Imported Upstream version 6.1
[platform/upstream/ffmpeg.git] / tests / checkasm / sw_scale.c
index 9efa2b4..1305b38 100644 (file)
@@ -21,7 +21,7 @@
 
 #include "libavutil/common.h"
 #include "libavutil/intreadwrite.h"
-#include "libavutil/mem.h"
+#include "libavutil/mem_internal.h"
 
 #include "libswscale/swscale.h"
 #include "libswscale/swscale_internal.h"
             AV_WN32(buf + j, rnd());      \
     } while (0)
 
-#define SRC_PIXELS 128
+static void yuv2planeX_8_ref(const int16_t *filter, int filterSize,
+                             const int16_t **src, uint8_t *dest, int dstW,
+                             const uint8_t *dither, int offset)
+{
+    // This corresponds to the yuv2planeX_8_c function
+    int i;
+    for (i = 0; i < dstW; i++) {
+        int val = dither[(i + offset) & 7] << 12;
+        int j;
+        for (j = 0; j < filterSize; j++)
+            val += src[j][i] * filter[j];
+
+        dest[i]= av_clip_uint8(val >> 19);
+    }
+}
+
+static int cmp_off_by_n(const uint8_t *ref, const uint8_t *test, size_t n, int accuracy)
+{
+    for (size_t i = 0; i < n; i++) {
+        if (abs(ref[i] - test[i]) > accuracy)
+            return 1;
+    }
+    return 0;
+}
+
+static void print_data(uint8_t *p, size_t len, size_t offset)
+{
+    size_t i = 0;
+    for (; i < len; i++) {
+        if (i % 8 == 0) {
+            printf("0x%04zx: ", i+offset);
+        }
+        printf("0x%02x ", (uint32_t) p[i]);
+        if (i % 8 == 7) {
+            printf("\n");
+        }
+    }
+    if (i % 8 != 0) {
+        printf("\n");
+    }
+}
+
+static size_t show_differences(uint8_t *a, uint8_t *b, size_t len)
+{
+    for (size_t i = 0; i < len; i++) {
+        if (a[i] != b[i]) {
+            size_t offset_of_mismatch = i;
+            size_t offset;
+            if (i >= 8) i-=8;
+            offset = i & (~7);
+            printf("test a:\n");
+            print_data(&a[offset], 32, offset);
+            printf("\ntest b:\n");
+            print_data(&b[offset], 32, offset);
+            printf("\n");
+            return offset_of_mismatch;
+        }
+    }
+    return len;
+}
+
+static void check_yuv2yuv1(int accurate)
+{
+    struct SwsContext *ctx;
+    int osi, isi;
+    int dstW, offset;
+    size_t fail_offset;
+    const int input_sizes[] = {8, 24, 128, 144, 256, 512};
+    const int INPUT_SIZES = sizeof(input_sizes)/sizeof(input_sizes[0]);
+    #define LARGEST_INPUT_SIZE 512
+
+    const int offsets[] = {0, 3, 8, 11, 16, 19};
+    const int OFFSET_SIZES = sizeof(offsets)/sizeof(offsets[0]);
+    const char *accurate_str = (accurate) ? "accurate" : "approximate";
+
+    declare_func(void,
+                 const int16_t *src, uint8_t *dest,
+                 int dstW, const uint8_t *dither, int offset);
+
+    LOCAL_ALIGNED_16(int16_t, src_pixels, [LARGEST_INPUT_SIZE]);
+    LOCAL_ALIGNED_16(uint8_t, dst0, [LARGEST_INPUT_SIZE]);
+    LOCAL_ALIGNED_16(uint8_t, dst1, [LARGEST_INPUT_SIZE]);
+    LOCAL_ALIGNED_8(uint8_t, dither, [8]);
+
+    randomize_buffers((uint8_t*)dither, 8);
+    randomize_buffers((uint8_t*)src_pixels, LARGEST_INPUT_SIZE * sizeof(int16_t));
+    ctx = sws_alloc_context();
+    if (accurate)
+        ctx->flags |= SWS_ACCURATE_RND;
+    if (sws_init_context(ctx, NULL, NULL) < 0)
+        fail();
+
+    ff_sws_init_scale(ctx);
+    for (isi = 0; isi < INPUT_SIZES; ++isi) {
+        dstW = input_sizes[isi];
+        for (osi = 0; osi < OFFSET_SIZES; osi++) {
+            offset = offsets[osi];
+            if (check_func(ctx->yuv2plane1, "yuv2yuv1_%d_%d_%s", offset, dstW, accurate_str)){
+                memset(dst0, 0, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
+                memset(dst1, 0, LARGEST_INPUT_SIZE * sizeof(dst1[0]));
+
+                call_ref(src_pixels, dst0, dstW, dither, offset);
+                call_new(src_pixels, dst1, dstW, dither, offset);
+                if (cmp_off_by_n(dst0, dst1, dstW * sizeof(dst0[0]), accurate ? 0 : 2)) {
+                    fail();
+                    printf("failed: yuv2yuv1_%d_%di_%s\n", offset, dstW, accurate_str);
+                    fail_offset = show_differences(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
+                    printf("failing values: src: 0x%04x dither: 0x%02x dst-c: %02x dst-asm: %02x\n",
+                            (int) src_pixels[fail_offset],
+                            (int) dither[(fail_offset + fail_offset) & 7],
+                            (int) dst0[fail_offset],
+                            (int) dst1[fail_offset]);
+                }
+                if(dstW == LARGEST_INPUT_SIZE)
+                    bench_new(src_pixels, dst1, dstW, dither, offset);
+            }
+        }
+    }
+    sws_freeContext(ctx);
+}
+
+static void check_yuv2yuvX(int accurate)
+{
+    struct SwsContext *ctx;
+    int fsi, osi, isi, i, j;
+    int dstW;
+#define LARGEST_FILTER 16
+    // ff_yuv2planeX_8_sse2 can't handle odd filter sizes
+    const int filter_sizes[] = {2, 4, 8, 16};
+    const int FILTER_SIZES = sizeof(filter_sizes)/sizeof(filter_sizes[0]);
+#define LARGEST_INPUT_SIZE 512
+    static const int input_sizes[] = {8, 24, 128, 144, 256, 512};
+    const int INPUT_SIZES = sizeof(input_sizes)/sizeof(input_sizes[0]);
+    const char *accurate_str = (accurate) ? "accurate" : "approximate";
+
+    declare_func_emms(AV_CPU_FLAG_MMX, void, const int16_t *filter,
+                      int filterSize, const int16_t **src, uint8_t *dest,
+                      int dstW, const uint8_t *dither, int offset);
+
+    const int16_t **src;
+    LOCAL_ALIGNED_16(int16_t, src_pixels, [LARGEST_FILTER * LARGEST_INPUT_SIZE]);
+    LOCAL_ALIGNED_16(int16_t, filter_coeff, [LARGEST_FILTER]);
+    LOCAL_ALIGNED_16(uint8_t, dst0, [LARGEST_INPUT_SIZE]);
+    LOCAL_ALIGNED_16(uint8_t, dst1, [LARGEST_INPUT_SIZE]);
+    LOCAL_ALIGNED_16(uint8_t, dither, [LARGEST_INPUT_SIZE]);
+    union VFilterData{
+        const int16_t *src;
+        uint16_t coeff[8];
+    } *vFilterData;
+    uint8_t d_val = rnd();
+    memset(dither, d_val, LARGEST_INPUT_SIZE);
+    randomize_buffers((uint8_t*)src_pixels, LARGEST_FILTER * LARGEST_INPUT_SIZE * sizeof(int16_t));
+    ctx = sws_alloc_context();
+    if (accurate)
+        ctx->flags |= SWS_ACCURATE_RND;
+    if (sws_init_context(ctx, NULL, NULL) < 0)
+        fail();
+
+    ff_sws_init_scale(ctx);
+    for(isi = 0; isi < INPUT_SIZES; ++isi){
+        dstW = input_sizes[isi];
+        for(osi = 0; osi < 64; osi += 16){
+            if (dstW <= osi)
+                continue;
+            for (fsi = 0; fsi < FILTER_SIZES; ++fsi) {
+                // Generate filter coefficients for the given filter size,
+                // with some properties:
+                // - The coefficients add up to the intended sum (4096, 1<<12)
+                // - The coefficients contain negative values
+                // - The filter intermediates don't overflow for worst case
+                //   inputs (all positive coefficients are coupled with
+                //   input_max and all negative coefficients with input_min,
+                //   or vice versa).
+                // Produce a filter with all coefficients set to
+                // -((1<<12)/(filter_size-1)) except for one (randomly chosen)
+                // which is set to ((1<<13)-1).
+                for (i = 0; i < filter_sizes[fsi]; ++i)
+                    filter_coeff[i] = -((1 << 12) / (filter_sizes[fsi] - 1));
+                filter_coeff[rnd() % filter_sizes[fsi]] = (1 << 13) - 1;
+
+                src = av_malloc(sizeof(int16_t*) * filter_sizes[fsi]);
+                vFilterData = av_malloc((filter_sizes[fsi] + 2) * sizeof(union VFilterData));
+                memset(vFilterData, 0, (filter_sizes[fsi] + 2) * sizeof(union VFilterData));
+                for (i = 0; i < filter_sizes[fsi]; ++i) {
+                    src[i] = &src_pixels[i * LARGEST_INPUT_SIZE];
+                    vFilterData[i].src = src[i] - osi;
+                    for(j = 0; j < 4; ++j)
+                        vFilterData[i].coeff[j + 4] = filter_coeff[i];
+                }
+                if (check_func(ctx->yuv2planeX, "yuv2yuvX_%d_%d_%d_%s", filter_sizes[fsi], osi, dstW, accurate_str)){
+                    // use vFilterData for the mmx function
+                    const int16_t *filter = ctx->use_mmx_vfilter ? (const int16_t*)vFilterData : &filter_coeff[0];
+                    memset(dst0, 0, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
+                    memset(dst1, 0, LARGEST_INPUT_SIZE * sizeof(dst1[0]));
+
+                    // We can't use call_ref here, because we don't know if use_mmx_vfilter was set for that
+                    // function or not, so we can't pass it the parameters correctly.
+                    yuv2planeX_8_ref(&filter_coeff[0], filter_sizes[fsi], src, dst0, dstW - osi, dither, osi);
+
+                    call_new(filter, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
+                    if (cmp_off_by_n(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0]), accurate ? 0 : 2)) {
+                        fail();
+                        printf("failed: yuv2yuvX_%d_%d_%d_%s\n", filter_sizes[fsi], osi, dstW, accurate_str);
+                        show_differences(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
+                    }
+                    if(dstW == LARGEST_INPUT_SIZE)
+                        bench_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
+
+                }
+                av_freep(&src);
+                av_freep(&vFilterData);
+            }
+        }
+    }
+    sws_freeContext(ctx);
+#undef FILTER_SIZES
+}
+
+#undef SRC_PIXELS
+#define SRC_PIXELS 512
 
 static void check_hscale(void)
 {
 #define MAX_FILTER_WIDTH 40
-#define FILTER_SIZES 5
-    static const int filter_sizes[FILTER_SIZES] = { 4, 8, 16, 32, 40 };
+#define FILTER_SIZES 6
+    static const int filter_sizes[FILTER_SIZES] = { 4, 8, 12, 16, 32, 40 };
 
 #define HSCALE_PAIRS 2
     static const int hscale_pairs[HSCALE_PAIRS][2] = {
@@ -49,7 +268,11 @@ static void check_hscale(void)
         { 8, 18 },
     };
 
-    int i, j, fsi, hpi, width;
+#define LARGEST_INPUT_SIZE 512
+#define INPUT_SIZES 6
+    static const int input_sizes[INPUT_SIZES] = {8, 24, 128, 144, 256, 512};
+
+    int i, j, fsi, hpi, width, dstWi;
     struct SwsContext *ctx;
 
     // padded
@@ -60,12 +283,14 @@ static void check_hscale(void)
     // padded
     LOCAL_ALIGNED_32(int16_t, filter, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]);
     LOCAL_ALIGNED_32(int32_t, filterPos, [SRC_PIXELS]);
+    LOCAL_ALIGNED_32(int16_t, filterAvx2, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]);
+    LOCAL_ALIGNED_32(int32_t, filterPosAvx, [SRC_PIXELS]);
 
     // The dst parameter here is either int16_t or int32_t but we use void* to
     // just cover both cases.
-    declare_func_emms(AV_CPU_FLAG_MMX, void, void *c, void *dst, int dstW,
-                      const uint8_t *src, const int16_t *filter,
-                      const int32_t *filterPos, int filterSize);
+    declare_func(void, void *c, void *dst, int dstW,
+                 const uint8_t *src, const int16_t *filter,
+                 const int32_t *filterPos, int filterSize);
 
     ctx = sws_alloc_context();
     if (sws_init_context(ctx, NULL, NULL) < 0)
@@ -75,52 +300,58 @@ static void check_hscale(void)
 
     for (hpi = 0; hpi < HSCALE_PAIRS; hpi++) {
         for (fsi = 0; fsi < FILTER_SIZES; fsi++) {
-            width = filter_sizes[fsi];
-
-            ctx->srcBpc = hscale_pairs[hpi][0];
-            ctx->dstBpc = hscale_pairs[hpi][1];
-            ctx->hLumFilterSize = ctx->hChrFilterSize = width;
-
-            for (i = 0; i < SRC_PIXELS; i++) {
-                filterPos[i] = i;
-
-                // These filter cofficients are chosen to try break two corner
-                // cases, namely:
-                //
-                // - Negative filter coefficients. The filters output signed
-                //   values, and it should be possible to end up with negative
-                //   output values.
-                //
-                // - Positive clipping. The hscale filter function has clipping
-                //   at (1<<15) - 1
-                //
-                // The coefficients sum to the 1.0 point for the hscale
-                // functions (1 << 14).
-
-                for (j = 0; j < width; j++) {
-                    filter[i * width + j] = -((1 << 14) / (width - 1));
+            for (dstWi = 0; dstWi < INPUT_SIZES; dstWi++) {
+                width = filter_sizes[fsi];
+
+                ctx->srcBpc = hscale_pairs[hpi][0];
+                ctx->dstBpc = hscale_pairs[hpi][1];
+                ctx->hLumFilterSize = ctx->hChrFilterSize = width;
+
+                for (i = 0; i < SRC_PIXELS; i++) {
+                    filterPos[i] = i;
+                    filterPosAvx[i] = i;
+
+                    // These filter cofficients are chosen to try break two corner
+                    // cases, namely:
+                    //
+                    // - Negative filter coefficients. The filters output signed
+                    //   values, and it should be possible to end up with negative
+                    //   output values.
+                    //
+                    // - Positive clipping. The hscale filter function has clipping
+                    //   at (1<<15) - 1
+                    //
+                    // The coefficients sum to the 1.0 point for the hscale
+                    // functions (1 << 14).
+
+                    for (j = 0; j < width; j++) {
+                        filter[i * width + j] = -((1 << 14) / (width - 1));
+                    }
+                    filter[i * width + (rnd() % width)] = ((1 << 15) - 1);
                 }
-                filter[i * width + (rnd() % width)] = ((1 << 15) - 1);
-            }
 
-            for (i = 0; i < MAX_FILTER_WIDTH; i++) {
-                // These values should be unused in SIMD implementations but
-                // may still be read, random coefficients here should help show
-                // issues where they are used in error.
+                for (i = 0; i < MAX_FILTER_WIDTH; i++) {
+                    // These values should be unused in SIMD implementations but
+                    // may still be read, random coefficients here should help show
+                    // issues where they are used in error.
 
-                filter[SRC_PIXELS * width + i] = rnd();
-            }
-            ff_getSwsFunc(ctx);
+                    filter[SRC_PIXELS * width + i] = rnd();
+                }
+                ctx->dstW = ctx->chrDstW = input_sizes[dstWi];
+                ff_sws_init_scale(ctx);
+                memcpy(filterAvx2, filter, sizeof(uint16_t) * (SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH));
+                ff_shuffle_filter_coefficients(ctx, filterPosAvx, width, filterAvx2, ctx->dstW);
 
-            if (check_func(ctx->hcScale, "hscale_%d_to_%d_width%d", ctx->srcBpc, ctx->dstBpc + 1, width)) {
-                memset(dst0, 0, SRC_PIXELS * sizeof(dst0[0]));
-                memset(dst1, 0, SRC_PIXELS * sizeof(dst1[0]));
+                if (check_func(ctx->hcScale, "hscale_%d_to_%d__fs_%d_dstW_%d", ctx->srcBpc, ctx->dstBpc + 1, width, ctx->dstW)) {
+                    memset(dst0, 0, SRC_PIXELS * sizeof(dst0[0]));
+                    memset(dst1, 0, SRC_PIXELS * sizeof(dst1[0]));
 
-                call_ref(NULL, dst0, SRC_PIXELS, src, filter, filterPos, width);
-                call_new(NULL, dst1, SRC_PIXELS, src, filter, filterPos, width);
-                if (memcmp(dst0, dst1, SRC_PIXELS * sizeof(dst0[0])))
-                    fail();
-                bench_new(NULL, dst0, SRC_PIXELS, src, filter, filterPos, width);
+                    call_ref(NULL, dst0, ctx->dstW, src, filter, filterPos, width);
+                    call_new(NULL, dst1, ctx->dstW, src, filterAvx2, filterPosAvx, width);
+                    if (memcmp(dst0, dst1, ctx->dstW * sizeof(dst0[0])))
+                        fail();
+                    bench_new(NULL, dst0, ctx->dstW, src, filter, filterPosAvx, width);
+                }
             }
         }
     }
@@ -131,4 +362,10 @@ void checkasm_check_sw_scale(void)
 {
     check_hscale();
     report("hscale");
+    check_yuv2yuv1(0);
+    check_yuv2yuv1(1);
+    report("yuv2yuv1");
+    check_yuv2yuvX(0);
+    check_yuv2yuvX(1);
+    report("yuv2yuvX");
 }