X-Git-Url: http://review.tizen.org/git/?a=blobdiff_plain;f=dali%2Finternal%2Frender%2Fcommon%2Frender-item.cpp;h=0197443c39d3f566fe7b77bc1ff67f00f5f0edfe;hb=23a2b8163c01a41b35dfbe8b8d9f2641777a7245;hp=c0e291f3d47dfc70e6be0c3174e2878215e1d684;hpb=da4ad1b400618f4663547453326cffa8a6c789cc;p=platform%2Fcore%2Fuifw%2Fdali-core.git diff --git a/dali/internal/render/common/render-item.cpp b/dali/internal/render/common/render-item.cpp index c0e291f..0197443 100644 --- a/dali/internal/render/common/render-item.cpp +++ b/dali/internal/render/common/render-item.cpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2021 Samsung Electronics Co., Ltd. + * Copyright (c) 2023 Samsung Electronics Co., Ltd. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -28,6 +28,7 @@ namespace //Memory pool used to allocate new RenderItems. Memory used by this pool will be released when shutting down DALi Dali::Internal::MemoryPoolObjectAllocator gRenderItemPool; } // namespace + namespace Dali { namespace Internal @@ -39,12 +40,19 @@ RenderItem* RenderItem::New() return new(gRenderItemPool.AllocateRaw()) RenderItem(); } +RenderItemKey RenderItem::NewKey() +{ + void* ptr = gRenderItemPool.AllocateRaw(); + auto key = gRenderItemPool.GetKeyFromPtr(static_cast(ptr)); + new(ptr) RenderItem(); + return RenderItemKey(key); +} + RenderItem::RenderItem() : mModelMatrix(false), mModelViewMatrix(false), - mColor(Vector4::ZERO), mSize(), - mRenderer(nullptr), + mRenderer{}, mNode(nullptr), mTextureSet(nullptr), mDepthIndex(0), @@ -55,7 +63,73 @@ RenderItem::RenderItem() RenderItem::~RenderItem() = default; -ClippingBox RenderItem::CalculateViewportSpaceAABB(const Vector3& size, const int viewportWidth, const int viewportHeight) const +RenderItem* RenderItem::Get(RenderItemKey::KeyType key) +{ + return gRenderItemPool.GetPtrFromKey(key); +} + +RenderItemKey RenderItem::GetKey(const RenderItem& renderItem) +{ + return RenderItemKey(gRenderItemPool.GetKeyFromPtr(const_cast(&renderItem))); +} + +RenderItemKey RenderItem::GetKey(RenderItem* renderItem) +{ + return RenderItemKey(gRenderItemPool.GetKeyFromPtr(renderItem)); +} + +ClippingBox RenderItem::CalculateTransformSpaceAABB(const Matrix& transformMatrix, const Vector3& position, const Vector3& size) +{ + // Calculate extent vector of the AABB: + const float halfActorX = size.x * 0.5f; + const float halfActorY = size.y * 0.5f; + + // To transform the actor bounds to the transformed space, We do a fast, 2D version of a matrix multiply optimized for 2D quads. + // This reduces float multiplications from 64 (16 * 4) to 12 (4 * 3). + // We create an array of 4 corners and directly initialize the first 3 with the matrix multiplication result of the respective corner. + // This causes the construction of the vector arrays contents in-place for optimization. + // We place the coords into the array in clockwise order, so we know opposite corners are always i + 2 from corner i. + // We skip the 4th corner here as we can calculate that from the other 3, bypassing matrix multiplication. + // Note: The below transform methods use a fast (2D) matrix multiply (only 4 multiplications are done). + Vector2 corners[4]{Transform2D(transformMatrix, -halfActorX + position.x, -halfActorY + position.y), + Transform2D(transformMatrix, halfActorX + position.x, -halfActorY + position.y), + Transform2D(transformMatrix, halfActorX + position.x, halfActorY + position.y)}; + + // As we are dealing with a rectangle, we can do a fast calculation to get the 4th corner from knowing the other 3 (even if rotated). + corners[3] = Vector2(corners[0] + (corners[2] - corners[1])); + + // Calculate the AABB: + // We use knowledge that opposite corners will be the max/min of each other. Doing this reduces the normal 12 branching comparisons to 3. + // The standard equivalent min/max code of the below would be: + // Vector2 AABBmax( std::max( corners[0].x, std::max( corners[1].x, std::max( corners[3].x, corners[2].x ) ) ), + // std::max( corners[0].y, std::max( corners[1].y, std::max( corners[3].y, corners[2].y ) ) ) ); + // Vector2 AABBmin( std::min( corners[0].x, std::min( corners[1].x, std::min( corners[3].x, corners[2].x ) ) ), + // std::min( corners[0].y, std::min( corners[1].y, std::min( corners[3].y, corners[2].y ) ) ) ); + unsigned int smallestX = 0u; + // Loop 3 times to find the index of the smallest X value. + // Note: We deliberately do NOT unroll the code here as this hampers the compilers output. + for(unsigned int i = 1u; i < 4u; ++i) + { + if(corners[i].x < corners[smallestX].x) + { + smallestX = i; + } + } + + // As we are dealing with a rectangle, we can assume opposite corners are the largest. + // So without doing min/max branching, we can fetch the min/max values of all the remaining X/Y coords from this one index. + Vector4 aabb(corners[smallestX].x, corners[(smallestX + 3u) % 4].y, corners[(smallestX + 2u) % 4].x, corners[(smallestX + 1u) % 4].y); + + // Round outwards from center + int x = static_cast(floor(aabb.x)); + int y = static_cast(floor(aabb.y)); + int z = static_cast(ceilf(aabb.z)); + int w = static_cast(ceilf(aabb.w)); + + return ClippingBox(x, y, z - x, fabsf(w - y)); +} + +ClippingBox RenderItem::CalculateViewportSpaceAABB(const Matrix& modelViewMatrix, const Vector3& position, const Vector3& size, const int viewportWidth, const int viewportHeight) { // Calculate extent vector of the AABB: const float halfActorX = size.x * 0.5f; @@ -68,9 +142,9 @@ ClippingBox RenderItem::CalculateViewportSpaceAABB(const Vector3& size, const in // We place the coords into the array in clockwise order, so we know opposite corners are always i + 2 from corner i. // We skip the 4th corner here as we can calculate that from the other 3, bypassing matrix multiplication. // Note: The below transform methods use a fast (2D) matrix multiply (only 4 multiplications are done). - Vector2 corners[4]{Transform2D(mModelViewMatrix, -halfActorX, -halfActorY), - Transform2D(mModelViewMatrix, halfActorX, -halfActorY), - Transform2D(mModelViewMatrix, halfActorX, halfActorY)}; + Vector2 corners[4]{Transform2D(modelViewMatrix, -halfActorX + position.x, -halfActorY + position.y), + Transform2D(modelViewMatrix, halfActorX + position.x, -halfActorY + position.y), + Transform2D(modelViewMatrix, halfActorX + position.x, halfActorY + position.y)}; // As we are dealing with a rectangle, we can do a fast calculation to get the 4th corner from knowing the other 3 (even if rotated). corners[3] = Vector2(corners[0] + (corners[2] - corners[1])); @@ -117,6 +191,11 @@ void RenderItem::operator delete(void* ptr) gRenderItemPool.Free(static_cast(ptr)); } +uint32_t RenderItem::GetMemoryPoolCapacity() +{ + return gRenderItemPool.GetCapacity(); +} + } // namespace SceneGraph } // namespace Internal