custom (fop ? (fop | 0xd800) : 0, "04")); + /* Only handle x87 control registers. */ + for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) + if (regnum == -1 || regnum == i) + { + /* Most of the FPU control registers occupy only 16 bits in + the xsave extended state. Give those a special treatment. */ + if (i != I387_FIOFF_REGNUM (tdep) + && i != I387_FOOFF_REGNUM (tdep)) + { + gdb_byte buf[4]; + + regcache_raw_collect (regcache, i, buf); + + if (i == I387_FOP_REGNUM (tdep)) + { + /* The opcode occupies only 11 bits. Make sure we + don't touch the other bits. */ + buf[1] &= ((1 << 3) - 1); + buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1)); + } + else if (i == I387_FTAG_REGNUM (tdep)) + { + /* Converting back is much easier. */ + + unsigned short ftag; + int fpreg; + + ftag = (buf[1] << 8) | buf[0]; + buf[0] = 0; + buf[1] = 0; + + for (fpreg = 7; fpreg >= 0; fpreg--) + { + int tag = (ftag >> (fpreg * 2)) & 3; + + if (tag != 3) + buf[0] |= (1 << fpreg); + } + } + memcpy (FXSAVE_ADDR (tdep, regs, i), buf, 2); + } + else + regcache_raw_collect (regcache, i, FXSAVE_ADDR (tdep, regs, i)); + } + + if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1) + regcache_raw_collect (regcache, I387_MXCSR_REGNUM (tdep), + FXSAVE_MXCSR_ADDR (regs)); +} + +/* Recreate the FTW (tag word) valid bits from the 80-bit FP data in + *RAW. */ + +static int +i387_tag (const gdb_byte *raw) +{ + int integer; + unsigned int exponent; + unsigned long fraction[2]; + + integer = raw[7] & 0x80; + exponent = (((raw[9] & 0x7f) << 8) | raw[8]); + fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]); + fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16) + | (raw[5] << 8) | raw[4]); + + if (exponent == 0x7fff) + { + /* Special. */ + return (2); + } + else if (exponent == 0x0000) + { + if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer) + { + /* Zero. */ + return (1); + } + else + { + /* Special. */ + return (2); + } + } + else + { + if (integer) + { + /* Valid. */ + return (0); + } + else + { + /* Special. */ + return (2); + } + } +} + +/* Prepare the FPU stack in REGCACHE for a function return. */ + +void +i387_return_value (struct gdbarch *gdbarch, struct regcache *regcache) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + ULONGEST fstat; + + /* Set the top of the floating-point register stack to 7. The + actual value doesn't really matter, but 7 is what a normal + function return would end up with if the program started out with + a freshly initialized FPU. */ + regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat); + fstat |= (7 << 11); + regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat); + + /* Mark %st(1) through %st(7) as empty. Since we set the top of the + floating-point register stack to 7, the appropriate value for the + tag word is 0x3fff. */ + regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff); + }