arm_compute v17.04
[platform/upstream/armcl.git] / src / runtime / CL / functions / CLFullyConnectedLayer.cpp
index 2ca72c5..08e18df 100644 (file)
 #include "arm_compute/core/Validate.h"
 #include "arm_compute/runtime/CL/CLScheduler.h"
 
+#include <algorithm>
+#include <cmath>
+
 using namespace arm_compute;
 
 CLFullyConnectedLayer::CLFullyConnectedLayer()
-    : _conv_function(), _gemm_function(), _transpose_kernel(), _acc_biases_kernel(), _run_func(), _weights_transpose(), _is_first_run(true), _run_acc_biases(false)
+    : _im2col_kernel(), _transpose_kernel(), _transpose1xW_kernel(), _interleave4x4_kernel(), _mm_kernel(), _accumulate_biases_kernel(), _im2col_output(), _interleave4x4_output(), _transpose_output(),
+      _transpose1xW_output(), _is_first_run(true), _transpose_weights(true), _fc_after_conv(true), _batched_fc_layer(false), _accumulate_biases(false)
 {
 }
 
-void CLFullyConnectedLayer::configure(ICLTensor *input, ICLTensor *weights, const ICLTensor *biases, ICLTensor *output)
+void CLFullyConnectedLayer::configure_conv_fc_wb(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output)
 {
-    ARM_COMPUTE_ERROR_ON((weights->info()->num_dimensions() != 2) && (weights->info()->num_dimensions() != 4));
+    ARM_COMPUTE_ERROR_ON(weights->info()->dimension(1) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2)));
 
-    // Make sure that in the fully connected layer connected to fully connected layer case, the first dimension of the weights and input are same.
-    ARM_COMPUTE_ERROR_ON((weights->info()->num_dimensions() == 2) && (input->info()->dimension(0) != weights->info()->dimension(0)));
+    // If the fully connected layer is called after a convolution layer, the input tensor must be linearized
 
-    if(weights->info()->num_dimensions() != 2)
-    {
-        _conv_function.configure(input, weights, biases, output, PadStrideInfo(1, 1, 0, 0, DimensionRoundingType::FLOOR));
-        _run_func = &CLFullyConnectedLayer::run_conv;
-        return;
-    }
+    // Initialize output tensor for im2col
+    TensorShape shape_im2col;
+    shape_im2col.set(0, weights->info()->dimension(1));
+    shape_im2col.set(1, input->info()->dimension(3));
+    shape_im2col.set(2, input->info()->dimension(4));
+    shape_im2col.set(3, input->info()->dimension(5));
+    _im2col_output.allocator()->init(TensorInfo(shape_im2col, 1, input->info()->data_type()));
 
-    TensorShape shape_trans(weights->info()->dimension(1), weights->info()->dimension(0));
-    _weights_transpose.allocator()->init(TensorInfo(shape_trans, 1, weights->info()->data_type()));
+    // Initialize output tensor for interleave 4x4
+    TensorShape shape_interleaved = _im2col_output.info()->tensor_shape();
+    shape_interleaved.set(0, shape_interleaved.x() * 4);
+    shape_interleaved.set(1, std::ceil(static_cast<float>(shape_interleaved.y()) / 4));
+    _interleave4x4_output.allocator()->init(TensorInfo(shape_interleaved, 1, input->info()->data_type()));
 
-    // Configure kernels
-    _transpose_kernel.configure(weights, &_weights_transpose);
-    _gemm_function.configure(input, &_weights_transpose, nullptr, output, 1.0f, 0.0f);
-    if(biases != nullptr)
-    {
-        _acc_biases_kernel.configure(output, biases);
-        _run_acc_biases = true;
-    }
+    // Initialize output tensor for transpose 1xW
+    TensorShape shape_transposed1xW(weights->info()->dimension(1) * 4, static_cast<size_t>(std::ceil(weights->info()->dimension(0) / 4.f)));
+    _transpose1xW_output.allocator()->init(TensorInfo(shape_transposed1xW, 1, weights->info()->data_type()));
+
+    // Configure im2col kernel
+    _im2col_kernel.configure(input, &_im2col_output, std::make_pair(1, 1), PadStrideInfo(1, 1, 0, 0), false);
+
+    // Configure interleave4x4 kernel
+    _interleave4x4_kernel.configure(&_im2col_output, &_interleave4x4_output);
 
-    _run_func = &CLFullyConnectedLayer::run_fc;
+    // Configure transpose 1xW kernel
+    _transpose1xW_kernel.configure(weights, &_transpose1xW_output);
 
-    // Allocate intermediate buffers
-    _weights_transpose.allocator()->allocate();
+    // Configure matrix multiply kernel
+    _mm_kernel.configure(&_interleave4x4_output, &_transpose1xW_output, output, 1.0f);
+
+    // Allocate the tensors once all the configure methods have been called
+    _im2col_output.allocator()->allocate();
+    _interleave4x4_output.allocator()->allocate();
+    _transpose1xW_output.allocator()->allocate();
 }
 
-void CLFullyConnectedLayer::run_conv()
+void CLFullyConnectedLayer::configure_fc_fc_wb(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output)
 {
-    _conv_function.run();
+    // Initialize output tensor for interleave 4x4
+    TensorShape shape_interleaved = input->info()->tensor_shape();
+    shape_interleaved.set(0, shape_interleaved.x() * 4);
+    shape_interleaved.set(1, std::ceil(static_cast<float>(shape_interleaved.y()) / 4));
+    _interleave4x4_output.allocator()->init(TensorInfo(shape_interleaved, 1, input->info()->data_type()));
+
+    // Initialize output tensor for transpose 1xW
+    TensorShape shape_transposed1xW(weights->info()->dimension(1) * 4, static_cast<size_t>(std::ceil(weights->info()->dimension(0) / 4.f)));
+    _transpose1xW_output.allocator()->init(TensorInfo(shape_transposed1xW, 1, weights->info()->data_type()));
+
+    // Configure interleave4x4 kernel
+    _interleave4x4_kernel.configure(input, &_interleave4x4_output);
+
+    // Configure transpose 1xW kernel
+    _transpose1xW_kernel.configure(weights, &_transpose1xW_output);
+
+    // Configure matrix multiply kernel
+    _mm_kernel.configure(&_interleave4x4_output, &_transpose1xW_output, output, 1.0f);
+
+    // Allocate the tensors once all the configure methods have been called
+    _interleave4x4_output.allocator()->allocate();
+    _transpose1xW_output.allocator()->allocate();
 }
 
-void CLFullyConnectedLayer::run_fc()
+void CLFullyConnectedLayer::configure_conv_fc_nb(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output)
 {
-    if(_is_first_run)
+    ARM_COMPUTE_ERROR_ON((weights->info()->dimension(1) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2))));
+
+    // If the fully connected layer is called after a convolution layer, the input tensor must be linearized
+
+    // Initialize output tensor for im2col
+    TensorShape shape_im2col;
+    shape_im2col.set(0, weights->info()->dimension(1));
+    shape_im2col.set(1, 1);
+    _im2col_output.allocator()->init(TensorInfo(shape_im2col, 1, input->info()->data_type()));
+
+    // Configure im2col kernel
+    _im2col_kernel.configure(input, &_im2col_output, std::make_pair(1, 1), PadStrideInfo(1, 1, 0, 0), false);
+
+    // Configure matrix multiply kernel
+    _mm_kernel.configure(&_im2col_output, weights, output, 1.0f);
+
+    // Allocate the output tensor for im2col once all the configure methods have been called
+    _im2col_output.allocator()->allocate();
+}
+
+void CLFullyConnectedLayer::configure_fc_fc_nb(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output)
+{
+    ARM_COMPUTE_ERROR_ON(input->info()->dimension(0) != weights->info()->dimension(1));
+
+    // Configure matrix multiply kernel
+    _mm_kernel.configure(input, weights, output, 1.0f);
+}
+
+void CLFullyConnectedLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, bool transpose_weights)
+{
+    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
+    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::F32);
+    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
+    ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() != 2);
+
+    const ICLTensor *weights_to_use = weights;
+
+    _is_first_run      = true;
+    _transpose_weights = transpose_weights;
+    _fc_after_conv     = true;
+    _batched_fc_layer  = false;
+    _accumulate_biases = false;
+
+    if(biases != nullptr)
     {
-        _is_first_run = false;
-        CLScheduler::get().enqueue(_transpose_kernel);
+        ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
+
+        _accumulate_biases = true;
+
+        // Configure accumulate biases kernel
+        _accumulate_biases_kernel.configure(output, biases);
+    }
+
+    // Check if we need to transpose the weights
+    if(_transpose_weights)
+    {
+        // Initialize the output tensor for transpose
+        TensorShape shape_transposed(weights->info()->dimension(1), weights->info()->dimension(0));
+        _transpose_output.allocator()->init(TensorInfo(shape_transposed, 1, weights->info()->data_type()));
+        _transpose_kernel.configure(weights, &_transpose_output);
+
+        weights_to_use = &_transpose_output;
+    }
+
+    // With the Fully Connected layer we can have 4 different cases:
+    //  1) Convolution layer -> Fully Connected layer without batches
+    //  2) Fully Connected layer -> Fully Connected layer without batches
+    //  3) Convolution layer -> Fully Connected layer with batches
+    //  4) Fully Connected layer -> Fully Connected layer with batches
+
+    // Check if we have a fully connected layer with batches
+    _batched_fc_layer = (output->info()->dimension(1) > 1);
+
+    if(_batched_fc_layer)
+    {
+        _fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->info()->tensor_shape().cbegin() + 3,
+                                                                               input->info()->tensor_shape().cend(),
+                                                                               output->info()->tensor_shape().cbegin() + 1));
+
+        if(_fc_after_conv)
+        {
+            // Fully Connected layer after a Convolution Layer with batches
+            configure_conv_fc_wb(input, weights_to_use, output);
+        }
+        else
+        {
+            // Fully Connected layer after a Fully Connected Layer with batches
+            configure_fc_fc_wb(input, weights_to_use, output);
+        }
     }
+    else
+    {
+        _fc_after_conv = (weights_to_use->info()->dimension(1) == (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2)));
 
-    _gemm_function.run();
+        if(_fc_after_conv)
+        {
+            // Fully Connected layer after a Convolution Layer without batches
+            configure_conv_fc_nb(input, weights_to_use, output);
+        }
+        else
+        {
+            // Fully Connected layer after a Fully Connected Layer without batches
+            configure_fc_fc_nb(input, weights_to_use, output);
+        }
+    }
 
-    if(_run_acc_biases)
+    // Allocate the transpose tensor if the transpose_weights flag is true and once all the configure methods have been called
+    if(_transpose_weights)
     {
-        CLScheduler::get().enqueue(_acc_biases_kernel);
+        _transpose_output.allocator()->allocate();
     }
 }
 
 void CLFullyConnectedLayer::run()
 {
-    ARM_COMPUTE_ERROR_ON(_run_func == nullptr);
-    (this->*_run_func)();
+    // The reshape of the weights happens only once
+    if(_is_first_run)
+    {
+        _is_first_run = false;
+
+        if(_transpose_weights)
+        {
+            CLScheduler::get().enqueue(_transpose_kernel);
+        }
+
+        if(_batched_fc_layer)
+        {
+            CLScheduler::get().enqueue(_transpose1xW_kernel);
+        }
+    }
+
+    // Linearize input if it comes from a convolutional layer
+    if(_fc_after_conv)
+    {
+        CLScheduler::get().enqueue(_im2col_kernel, false);
+    }
+
+    // Interleave input
+    if(_batched_fc_layer)
+    {
+        CLScheduler::get().enqueue(_interleave4x4_kernel, false);
+    }
+
+    // Run matrix multiply
+    CLScheduler::get().enqueue(_mm_kernel, !_accumulate_biases);
+
+    // Accumulate biases if provided
+    if(_accumulate_biases)
+    {
+        CLScheduler::get().enqueue(_accumulate_biases_kernel);
+    }
 }