X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=gcc%2Fgimple-fold.c;h=a1fc0201473ee2d4d2dd6f6b34d121d31703fecf;hb=8a1561bcd07c8e630f1e7492c364a664dd6f3d69;hp=e74f52457d8379b02b80c4852b65086a2b0a0b5d;hpb=c946a318432341ea470c5f7540490a87823aaedd;p=platform%2Fupstream%2Fgcc.git diff --git a/gcc/gimple-fold.c b/gcc/gimple-fold.c index e74f524..a1fc020 100644 --- a/gcc/gimple-fold.c +++ b/gcc/gimple-fold.c @@ -24,21 +24,11 @@ along with GCC; see the file COPYING3. If not see #include "tm.h" #include "tree.h" #include "flags.h" -#include "rtl.h" -#include "tm_p.h" -#include "ggc.h" -#include "basic-block.h" -#include "output.h" -#include "expr.h" #include "function.h" -#include "diagnostic.h" -#include "timevar.h" #include "tree-dump.h" #include "tree-flow.h" #include "tree-pass.h" #include "tree-ssa-propagate.h" -#include "value-prof.h" -#include "langhooks.h" #include "target.h" @@ -996,6 +986,33 @@ fold_gimple_assign (gimple_stmt_iterator *si) } break; + case GIMPLE_TERNARY_RHS: + result = fold_ternary_loc (loc, subcode, + TREE_TYPE (gimple_assign_lhs (stmt)), + gimple_assign_rhs1 (stmt), + gimple_assign_rhs2 (stmt), + gimple_assign_rhs3 (stmt)); + + if (result) + { + STRIP_USELESS_TYPE_CONVERSION (result); + if (valid_gimple_rhs_p (result)) + return result; + + /* Fold might have produced non-GIMPLE, so if we trust it blindly + we lose canonicalization opportunities. Do not go again + through fold here though, or the same non-GIMPLE will be + produced. */ + if (commutative_ternary_tree_code (subcode) + && tree_swap_operands_p (gimple_assign_rhs1 (stmt), + gimple_assign_rhs2 (stmt), false)) + return build3 (subcode, TREE_TYPE (gimple_assign_lhs (stmt)), + gimple_assign_rhs2 (stmt), + gimple_assign_rhs1 (stmt), + gimple_assign_rhs3 (stmt)); + } + break; + case GIMPLE_INVALID_RHS: gcc_unreachable (); } @@ -1036,7 +1053,9 @@ fold_gimple_cond (gimple stmt) is replaced. If the call is expected to produces a result, then it is replaced by an assignment of the new RHS to the result variable. If the result is to be ignored, then the call is replaced by a - GIMPLE_NOP. */ + GIMPLE_NOP. A proper VDEF chain is retained by making the first + VUSE and the last VDEF of the whole sequence be the same as the replaced + statement and using new SSA names for stores in between. */ void gimplify_and_update_call_from_tree (gimple_stmt_iterator *si_p, tree expr) @@ -1048,12 +1067,15 @@ gimplify_and_update_call_from_tree (gimple_stmt_iterator *si_p, tree expr) gimple_seq stmts = gimple_seq_alloc(); struct gimplify_ctx gctx; gimple last = NULL; + gimple laststore = NULL; + tree reaching_vuse; stmt = gsi_stmt (*si_p); gcc_assert (is_gimple_call (stmt)); lhs = gimple_call_lhs (stmt); + reaching_vuse = gimple_vuse (stmt); push_gimplify_context (&gctx); @@ -1078,13 +1100,48 @@ gimplify_and_update_call_from_tree (gimple_stmt_iterator *si_p, tree expr) new_stmt = gsi_stmt (i); find_new_referenced_vars (new_stmt); mark_symbols_for_renaming (new_stmt); + /* If the new statement has a VUSE, update it with exact SSA name we + know will reach this one. */ + if (gimple_vuse (new_stmt)) + { + /* If we've also seen a previous store create a new VDEF for + the latter one, and make that the new reaching VUSE. */ + if (laststore) + { + reaching_vuse = make_ssa_name (gimple_vop (cfun), laststore); + gimple_set_vdef (laststore, reaching_vuse); + update_stmt (laststore); + laststore = NULL; + } + gimple_set_vuse (new_stmt, reaching_vuse); + gimple_set_modified (new_stmt, true); + } + if (gimple_assign_single_p (new_stmt) + && !is_gimple_reg (gimple_assign_lhs (new_stmt))) + { + laststore = new_stmt; + } last = new_stmt; } if (lhs == NULL_TREE) { - unlink_stmt_vdef (stmt); - release_defs (stmt); + /* If we replace a call without LHS that has a VDEF and our new + sequence ends with a store we must make that store have the same + vdef in order not to break the sequencing. This can happen + for instance when folding memcpy calls into assignments. */ + if (gimple_vdef (stmt) && laststore) + { + gimple_set_vdef (laststore, gimple_vdef (stmt)); + if (TREE_CODE (gimple_vdef (stmt)) == SSA_NAME) + SSA_NAME_DEF_STMT (gimple_vdef (stmt)) = laststore; + update_stmt (laststore); + } + else + { + unlink_stmt_vdef (stmt); + release_defs (stmt); + } new_stmt = last; } else @@ -1094,10 +1151,30 @@ gimplify_and_update_call_from_tree (gimple_stmt_iterator *si_p, tree expr) gsi_insert_before (si_p, last, GSI_NEW_STMT); gsi_next (si_p); } + if (laststore && is_gimple_reg (lhs)) + { + gimple_set_vdef (laststore, gimple_vdef (stmt)); + update_stmt (laststore); + if (TREE_CODE (gimple_vdef (stmt)) == SSA_NAME) + SSA_NAME_DEF_STMT (gimple_vdef (stmt)) = laststore; + laststore = NULL; + } + else if (laststore) + { + reaching_vuse = make_ssa_name (gimple_vop (cfun), laststore); + gimple_set_vdef (laststore, reaching_vuse); + update_stmt (laststore); + laststore = NULL; + } new_stmt = gimple_build_assign (lhs, tmp); - gimple_set_vuse (new_stmt, gimple_vuse (stmt)); - gimple_set_vdef (new_stmt, gimple_vdef (stmt)); - move_ssa_defining_stmt_for_defs (new_stmt, stmt); + if (!is_gimple_reg (tmp)) + gimple_set_vuse (new_stmt, reaching_vuse); + if (!is_gimple_reg (lhs)) + { + gimple_set_vdef (new_stmt, gimple_vdef (stmt)); + if (TREE_CODE (gimple_vdef (stmt)) == SSA_NAME) + SSA_NAME_DEF_STMT (gimple_vdef (stmt)) = new_stmt; + } } gimple_set_location (new_stmt, gimple_location (stmt)); @@ -1413,6 +1490,22 @@ gimple_fold_builtin (gimple stmt) return result; } +/* Return the first of the base binfos of BINFO that has virtual functions. */ + +static tree +get_first_base_binfo_with_virtuals (tree binfo) +{ + int i; + tree base_binfo; + + for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) + if (BINFO_VIRTUALS (base_binfo)) + return base_binfo; + + return NULL_TREE; +} + + /* Search for a base binfo of BINFO that corresponds to TYPE and return it if it is found or NULL_TREE if it is not. */ @@ -1468,8 +1561,8 @@ gimple_get_relevant_ref_binfo (tree ref, tree known_binfo) || BINFO_N_BASE_BINFOS (binfo) == 0) return NULL_TREE; - base_binfo = BINFO_BASE_BINFO (binfo, 0); - if (BINFO_TYPE (base_binfo) != TREE_TYPE (field)) + base_binfo = get_first_base_binfo_with_virtuals (binfo); + if (base_binfo && BINFO_TYPE (base_binfo) != TREE_TYPE (field)) { tree d_binfo; @@ -1726,3 +1819,1052 @@ fold_stmt_inplace (gimple stmt) return changed; } +/* Canonicalize and possibly invert the boolean EXPR; return NULL_TREE + if EXPR is null or we don't know how. + If non-null, the result always has boolean type. */ + +static tree +canonicalize_bool (tree expr, bool invert) +{ + if (!expr) + return NULL_TREE; + else if (invert) + { + if (integer_nonzerop (expr)) + return boolean_false_node; + else if (integer_zerop (expr)) + return boolean_true_node; + else if (TREE_CODE (expr) == SSA_NAME) + return fold_build2 (EQ_EXPR, boolean_type_node, expr, + build_int_cst (TREE_TYPE (expr), 0)); + else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison) + return fold_build2 (invert_tree_comparison (TREE_CODE (expr), false), + boolean_type_node, + TREE_OPERAND (expr, 0), + TREE_OPERAND (expr, 1)); + else + return NULL_TREE; + } + else + { + if (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE) + return expr; + if (integer_nonzerop (expr)) + return boolean_true_node; + else if (integer_zerop (expr)) + return boolean_false_node; + else if (TREE_CODE (expr) == SSA_NAME) + return fold_build2 (NE_EXPR, boolean_type_node, expr, + build_int_cst (TREE_TYPE (expr), 0)); + else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison) + return fold_build2 (TREE_CODE (expr), + boolean_type_node, + TREE_OPERAND (expr, 0), + TREE_OPERAND (expr, 1)); + else + return NULL_TREE; + } +} + +/* Check to see if a boolean expression EXPR is logically equivalent to the + comparison (OP1 CODE OP2). Check for various identities involving + SSA_NAMEs. */ + +static bool +same_bool_comparison_p (const_tree expr, enum tree_code code, + const_tree op1, const_tree op2) +{ + gimple s; + + /* The obvious case. */ + if (TREE_CODE (expr) == code + && operand_equal_p (TREE_OPERAND (expr, 0), op1, 0) + && operand_equal_p (TREE_OPERAND (expr, 1), op2, 0)) + return true; + + /* Check for comparing (name, name != 0) and the case where expr + is an SSA_NAME with a definition matching the comparison. */ + if (TREE_CODE (expr) == SSA_NAME + && TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE) + { + if (operand_equal_p (expr, op1, 0)) + return ((code == NE_EXPR && integer_zerop (op2)) + || (code == EQ_EXPR && integer_nonzerop (op2))); + s = SSA_NAME_DEF_STMT (expr); + if (is_gimple_assign (s) + && gimple_assign_rhs_code (s) == code + && operand_equal_p (gimple_assign_rhs1 (s), op1, 0) + && operand_equal_p (gimple_assign_rhs2 (s), op2, 0)) + return true; + } + + /* If op1 is of the form (name != 0) or (name == 0), and the definition + of name is a comparison, recurse. */ + if (TREE_CODE (op1) == SSA_NAME + && TREE_CODE (TREE_TYPE (op1)) == BOOLEAN_TYPE) + { + s = SSA_NAME_DEF_STMT (op1); + if (is_gimple_assign (s) + && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison) + { + enum tree_code c = gimple_assign_rhs_code (s); + if ((c == NE_EXPR && integer_zerop (op2)) + || (c == EQ_EXPR && integer_nonzerop (op2))) + return same_bool_comparison_p (expr, c, + gimple_assign_rhs1 (s), + gimple_assign_rhs2 (s)); + if ((c == EQ_EXPR && integer_zerop (op2)) + || (c == NE_EXPR && integer_nonzerop (op2))) + return same_bool_comparison_p (expr, + invert_tree_comparison (c, false), + gimple_assign_rhs1 (s), + gimple_assign_rhs2 (s)); + } + } + return false; +} + +/* Check to see if two boolean expressions OP1 and OP2 are logically + equivalent. */ + +static bool +same_bool_result_p (const_tree op1, const_tree op2) +{ + /* Simple cases first. */ + if (operand_equal_p (op1, op2, 0)) + return true; + + /* Check the cases where at least one of the operands is a comparison. + These are a bit smarter than operand_equal_p in that they apply some + identifies on SSA_NAMEs. */ + if (TREE_CODE_CLASS (TREE_CODE (op2)) == tcc_comparison + && same_bool_comparison_p (op1, TREE_CODE (op2), + TREE_OPERAND (op2, 0), + TREE_OPERAND (op2, 1))) + return true; + if (TREE_CODE_CLASS (TREE_CODE (op1)) == tcc_comparison + && same_bool_comparison_p (op2, TREE_CODE (op1), + TREE_OPERAND (op1, 0), + TREE_OPERAND (op1, 1))) + return true; + + /* Default case. */ + return false; +} + +/* Forward declarations for some mutually recursive functions. */ + +static tree +and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, + enum tree_code code2, tree op2a, tree op2b); +static tree +and_var_with_comparison (tree var, bool invert, + enum tree_code code2, tree op2a, tree op2b); +static tree +and_var_with_comparison_1 (gimple stmt, + enum tree_code code2, tree op2a, tree op2b); +static tree +or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, + enum tree_code code2, tree op2a, tree op2b); +static tree +or_var_with_comparison (tree var, bool invert, + enum tree_code code2, tree op2a, tree op2b); +static tree +or_var_with_comparison_1 (gimple stmt, + enum tree_code code2, tree op2a, tree op2b); + +/* Helper function for and_comparisons_1: try to simplify the AND of the + ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B). + If INVERT is true, invert the value of the VAR before doing the AND. + Return NULL_EXPR if we can't simplify this to a single expression. */ + +static tree +and_var_with_comparison (tree var, bool invert, + enum tree_code code2, tree op2a, tree op2b) +{ + tree t; + gimple stmt = SSA_NAME_DEF_STMT (var); + + /* We can only deal with variables whose definitions are assignments. */ + if (!is_gimple_assign (stmt)) + return NULL_TREE; + + /* If we have an inverted comparison, apply DeMorgan's law and rewrite + !var AND (op2a code2 op2b) => !(var OR !(op2a code2 op2b)) + Then we only have to consider the simpler non-inverted cases. */ + if (invert) + t = or_var_with_comparison_1 (stmt, + invert_tree_comparison (code2, false), + op2a, op2b); + else + t = and_var_with_comparison_1 (stmt, code2, op2a, op2b); + return canonicalize_bool (t, invert); +} + +/* Try to simplify the AND of the ssa variable defined by the assignment + STMT with the comparison specified by (OP2A CODE2 OP2B). + Return NULL_EXPR if we can't simplify this to a single expression. */ + +static tree +and_var_with_comparison_1 (gimple stmt, + enum tree_code code2, tree op2a, tree op2b) +{ + tree var = gimple_assign_lhs (stmt); + tree true_test_var = NULL_TREE; + tree false_test_var = NULL_TREE; + enum tree_code innercode = gimple_assign_rhs_code (stmt); + + /* Check for identities like (var AND (var == 0)) => false. */ + if (TREE_CODE (op2a) == SSA_NAME + && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE) + { + if ((code2 == NE_EXPR && integer_zerop (op2b)) + || (code2 == EQ_EXPR && integer_nonzerop (op2b))) + { + true_test_var = op2a; + if (var == true_test_var) + return var; + } + else if ((code2 == EQ_EXPR && integer_zerop (op2b)) + || (code2 == NE_EXPR && integer_nonzerop (op2b))) + { + false_test_var = op2a; + if (var == false_test_var) + return boolean_false_node; + } + } + + /* If the definition is a comparison, recurse on it. */ + if (TREE_CODE_CLASS (innercode) == tcc_comparison) + { + tree t = and_comparisons_1 (innercode, + gimple_assign_rhs1 (stmt), + gimple_assign_rhs2 (stmt), + code2, + op2a, + op2b); + if (t) + return t; + } + + /* If the definition is an AND or OR expression, we may be able to + simplify by reassociating. */ + if (innercode == TRUTH_AND_EXPR + || innercode == TRUTH_OR_EXPR + || (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE + && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))) + { + tree inner1 = gimple_assign_rhs1 (stmt); + tree inner2 = gimple_assign_rhs2 (stmt); + gimple s; + tree t; + tree partial = NULL_TREE; + bool is_and = (innercode == TRUTH_AND_EXPR || innercode == BIT_AND_EXPR); + + /* Check for boolean identities that don't require recursive examination + of inner1/inner2: + inner1 AND (inner1 AND inner2) => inner1 AND inner2 => var + inner1 AND (inner1 OR inner2) => inner1 + !inner1 AND (inner1 AND inner2) => false + !inner1 AND (inner1 OR inner2) => !inner1 AND inner2 + Likewise for similar cases involving inner2. */ + if (inner1 == true_test_var) + return (is_and ? var : inner1); + else if (inner2 == true_test_var) + return (is_and ? var : inner2); + else if (inner1 == false_test_var) + return (is_and + ? boolean_false_node + : and_var_with_comparison (inner2, false, code2, op2a, op2b)); + else if (inner2 == false_test_var) + return (is_and + ? boolean_false_node + : and_var_with_comparison (inner1, false, code2, op2a, op2b)); + + /* Next, redistribute/reassociate the AND across the inner tests. + Compute the first partial result, (inner1 AND (op2a code op2b)) */ + if (TREE_CODE (inner1) == SSA_NAME + && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1)) + && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison + && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s), + gimple_assign_rhs1 (s), + gimple_assign_rhs2 (s), + code2, op2a, op2b))) + { + /* Handle the AND case, where we are reassociating: + (inner1 AND inner2) AND (op2a code2 op2b) + => (t AND inner2) + If the partial result t is a constant, we win. Otherwise + continue on to try reassociating with the other inner test. */ + if (is_and) + { + if (integer_onep (t)) + return inner2; + else if (integer_zerop (t)) + return boolean_false_node; + } + + /* Handle the OR case, where we are redistributing: + (inner1 OR inner2) AND (op2a code2 op2b) + => (t OR (inner2 AND (op2a code2 op2b))) */ + else + { + if (integer_onep (t)) + return boolean_true_node; + else + /* Save partial result for later. */ + partial = t; + } + } + + /* Compute the second partial result, (inner2 AND (op2a code op2b)) */ + if (TREE_CODE (inner2) == SSA_NAME + && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2)) + && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison + && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s), + gimple_assign_rhs1 (s), + gimple_assign_rhs2 (s), + code2, op2a, op2b))) + { + /* Handle the AND case, where we are reassociating: + (inner1 AND inner2) AND (op2a code2 op2b) + => (inner1 AND t) */ + if (is_and) + { + if (integer_onep (t)) + return inner1; + else if (integer_zerop (t)) + return boolean_false_node; + } + + /* Handle the OR case. where we are redistributing: + (inner1 OR inner2) AND (op2a code2 op2b) + => (t OR (inner1 AND (op2a code2 op2b))) + => (t OR partial) */ + else + { + if (integer_onep (t)) + return boolean_true_node; + else if (partial) + { + /* We already got a simplification for the other + operand to the redistributed OR expression. The + interesting case is when at least one is false. + Or, if both are the same, we can apply the identity + (x OR x) == x. */ + if (integer_zerop (partial)) + return t; + else if (integer_zerop (t)) + return partial; + else if (same_bool_result_p (t, partial)) + return t; + } + } + } + } + return NULL_TREE; +} + +/* Try to simplify the AND of two comparisons defined by + (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively. + If this can be done without constructing an intermediate value, + return the resulting tree; otherwise NULL_TREE is returned. + This function is deliberately asymmetric as it recurses on SSA_DEFs + in the first comparison but not the second. */ + +static tree +and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, + enum tree_code code2, tree op2a, tree op2b) +{ + /* First check for ((x CODE1 y) AND (x CODE2 y)). */ + if (operand_equal_p (op1a, op2a, 0) + && operand_equal_p (op1b, op2b, 0)) + { + tree t = combine_comparisons (UNKNOWN_LOCATION, + TRUTH_ANDIF_EXPR, code1, code2, + boolean_type_node, op1a, op1b); + if (t) + return t; + } + + /* Likewise the swapped case of the above. */ + if (operand_equal_p (op1a, op2b, 0) + && operand_equal_p (op1b, op2a, 0)) + { + tree t = combine_comparisons (UNKNOWN_LOCATION, + TRUTH_ANDIF_EXPR, code1, + swap_tree_comparison (code2), + boolean_type_node, op1a, op1b); + if (t) + return t; + } + + /* If both comparisons are of the same value against constants, we might + be able to merge them. */ + if (operand_equal_p (op1a, op2a, 0) + && TREE_CODE (op1b) == INTEGER_CST + && TREE_CODE (op2b) == INTEGER_CST) + { + int cmp = tree_int_cst_compare (op1b, op2b); + + /* If we have (op1a == op1b), we should either be able to + return that or FALSE, depending on whether the constant op1b + also satisfies the other comparison against op2b. */ + if (code1 == EQ_EXPR) + { + bool done = true; + bool val; + switch (code2) + { + case EQ_EXPR: val = (cmp == 0); break; + case NE_EXPR: val = (cmp != 0); break; + case LT_EXPR: val = (cmp < 0); break; + case GT_EXPR: val = (cmp > 0); break; + case LE_EXPR: val = (cmp <= 0); break; + case GE_EXPR: val = (cmp >= 0); break; + default: done = false; + } + if (done) + { + if (val) + return fold_build2 (code1, boolean_type_node, op1a, op1b); + else + return boolean_false_node; + } + } + /* Likewise if the second comparison is an == comparison. */ + else if (code2 == EQ_EXPR) + { + bool done = true; + bool val; + switch (code1) + { + case EQ_EXPR: val = (cmp == 0); break; + case NE_EXPR: val = (cmp != 0); break; + case LT_EXPR: val = (cmp > 0); break; + case GT_EXPR: val = (cmp < 0); break; + case LE_EXPR: val = (cmp >= 0); break; + case GE_EXPR: val = (cmp <= 0); break; + default: done = false; + } + if (done) + { + if (val) + return fold_build2 (code2, boolean_type_node, op2a, op2b); + else + return boolean_false_node; + } + } + + /* Same business with inequality tests. */ + else if (code1 == NE_EXPR) + { + bool val; + switch (code2) + { + case EQ_EXPR: val = (cmp != 0); break; + case NE_EXPR: val = (cmp == 0); break; + case LT_EXPR: val = (cmp >= 0); break; + case GT_EXPR: val = (cmp <= 0); break; + case LE_EXPR: val = (cmp > 0); break; + case GE_EXPR: val = (cmp < 0); break; + default: + val = false; + } + if (val) + return fold_build2 (code2, boolean_type_node, op2a, op2b); + } + else if (code2 == NE_EXPR) + { + bool val; + switch (code1) + { + case EQ_EXPR: val = (cmp == 0); break; + case NE_EXPR: val = (cmp != 0); break; + case LT_EXPR: val = (cmp <= 0); break; + case GT_EXPR: val = (cmp >= 0); break; + case LE_EXPR: val = (cmp < 0); break; + case GE_EXPR: val = (cmp > 0); break; + default: + val = false; + } + if (val) + return fold_build2 (code1, boolean_type_node, op1a, op1b); + } + + /* Chose the more restrictive of two < or <= comparisons. */ + else if ((code1 == LT_EXPR || code1 == LE_EXPR) + && (code2 == LT_EXPR || code2 == LE_EXPR)) + { + if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR)) + return fold_build2 (code1, boolean_type_node, op1a, op1b); + else + return fold_build2 (code2, boolean_type_node, op2a, op2b); + } + + /* Likewise chose the more restrictive of two > or >= comparisons. */ + else if ((code1 == GT_EXPR || code1 == GE_EXPR) + && (code2 == GT_EXPR || code2 == GE_EXPR)) + { + if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR)) + return fold_build2 (code1, boolean_type_node, op1a, op1b); + else + return fold_build2 (code2, boolean_type_node, op2a, op2b); + } + + /* Check for singleton ranges. */ + else if (cmp == 0 + && ((code1 == LE_EXPR && code2 == GE_EXPR) + || (code1 == GE_EXPR && code2 == LE_EXPR))) + return fold_build2 (EQ_EXPR, boolean_type_node, op1a, op2b); + + /* Check for disjoint ranges. */ + else if (cmp <= 0 + && (code1 == LT_EXPR || code1 == LE_EXPR) + && (code2 == GT_EXPR || code2 == GE_EXPR)) + return boolean_false_node; + else if (cmp >= 0 + && (code1 == GT_EXPR || code1 == GE_EXPR) + && (code2 == LT_EXPR || code2 == LE_EXPR)) + return boolean_false_node; + } + + /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where + NAME's definition is a truth value. See if there are any simplifications + that can be done against the NAME's definition. */ + if (TREE_CODE (op1a) == SSA_NAME + && (code1 == NE_EXPR || code1 == EQ_EXPR) + && (integer_zerop (op1b) || integer_onep (op1b))) + { + bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b)) + || (code1 == NE_EXPR && integer_onep (op1b))); + gimple stmt = SSA_NAME_DEF_STMT (op1a); + switch (gimple_code (stmt)) + { + case GIMPLE_ASSIGN: + /* Try to simplify by copy-propagating the definition. */ + return and_var_with_comparison (op1a, invert, code2, op2a, op2b); + + case GIMPLE_PHI: + /* If every argument to the PHI produces the same result when + ANDed with the second comparison, we win. + Do not do this unless the type is bool since we need a bool + result here anyway. */ + if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE) + { + tree result = NULL_TREE; + unsigned i; + for (i = 0; i < gimple_phi_num_args (stmt); i++) + { + tree arg = gimple_phi_arg_def (stmt, i); + + /* If this PHI has itself as an argument, ignore it. + If all the other args produce the same result, + we're still OK. */ + if (arg == gimple_phi_result (stmt)) + continue; + else if (TREE_CODE (arg) == INTEGER_CST) + { + if (invert ? integer_nonzerop (arg) : integer_zerop (arg)) + { + if (!result) + result = boolean_false_node; + else if (!integer_zerop (result)) + return NULL_TREE; + } + else if (!result) + result = fold_build2 (code2, boolean_type_node, + op2a, op2b); + else if (!same_bool_comparison_p (result, + code2, op2a, op2b)) + return NULL_TREE; + } + else if (TREE_CODE (arg) == SSA_NAME) + { + tree temp = and_var_with_comparison (arg, invert, + code2, op2a, op2b); + if (!temp) + return NULL_TREE; + else if (!result) + result = temp; + else if (!same_bool_result_p (result, temp)) + return NULL_TREE; + } + else + return NULL_TREE; + } + return result; + } + + default: + break; + } + } + return NULL_TREE; +} + +/* Try to simplify the AND of two comparisons, specified by + (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively. + If this can be simplified to a single expression (without requiring + introducing more SSA variables to hold intermediate values), + return the resulting tree. Otherwise return NULL_TREE. + If the result expression is non-null, it has boolean type. */ + +tree +maybe_fold_and_comparisons (enum tree_code code1, tree op1a, tree op1b, + enum tree_code code2, tree op2a, tree op2b) +{ + tree t = and_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b); + if (t) + return t; + else + return and_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b); +} + +/* Helper function for or_comparisons_1: try to simplify the OR of the + ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B). + If INVERT is true, invert the value of VAR before doing the OR. + Return NULL_EXPR if we can't simplify this to a single expression. */ + +static tree +or_var_with_comparison (tree var, bool invert, + enum tree_code code2, tree op2a, tree op2b) +{ + tree t; + gimple stmt = SSA_NAME_DEF_STMT (var); + + /* We can only deal with variables whose definitions are assignments. */ + if (!is_gimple_assign (stmt)) + return NULL_TREE; + + /* If we have an inverted comparison, apply DeMorgan's law and rewrite + !var OR (op2a code2 op2b) => !(var AND !(op2a code2 op2b)) + Then we only have to consider the simpler non-inverted cases. */ + if (invert) + t = and_var_with_comparison_1 (stmt, + invert_tree_comparison (code2, false), + op2a, op2b); + else + t = or_var_with_comparison_1 (stmt, code2, op2a, op2b); + return canonicalize_bool (t, invert); +} + +/* Try to simplify the OR of the ssa variable defined by the assignment + STMT with the comparison specified by (OP2A CODE2 OP2B). + Return NULL_EXPR if we can't simplify this to a single expression. */ + +static tree +or_var_with_comparison_1 (gimple stmt, + enum tree_code code2, tree op2a, tree op2b) +{ + tree var = gimple_assign_lhs (stmt); + tree true_test_var = NULL_TREE; + tree false_test_var = NULL_TREE; + enum tree_code innercode = gimple_assign_rhs_code (stmt); + + /* Check for identities like (var OR (var != 0)) => true . */ + if (TREE_CODE (op2a) == SSA_NAME + && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE) + { + if ((code2 == NE_EXPR && integer_zerop (op2b)) + || (code2 == EQ_EXPR && integer_nonzerop (op2b))) + { + true_test_var = op2a; + if (var == true_test_var) + return var; + } + else if ((code2 == EQ_EXPR && integer_zerop (op2b)) + || (code2 == NE_EXPR && integer_nonzerop (op2b))) + { + false_test_var = op2a; + if (var == false_test_var) + return boolean_true_node; + } + } + + /* If the definition is a comparison, recurse on it. */ + if (TREE_CODE_CLASS (innercode) == tcc_comparison) + { + tree t = or_comparisons_1 (innercode, + gimple_assign_rhs1 (stmt), + gimple_assign_rhs2 (stmt), + code2, + op2a, + op2b); + if (t) + return t; + } + + /* If the definition is an AND or OR expression, we may be able to + simplify by reassociating. */ + if (innercode == TRUTH_AND_EXPR + || innercode == TRUTH_OR_EXPR + || (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE + && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))) + { + tree inner1 = gimple_assign_rhs1 (stmt); + tree inner2 = gimple_assign_rhs2 (stmt); + gimple s; + tree t; + tree partial = NULL_TREE; + bool is_or = (innercode == TRUTH_OR_EXPR || innercode == BIT_IOR_EXPR); + + /* Check for boolean identities that don't require recursive examination + of inner1/inner2: + inner1 OR (inner1 OR inner2) => inner1 OR inner2 => var + inner1 OR (inner1 AND inner2) => inner1 + !inner1 OR (inner1 OR inner2) => true + !inner1 OR (inner1 AND inner2) => !inner1 OR inner2 + */ + if (inner1 == true_test_var) + return (is_or ? var : inner1); + else if (inner2 == true_test_var) + return (is_or ? var : inner2); + else if (inner1 == false_test_var) + return (is_or + ? boolean_true_node + : or_var_with_comparison (inner2, false, code2, op2a, op2b)); + else if (inner2 == false_test_var) + return (is_or + ? boolean_true_node + : or_var_with_comparison (inner1, false, code2, op2a, op2b)); + + /* Next, redistribute/reassociate the OR across the inner tests. + Compute the first partial result, (inner1 OR (op2a code op2b)) */ + if (TREE_CODE (inner1) == SSA_NAME + && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1)) + && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison + && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s), + gimple_assign_rhs1 (s), + gimple_assign_rhs2 (s), + code2, op2a, op2b))) + { + /* Handle the OR case, where we are reassociating: + (inner1 OR inner2) OR (op2a code2 op2b) + => (t OR inner2) + If the partial result t is a constant, we win. Otherwise + continue on to try reassociating with the other inner test. */ + if (innercode == TRUTH_OR_EXPR) + { + if (integer_onep (t)) + return boolean_true_node; + else if (integer_zerop (t)) + return inner2; + } + + /* Handle the AND case, where we are redistributing: + (inner1 AND inner2) OR (op2a code2 op2b) + => (t AND (inner2 OR (op2a code op2b))) */ + else + { + if (integer_zerop (t)) + return boolean_false_node; + else + /* Save partial result for later. */ + partial = t; + } + } + + /* Compute the second partial result, (inner2 OR (op2a code op2b)) */ + if (TREE_CODE (inner2) == SSA_NAME + && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2)) + && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison + && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s), + gimple_assign_rhs1 (s), + gimple_assign_rhs2 (s), + code2, op2a, op2b))) + { + /* Handle the OR case, where we are reassociating: + (inner1 OR inner2) OR (op2a code2 op2b) + => (inner1 OR t) */ + if (innercode == TRUTH_OR_EXPR) + { + if (integer_zerop (t)) + return inner1; + else if (integer_onep (t)) + return boolean_true_node; + } + + /* Handle the AND case, where we are redistributing: + (inner1 AND inner2) OR (op2a code2 op2b) + => (t AND (inner1 OR (op2a code2 op2b))) + => (t AND partial) */ + else + { + if (integer_zerop (t)) + return boolean_false_node; + else if (partial) + { + /* We already got a simplification for the other + operand to the redistributed AND expression. The + interesting case is when at least one is true. + Or, if both are the same, we can apply the identity + (x AND x) == true. */ + if (integer_onep (partial)) + return t; + else if (integer_onep (t)) + return partial; + else if (same_bool_result_p (t, partial)) + return boolean_true_node; + } + } + } + } + return NULL_TREE; +} + +/* Try to simplify the OR of two comparisons defined by + (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively. + If this can be done without constructing an intermediate value, + return the resulting tree; otherwise NULL_TREE is returned. + This function is deliberately asymmetric as it recurses on SSA_DEFs + in the first comparison but not the second. */ + +static tree +or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, + enum tree_code code2, tree op2a, tree op2b) +{ + /* First check for ((x CODE1 y) OR (x CODE2 y)). */ + if (operand_equal_p (op1a, op2a, 0) + && operand_equal_p (op1b, op2b, 0)) + { + tree t = combine_comparisons (UNKNOWN_LOCATION, + TRUTH_ORIF_EXPR, code1, code2, + boolean_type_node, op1a, op1b); + if (t) + return t; + } + + /* Likewise the swapped case of the above. */ + if (operand_equal_p (op1a, op2b, 0) + && operand_equal_p (op1b, op2a, 0)) + { + tree t = combine_comparisons (UNKNOWN_LOCATION, + TRUTH_ORIF_EXPR, code1, + swap_tree_comparison (code2), + boolean_type_node, op1a, op1b); + if (t) + return t; + } + + /* If both comparisons are of the same value against constants, we might + be able to merge them. */ + if (operand_equal_p (op1a, op2a, 0) + && TREE_CODE (op1b) == INTEGER_CST + && TREE_CODE (op2b) == INTEGER_CST) + { + int cmp = tree_int_cst_compare (op1b, op2b); + + /* If we have (op1a != op1b), we should either be able to + return that or TRUE, depending on whether the constant op1b + also satisfies the other comparison against op2b. */ + if (code1 == NE_EXPR) + { + bool done = true; + bool val; + switch (code2) + { + case EQ_EXPR: val = (cmp == 0); break; + case NE_EXPR: val = (cmp != 0); break; + case LT_EXPR: val = (cmp < 0); break; + case GT_EXPR: val = (cmp > 0); break; + case LE_EXPR: val = (cmp <= 0); break; + case GE_EXPR: val = (cmp >= 0); break; + default: done = false; + } + if (done) + { + if (val) + return boolean_true_node; + else + return fold_build2 (code1, boolean_type_node, op1a, op1b); + } + } + /* Likewise if the second comparison is a != comparison. */ + else if (code2 == NE_EXPR) + { + bool done = true; + bool val; + switch (code1) + { + case EQ_EXPR: val = (cmp == 0); break; + case NE_EXPR: val = (cmp != 0); break; + case LT_EXPR: val = (cmp > 0); break; + case GT_EXPR: val = (cmp < 0); break; + case LE_EXPR: val = (cmp >= 0); break; + case GE_EXPR: val = (cmp <= 0); break; + default: done = false; + } + if (done) + { + if (val) + return boolean_true_node; + else + return fold_build2 (code2, boolean_type_node, op2a, op2b); + } + } + + /* See if an equality test is redundant with the other comparison. */ + else if (code1 == EQ_EXPR) + { + bool val; + switch (code2) + { + case EQ_EXPR: val = (cmp == 0); break; + case NE_EXPR: val = (cmp != 0); break; + case LT_EXPR: val = (cmp < 0); break; + case GT_EXPR: val = (cmp > 0); break; + case LE_EXPR: val = (cmp <= 0); break; + case GE_EXPR: val = (cmp >= 0); break; + default: + val = false; + } + if (val) + return fold_build2 (code2, boolean_type_node, op2a, op2b); + } + else if (code2 == EQ_EXPR) + { + bool val; + switch (code1) + { + case EQ_EXPR: val = (cmp == 0); break; + case NE_EXPR: val = (cmp != 0); break; + case LT_EXPR: val = (cmp > 0); break; + case GT_EXPR: val = (cmp < 0); break; + case LE_EXPR: val = (cmp >= 0); break; + case GE_EXPR: val = (cmp <= 0); break; + default: + val = false; + } + if (val) + return fold_build2 (code1, boolean_type_node, op1a, op1b); + } + + /* Chose the less restrictive of two < or <= comparisons. */ + else if ((code1 == LT_EXPR || code1 == LE_EXPR) + && (code2 == LT_EXPR || code2 == LE_EXPR)) + { + if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR)) + return fold_build2 (code2, boolean_type_node, op2a, op2b); + else + return fold_build2 (code1, boolean_type_node, op1a, op1b); + } + + /* Likewise chose the less restrictive of two > or >= comparisons. */ + else if ((code1 == GT_EXPR || code1 == GE_EXPR) + && (code2 == GT_EXPR || code2 == GE_EXPR)) + { + if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR)) + return fold_build2 (code2, boolean_type_node, op2a, op2b); + else + return fold_build2 (code1, boolean_type_node, op1a, op1b); + } + + /* Check for singleton ranges. */ + else if (cmp == 0 + && ((code1 == LT_EXPR && code2 == GT_EXPR) + || (code1 == GT_EXPR && code2 == LT_EXPR))) + return fold_build2 (NE_EXPR, boolean_type_node, op1a, op2b); + + /* Check for less/greater pairs that don't restrict the range at all. */ + else if (cmp >= 0 + && (code1 == LT_EXPR || code1 == LE_EXPR) + && (code2 == GT_EXPR || code2 == GE_EXPR)) + return boolean_true_node; + else if (cmp <= 0 + && (code1 == GT_EXPR || code1 == GE_EXPR) + && (code2 == LT_EXPR || code2 == LE_EXPR)) + return boolean_true_node; + } + + /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where + NAME's definition is a truth value. See if there are any simplifications + that can be done against the NAME's definition. */ + if (TREE_CODE (op1a) == SSA_NAME + && (code1 == NE_EXPR || code1 == EQ_EXPR) + && (integer_zerop (op1b) || integer_onep (op1b))) + { + bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b)) + || (code1 == NE_EXPR && integer_onep (op1b))); + gimple stmt = SSA_NAME_DEF_STMT (op1a); + switch (gimple_code (stmt)) + { + case GIMPLE_ASSIGN: + /* Try to simplify by copy-propagating the definition. */ + return or_var_with_comparison (op1a, invert, code2, op2a, op2b); + + case GIMPLE_PHI: + /* If every argument to the PHI produces the same result when + ORed with the second comparison, we win. + Do not do this unless the type is bool since we need a bool + result here anyway. */ + if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE) + { + tree result = NULL_TREE; + unsigned i; + for (i = 0; i < gimple_phi_num_args (stmt); i++) + { + tree arg = gimple_phi_arg_def (stmt, i); + + /* If this PHI has itself as an argument, ignore it. + If all the other args produce the same result, + we're still OK. */ + if (arg == gimple_phi_result (stmt)) + continue; + else if (TREE_CODE (arg) == INTEGER_CST) + { + if (invert ? integer_zerop (arg) : integer_nonzerop (arg)) + { + if (!result) + result = boolean_true_node; + else if (!integer_onep (result)) + return NULL_TREE; + } + else if (!result) + result = fold_build2 (code2, boolean_type_node, + op2a, op2b); + else if (!same_bool_comparison_p (result, + code2, op2a, op2b)) + return NULL_TREE; + } + else if (TREE_CODE (arg) == SSA_NAME) + { + tree temp = or_var_with_comparison (arg, invert, + code2, op2a, op2b); + if (!temp) + return NULL_TREE; + else if (!result) + result = temp; + else if (!same_bool_result_p (result, temp)) + return NULL_TREE; + } + else + return NULL_TREE; + } + return result; + } + + default: + break; + } + } + return NULL_TREE; +} + +/* Try to simplify the OR of two comparisons, specified by + (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively. + If this can be simplified to a single expression (without requiring + introducing more SSA variables to hold intermediate values), + return the resulting tree. Otherwise return NULL_TREE. + If the result expression is non-null, it has boolean type. */ + +tree +maybe_fold_or_comparisons (enum tree_code code1, tree op1a, tree op1b, + enum tree_code code2, tree op2a, tree op2b) +{ + tree t = or_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b); + if (t) + return t; + else + return or_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b); +}